Supporting Information

The N-B Interaction through a Water Bridge: Understanding the Chemoselectivity of a Fluorescent Protein Based Probe for Peroxynitrite

Zhi-jie Chen,[†] Ziqi Tian,[†] Karen Kallio,[‡] April L Oleson,[‡] Ao Ji,[†] Dan Borchardt,[†] De-en Jiang,[†] S. James Remington,[‡]* and Hui-wang Ai[†]*

[†] Department of Chemistry, University of California at Riverside, 501 Big Springs Road, Riverside, CA 92521, United States of America

[‡] Department of Physics and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, United States of America

Primer name	Nucleotide Sequence
pnGFP-F	5'- TTTTTGGGCTAACAGGAGGAATTAACCATG -3'
pnGFP-R	5'- CAGCCAAGCTTAATGGTGATGGTGATGGTG -3'
pBAD-F	5'- ATGCCATAGCATTTTTATCC -3'
pBAD-R	5'- GATTTAATCTGTATCAGG -3'
pnGFP-T173G-F	5'- CTCGTGACCACCTTGGGCTAGGGCGTGCAGTGC -3'
pnGFP-T173G-R	5'- GCACTGCACGCCCTAGCCCAAGGTGGTCACGAG -3'
pnGFP-T64F-F	5'- CACTACCTGAGCTTCCAGTCCGTGCTG -3'
pnGFP-T64F-R	5'- CAGCACGGACTGGAAGCTCAGGTAGTG -3'
pnGFP-S66A-F	5'- CACTACCTGAGCACCCAGGCCGTGCTGAGCAAAGACCCC -3'
pnGFP-S66A-R	5'- GGGGTCTTTGCTCAGCACGGCCTGGGTGCTCAGGTAGTG -3'
pnGFP-H9T-F	5'- TTTTTTGGGCTAACAGGAGGAATTAACCATGGGCTCGAGCACTTACAACAGCA CCAAGGTC -3'

 Table S1. Oligonucleotides used in this study.

Protein	pnGFP1.5-Y.Cro	
Total reflections	1,606,287	
Unique reflections observed	14,821	
Space Group	P 43 21 2	
Cell dimensions (a, b, c) (Å)	57.26, 57.26, 185.39	
Resolution (Å) ^a	252.75 (2.80-2.75)	
Completeness ^a (%)	99.9 (100.0)	
Average I/o ^a	80.4 (8.0)	
R _{merge} ^{a,b}	0.089 (0.926)	
R _{pim} , CC _{1/2} , CC* (shell) ^c	(0.129),(0.982),(0.995)	
Atomic model statistics		
Asymmetric unit	1 protein chain, 16 H_2O	
Crystallographic <i>R</i> -factor ^{<i>d</i>} (shell 3.17-2.75)	0.203 (0.249)	
R-free	0.293 (0.336)	
R-factor, all data combined	0.210	
Average B-factors, all atoms (Å ²)	74.6	
rms bond lengths (Å)	0.010	
rms bond angles (degrees)	1.44	

Table S2. Crystallographic data, refinement and atomic model statistics.

^a Values in parentheses indicate statistics for the highest resolution shell.

 ${}^{b}R_{merge} = \sum_{i}\sum_{j}(I_{ij} - \langle I \rangle_{i})/\sum_{i}\sum_{j}\langle I \rangle_{i}$, where I_{ij} is the amplitude of the j^{th} observation of

reflection i and $\langle I \rangle_i$ is the mean value of observations I_{ij} .

^CFor definitions of these quantities see Karplus & Diederichs[1]

^{*d*}*R*-factor = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, where F_o and F_c are the observed and calculated structure amplitudes.

[1]. Karplus, P. A.; Diederichs, K., Linking Crystallographic Model and Data Quality. *Science* **2012**, 336, 1030-1033.

Figure S1. Optimization of conditions for preparation of *p*BoF-containing proteins. To optimize the expression condition, the plasmid pBAD-mCherry_{151TAG} was used to cotransform DH10B or C321. Δ A.exp E. coli cells along with the plasmid pEvol-pBoF. Cells were grown on LB agar plates containing 100 µg/mL ampicillin and 50 µg/ml chloramphenicol at 37°C overnight. Individual colonies from the plates were then inoculated in 2 mL TB containing 1 mM pBoF, 100 µg/mL ampicillin, 50 µg/ml chloramphenicol and various concentrations of L-arabinose (0.02-2%). Cells were next grown at 25°C or 37°C, and fluorescence intensities of corresponding cell lysates were quantified each day thereafter. To prepare cell lysate, 500 µL of cell culture was pelleted by centrifugation and lysed with 100 µL B-PER bacterial protein extraction reagent. Fluorescence emission intensities at 610 nm were then measured on a plate reader with excitation at 560 nm. Panel (A) shows the fluorescence of pBoF-containing mCherry expressed in DH10B (black) or C321. (red) E. coli cells with different amounts of L-arabinose at 37 °C. Panel (B) shows the fluorescence of pBoF-containing mCherry expressed in C321. Δ A.exp, after varying the concentration of L-arabinose, induction temperature, and the length of induction period.

Figure S2. ¹¹B NMR spectra for pnGFP.

Figure S3. ¹¹B NMR chemical shifts for phenylboronic acid (20 mM) in 20 mM phosphate buffer (pH 7.4, $D_2O(v)$: $H_2O(v) = 1:1$), titrated with 0 mM, 20 mM, 100 mM, 500 mM, 2.5 M or 10 M imidazole. The data were fitted with the equation shown on the graph, which identified the extreme chemical shift for phenylboronic acid/imidazole complex to be 5.7 +/- 0.9 ppm.