Materials and Methods

In silico analysis of plasmid transfer genes for Figure S6. 77 genes putatively associated with plasmid transfer functions in the literature including: antirestriction, pilus formation, incompatibility, stability, and stress response were extracted from 6050 RefSeq plasmid records at NCBI. Genes were clustered with CD-HIT at 98% identity and 90% length difference cutoffs to create a non-redundant database of 8733 gene sequences. Plasmid sequences from conjugation donors and *K. pneumoniae* patient isolate recipient strains as well as several bla_{KPC} or bla_{OXA-48} plasmids from the literature (1, 2) were compared to this database. We extracted putative protein-coding sequences from these plasmids using Prokka ver. 1.12 (3) and compared amino-acid sequences of the encoded proteins to our reference database using TBLASTN ver. 2.2.31+. A gene was considered to be present if it was found at 50% coverage and a minimum E-value of 1e-5. Genes that were found together in 98% clustering were collapsed. The presence/absence of genes and the identity level of best match between plasmid-encoded proteins and our reference set was visualized using R version 3.2.4.

Transfer - Tra	Transfer - Other	Stability/ Toxin- Antitoxin/Replication	Anti- restriction	Stress Response	Entry or Surface Exclusion
traA	finO	kikA	ardA	mucA	eex
traB	mobB	korA	ardB	nucB/umuC	traS
traB/traK	mobC	korB	ardB/klcA	psiA	traT
traB/trbI	pilT	korB/parB	ccgC	psiB	
traC	pilT/vagD	пис	ccgD	umuC	
traD	tir	parA	klcA	umuD	
traE	traA/virB3	parB			
traE/traK	traB/virB4	relE			
traF	traC/virB5	repA			
traG	traD/traJ	stbA			
traH	traD/virB6	stbB			
traI	traE/virB8	stbC			
traJ	traF/virB10	vagC			
traK	traG/virB11	vagD			
traL	traL/virB1	_			

AAC00014_16 Hardiman

traM	trbB
traN	trbC
traQ	trbE
traR	trbI
traU	trbJ
traV	trbL
traW	virB4
traX	virB8
traY	virB9

Time course of pKpQ-GFP conjugation used to select time of incubation for experiments in this report. Conjugation was measured at hours 1, 2, 4, 8, 12, 16, and 20 between Kpn1760CT_pKpQGFP and Kpn223 in broth culture incubated at 37°C with no agitation. No transconjugants were observed at hours 1 or 2. Kpn223 transconjugants were observed after 4 hours of incubation, and the conjugation frequency was calculated as $2.1 \times 10^{-6} \pm 9.2 \times 10^{-7}$ compared to $6.4 \times 10^{-2} \pm 6.8 \times 10^{-3}$ at 20 h. Conjugation experiments were conducted at hour 4 between Kpn1760CT_pKpQGFP and Kpn731, Kpn808, and *E. coli* XL-1 and no transconjugants were detected (n=3). Based on these data and similar published studies, we selected 20 h as the incubation time for all experiments.

Supplemental Table S1. Conjugation rates of plasmids from KPNIH1760 and transformed isogenic strains to Kpn223 and XL-1

Donor	Recipient			
	Kpn223	XL-1		
KPNIH1760	$3.5 \pm 0.9 \text{ x } 10^{-2a}$	$3.2 \pm 1.3 \times 10^{-4}$		
Kpn1760CT_pKpQGFP	$5.6 \pm 0.6 \ge 10^{-2}$	$3.8 \pm 0.8 \times 10^{-3}$		
Kpn1760CT_pKpQIL	$4.7 \pm 0.7 \text{ x } 10^{-2}$	$1.1 \pm 0.3 \times 10^{-3}$		

^aAvg conjugation frequencies (CFU transconjugants / CFU recipients) ± SEM.

Strain					
	CAV1193	C1193_KPCCURE	C1193_GentCURE	C1193_CURE	C1193CT_pKpQGFP
Susceptibility	Mero ^R , Gent ^R	Mero ^S , Gent ^R	Mero ^R , Gent ^S	Mero ^S , Gent ^S	Mero ^R , Gent ^S
bla _{KPC} PCR	Positive	Negative	Positive	Negative	Positive
Passage #	N/A	22	8	57	57
Plasmid Presence	pKPC_CAV1193		pKPC_CAV1193		
	pCAV1193-3741	pCAV1193-3741		pCAV1193-3741	pCAV1193-3741
	pCAV1193-78	pCAV1193-78			
	pCAV1193-166	pCAV1193-166			
	pCAV1193-258	pCAV1193-258		pCAV1193-258	pCAV1193-258

Supplemental Table S2. Plasmid and antibiotic susceptibility profiles of CAV1193 isogenic strains

	Kpn223	Kpn223 TC ^a pKpQ-GFP	Kpn731	Kpn731 TC pKpQ-GFP	Kpn1760CT_ pKpQ-GFP
Amikacin	≤16	≤16	≤16	≤16	32
Amoxicillin/Clavulanate	≤8	>16	≤8	>16	>16
Ampicillin	>16	>16	>16	>16	>16
Aztreonam	≤4	>8	≤4	>8	>8
Cefazolin	≤2	>4	≤2	>4	>4
Cefepime	≤8	>16	≤8 I	16 R	
Cefotaxime	≤1	64	≤1	16	64
Cefoxitin	16	>16	16	>16	>16
Ceftaroline	≤0.25	>2	≤0.25	>2	>2
Ceftazidime	≤2	64	≤2	128	>128
Ceftriaxone	≤1	>32	≤1	>32	>32
Chloramphenicol		>16		≤ 8	16
Ciprofloxacin	>2	>2	≤1	≤1	>2
Colistin		≤2		≤2	>4
Doripenem	≤1	>4	≤1	2	>4
Doxycline	>8	>8	>8	>8	
Ertapenem	≤0.5	>4	≤0.5	>4	>4
Gentamicin	>8	>8	≤4	≤4	≤4
Imipenem	≤1	>4	≤1	>4	>4
Levofloxacin	≤2	≤2	≤2	≤2	>4
Meropenem	≤1	>8	≤1	4	>8
Piperacillin	≤16	>64	≤16	>64	>64
Piperacillin/Tazobactam	≤16	>64	≤16	>64	>64
Tigecycline	≤0.5	≤0.5	≤0.5	≤0.5	1
Tobramycin	8	<u>≤</u> 4	≤4	≤4	>8
Trimethoprim/sulfamethoxazole	>2	>2	≤2	≤2	>2

Supplemental Table S3. MIC data of selected transconjugants following *in vitro* mating

^aTC = Transconjugant.

Supplemental Figure 1. Effect of recipient native plasmid content on pKpQ-GFP conjugation frequency. Donor is Kpn1760CT_pKpQGFP. Recipients are Kpn555, Kpn110, Kpn331 and their derivatives cured of their IncFII plasmid: Kpn555cure, Kpn110cure, and Kpn331cure. Kpn555 P21 and Kpn110 P21 are controls that were passaged at elevated temperature like cured strains, but retained IncFII. All recipients except for Kpn331 were transformed with the gentamicin resistant plasmid pRU1103 required for selection following conjugation. pRU1103 was a gift from Philip Pool (Addgene plasmid #14467) (4). Conjugations performed for 20 h in broth culture at 37°C. Conjugation frequency given by (CFU transconjugants / CFU recipients). Bar indicates median. Solid circles: conjugation frequency; open circles: no transconjugants observed at the limit of detection. n = 3.

Supplemental Figure 2. Effect of donor species on bla_{KPC} -plasmid conjugation frequency in broth culture. Donors are listed on the x-axis, and recipients are Eco556 (A), Eco889 (B), ECNIH2CURE (C), and Kpn223 (D). Broth culture conjugations performed for 20 h. Conjugation frequency given by (CFU transconjugants / CFU recipients). Kpn: *K. pneumonia*e and Eco: *E. coli*. Bar indicates median. Solid circles: conjugation frequency; open circles: no transconjugants observed at the limit of detection. n=4.

Supplemental Figure 3. Effect of recipient strain and species on p47e-GFP *in vitro* conjugation rates in broth culture. Donor is Kpn1760CT_p47eGFP; *K. pneumoniae* (A) or *E. coli* (B) recipients are listed on the x-axis. Broth culture matings performed for 20 h. Conjugation frequency given by (CFU transconjugants / CFU recipients). Replicon typing performed as

AAC00014_16 Hardiman

described. Bar indicates median. Solid circles: conjugation frequency; open circles: no transconjugants observed at the limit of detection. $n \ge 3$.

Donors

AAC00014_16 Hardiman

Supplemental Figure 4. Conjugation ability of Enterobacteriaceae isolates containing pKPC_UVA01, pKPC_CAV1193, or pKPC_UVA02 to Enterobacteriaceae recipients. Donors are indicated on the x-axis; recipients are XL-1 (A), Kpn555 (B), and Eco385 (C). Broth culture conjugations performed for 20 h. Conjugation frequency given by (CFU transconjugants / CFU recipients). Kpn: *K. pneumoniae* and Eco: *E. coli*. Bar indicates median. Solid circles: conjugation frequency; open circles: no transconjugants observed at the limit of detection. $n \ge 3$. ^aAs determined by whole genome sequencing on the Illumina HiSeq platform and long-range PCR (5).

Supplemental Figure 5. Diagram of CAV1193 isogenic strains and Kpn1016 used in the self-transfer experiment. Kpn: *K. pneumoniae*.

Supplemental Figure 6. Heat map of genes putatively associated with plasmid transfer and other plasmid-related functions. Numbers 1, 3, 6, 9-11, 13, 16: carbapenemase containing plasmids. *denotes referenced plasmids from (1, 2, 6). Number 14: plasmid of Kpn223, a strain used as a conjugation recipient that efficiently accepted pKpQ-GFP. Number 4, 8: plasmids of Kpn555, a strain greatly attenuated as a recipient for pKpQ-GFP via conjugation. Numbers 2, 5, 7, 12, 15: additional plasmids identified in conjugation donors. Note: CAV1193-3741 is a small 3.7 kb plasmid and is not predicted to contain any proteins from our list. Plasmid-Strain associations are listed in Table 1. Kpn: K. pneumoniae. Plasmid sequences are arranged on the x-axis labeled by plasmid name. Genes are arranged on the y-axis. For every gene that was found on the plasmid (>50% coverage and E-value < 1e-5), we plotted the identity level for the best alignment between plasmid-encoded gene and database representative. Before plotting, genes and plasmids were clustered using hierarchical clustering in R (hclust) using Ward's method. Transposon insertion in pKPC CAV1193 in the TrbI gene compared to pKPC UVA01 is not seen as a disrupted protein in this heatmap, as the criteria for protein match were still met despite the disruption of the sequence (7).

References:

- 1. **Chen L, Chavda KD, Melano RG, Hong T, Rojtman AD, Jacobs MR, Bonomo RA, Kreiswirth BN.** 2014. Molecular survey of the dissemination of two *bla*KPCharboring IncFIA plasmids in New Jersey and New York hospitals. Antimicrobial agents and chemotherapy **58**:2289-2294.
- 2. **Dortet L, Oueslati S, Jeannot K, Tande D, Naas T, Nordmann P.** 2015. Genetic and biochemical characterization of OXA-405, an OXA-48-type extended-spectrum beta-lactamase without significant carbapenemase activity. Antimicrobial agents and chemotherapy **59**:3823-3828.
- 3. **Seemann T.** 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics **30**:2068-2069.
- 4. **Karunakaran R, Mauchline TH, Hosie AH, Poole PS.** 2005. A family of promoter probe vectors incorporating autofluorescent and chromogenic reporter proteins for studying gene expression in Gram-negative bacteria. Microbiology **151**:3249-3256.

- 5. **Mathers AJ, Stoesser N, Sheppard AE, Pankhurst L, Giess A, Yeh AJ, Didelot X, Turner SD, Sebra R, Kasarskis A, Peto T, Crook D, Sifri CD.** 2015. Klebsiella pneumoniae Carbapenemase (KPC)-Producing *K. pneumoniae* at a Single Institution: Insights into Endemicity from Whole-Genome Sequencing. Antimicrobial agents and chemotherapy **59:**1656-1663.
- 6. **Adler A, Khabra E, Paikin S, Carmeli Y.** 2016. Dissemination of the *bla*KPC gene by clonal spread and horizontal gene transfer: comparative study of incidence and molecular mechanisms. The Journal of antimicrobial chemotherapy.
- 7. Sheppard AE, Stoesser N, Sebra R, Kasarskis A, Deikus G, Anson L, Walker AS, Peto TE, Crook DW, Mathers AJ. 2016. Complete Genome Sequence of KPC-Producing *Klebsiella pneumoniae* Strain CAV1193. Genome announcements **4**.