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S1 Semi-analytical Modeling

S1.1 Ribosomal Protein Operon mRNA Statistics

We consider the mRNA statistics for the ribosomal protein operons. From Equation 30, we can write out the CME for

our system as:

d

dt
P(m,n|t) = kt(t)

[

P(m−1,n|t)−P(m,n|t)
]

+ kb

[

(m+1)P(m+1,n−1|t)−mP(m,n|t)
]

+ ku

[

(n+1)P(m−1,n+1|t)−nP(m,n|t)
]

+ kd

[

(m+1)P(m+1,n|t)−mP(m,n|t)
]

,

(S1)

where kt(t) represents the effective transcription rate as a function of time, with kt(t < tr) = kt and kt(t > tr) =
2kt (where tr is the gene replication time, itself a function of the timing of chromosome replication and the gene’s

position on the chromosome). We note that we have implicitly assumed that transcription from both gene copies after

duplication is independent and occurs at the same rate, which may not in general be true1, but simplifies the model

considerably. From this we can derive the system of ODEs to describe the time evolution of the mean counts of m and

n, their mean squared counts, and the mean product of m and n:

d

dt
〈m〉(t) = kt(t)− kd〈m〉(t)− kb〈m〉(t)+ ku〈n〉(t)

d

dt
〈n〉(t) = kb〈m〉(t)− ku〈n〉(t)

d

dt
〈m2〉(t) = 2kt(t)〈m〉(t)+ kt(t)−2kb〈m2〉(t)+ kb〈m〉(t)

+2ku〈mn〉(t)+ ku〈n〉(t)−2kd〈m2〉(t)+ kd〈m〉(t)
d

dt
〈n2〉(t) = 2kb〈mn〉(t)+ kb〈m〉(t)−2ku〈n2〉(t)+ ku〈n〉(t)

d

dt
〈mn〉(t) = kt(t)〈n〉(t)− kb〈mn〉(t)+ kb〈m2〉(t)− kb〈m〉(t)

+ ku〈n2〉(t)− ku〈mn〉(t)− ku〈n〉(t)− kd〈mn〉(t).

(S2)
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We expect that at cell division all components are distributed to the daughter cells according to an unbiased

binomial distribution. This can be used to derive constraints for our system of ODEs, namely:

〈m〉(0) = 1

2
〈m〉(tD)

〈n〉(0) = 1

2
〈n〉(tD)

〈m2〉(0) = 1

4

[

〈m〉(tD)+ 〈m2〉(tD)
]

〈n2〉(0) = 1

4

[

〈n〉(tD)+ 〈n2〉(tD)
]

〈mn〉(0) = 1

4
〈mn〉(tD).

(S3)

This system can be solved numerically, but parameters must be chosen carefully. Specifically we are concerned

with the ribosome binding and unbinding rates. The binding rate, kb, is clearly a function of the concentration of free

ribosomes as well as other mRNA in the cell; as a first approximation, we might expect:

kb ≈ kb,0[rfree] = kb,0[r−Cr−n], (S4)

where kb,0 represents the binding rate of a single messenger to a single ribosome, r represents the ribosome copy

number in the cell, Cr represents the number of competing mRNA that are bound to ribosomes, n is the number

of ribosome-bound versions of the messenger we are interested in, and square brackets e.g. [x] ≈ x · 2−t/tD/2ln(2))
denotes a per-cell concentration. We might assume that the competing mRNA are in equilibrium with respect the

ribosomes, meaning:

ku[Cr] = kb,0[C−Cr][r−Cr−n] (S5)

where C represents the total number of competing mRNA. Solving this for Cr and inserting the result into Equation S4

then yields:

kb ≈ kb,0

(

[r]− [n]− 1

2

(

−
√

(
ku

kb,0
− [n]+ [r]+ [C])2 +4([n][C]− [r][C])+

ku

kb,0
− [n]+ [r]+ [C]

))

. (S6)

Inserting Equation S6, a value for ku chosen such that the ribosome-bound messengers have an appropriate

mean lifetime, the mean value of [r] = 30006, and C = c(m+ n) (where c denotes the number of competing genes,

assuming that the competing mRNA production roughly keeps pace with that of the messenger we are interested in)

into Equation S2 and solving the system numerically (using the NDSolve function in Mathematica) yields traces for

the mRNA statistics over the cell cycle. We can then perform the appropriate time-averaging over the cell cycle (see

Peterson et al.3 for details) in order to calculate the mean and variance of our mRNA:

E[m] =
∫ tD

0

2ln(2)

tD
2−t/tD〈m〉(t)dt

E[n] =

∫ tD

0

2ln(2)

tD
2−t/tD〈n〉(t)dt

Var[m] =
∫ tD

0

2ln(2)

tD
2−t/tD〈m2〉(t)dt−E[m]2

Var[n] =
∫ tD

0

2ln(2)

tD
2−t/tD〈n2〉(t)dt−E[n]2

Cov[m,n] =
∫ tD

0

2ln(2)

tD
2−t/tD〈mn〉(t)dt−E[m]E[n].

(S7)
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From these we can compute the statistics of our total mRNA count:

E[m+n] = E[m]+E[n]

Var[m+n] = Var[m]+Var[n]+2Cov[m,n].
(S8)

S1.2 Estimating Rate Parameters for an “Average mRNA”

Because the nine ribosomal protein operons have varying rates of production, translation, and degradation, we at-

tempted, for the sake of simplicity, to investigate the behavior of an “average mRNA”. We first computed the harmonic

mean of the operons’ transcription and degradation rates (yielding 0.0042 s−1 and 9.84× 10−4 s−1, respectively).

Then, in order to estimate the ribosome unbinding rate for each operon we computed the mean lifetime of each

mRNA-ribosome complex. Each operon has a different number of genes to be translated, each of which in turn has

a different translation rate, meaning that each operon will be bound to a ribosome for a different amount of time. We

can compute the mean mRNA-ribosome complex lifetime for each operon, and from that determine each operon’s

effective unbinding rate:

ku,i =

(

1

k−1
su, dissoc +∑ j k−1

t1,i, j

)−1

(S9)

where ku,i represents the unbinding rate for the ith operon’s messengers, ksu, dissoc represents the rate at which a trans-

lated ribosome dissociates from the messenger, and ktl,i, j represents the translation rate of the jth gene in operon i. The

results of these computations are summarized in Table V.

S1.3 mRNA statistics in the Limit when kd → 0

Peterson et al.3 derived expressions for mRNA statistics that accounted for gene duplication due to chromosome

replication; specifically, Equation S36 is given as:

E[r] =
kt

kd

2 f

[

1+β
e−kd tD(1− f )−21− f

1+ kd tD
ln(2)

+ γ
2− f e−kd tD f −1

1+ kd tD
ln(2)

]

Var[r] = E[r]−E[r]2

+ ln(2)

(

kt

kd

)2[

2β 2 1−2 f−1e−2kd tD(1− f )

ln(2)+2kdtD
−4β

1−2 f−1e−kd tD(1− f )

ln(2)+ kdtD
+

2

ln(2)
(1−2 f−1)

+ γ2 2 f − e−2kdtD f

ln(2)+2kdtD
−4γ

2 f − e−kd tD f

ln(2)+ kdtD
− 4

ln(2)
(1−2 f )

]

,

(S10)

where

β =
e−kd tD f

2− e−kd tD

γ =

(

1+
e−kd tD

2− e−kd tD

)

.

(S11)

In these equations, kt and kd are the RNA transcription and degradation rates, respectively, tD is the cell doubling time,

and f represents the fraction of the cell cycle after gene replication ( f = 1− tr/tD). For the purposes of the present
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work, we note that the nucleation and assembly of the ribosome occurs significantly faster than measured rates of

mRNA degradation; as a result, we expect little rRNA to be lost, and essentially all of it to be found in the form of

ribosomes in the cell. Similarly, because the mRNA-ribosome dissociation constant is small (∼ 10−10 M), when the

pool of ribosomes is large compared to the pool of available messengers, essentially all mRNA will remain bound

to ribosomes and few will be degraded. We therefore consider the limit of the expressions in Equation S10 as kd

approaches zero:

lim
kd→0

E[r] =
kttD2 f

ln(2)

lim
kd→0

Var[r] =
kttD

ln2(2)

[

2 f

(

ln(2)+2kttD(3+ ln(4))

)

−4 f kttD

− kttD

(

4+2(1+ f )2 ln2(2)+(1+ f ) ln(16)

)]

.

(S12)

S2 Estimating Cell Cycle Parameters from Copy Number Distributions

We consider the well known age distribution of exponentially growing cells8:

φ(a) = 2νme−νma

∫ ∞

a
f (τ)dτ , (S13)

where φ(a) is the probability that a cell is of age a, νm is the growth rate of the population, and f (τ) is the probability

of a cell dividing at age τ . As per Powell8, νm can be determined from the constraint

2

∫ ∞

0
e−νmτ f (τ)dτ = 1. (S14)

Taylor expanding the LHS of Equation S14 about the mean division time:

1 = 2

∫ ∞

0
e−νmτ f (τ)dτ

= 2〈e−νmτ〉

≈ 2

[

e−νm〈τ〉+
1

2

d2

dτ2
e−νmτ |〈τ〉σ2

τ

]

= 2

[

e−νmtD +
1

2
ν2

me−νmtDσ2
τ

]

= (2+ν2
mσ2

τ )e
−νmtD

(S15)

where we assume that the mean age at division is tD, and the division ages have some variance σ2
τ . This can then be

easily solved numerically for νm.

We now consider the probability that a cell has a single copy of a given gene. If tr is the age at which the gene is

replicated, we can write:

Psingle copy =
∫ tr

0
φ(a)da. (S16)

For simplicity, we can assume the division times are normally distributed,

f (τ) = N(τ; tD,στ). (S17)
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and so,

Psingle copy(tr) =
∫ tr

0
2νme−νma

∫ ∞

a
f (τ)dτ da

=
∫ tr

0
2νme−νma 1

2
erfc

(

a− tD√
2στ

)

da.

(S18)

Promoting tr to a random variable distributed according to some probability function P(tr;〈tr〉,σtr) where 〈tr〉 and σtr

are the mean and standard deviation of the replication time, respectively, we can write

〈Psingle copy〉=
∫ ∞

0
dtrPsingle copy(tr)P(tr;〈tr〉,σtr). (S19)

Now simply Taylor expanding about 〈tr〉 yields

〈Psingle copy〉(〈tr〉,σtr)≈
∫ 〈tr〉

0
2νme−νma 1

2
erfc

(

a− tD√
2στ

)

da

+
σ2

tr

2

[

−2ν2
me−νm〈tr〉 1

2
erfc

( 〈tr〉− tD√
2στ

)

−2νme−νm〈tr〉 f (〈tr〉)
]

,

(S20)

subject to Equation S14. Now, for each gene locus, we can estimate the fraction of cells we expect to see with a single

gene copy. Inserting forms for the mean replication time, 〈tr,i〉 = µtrep + χiTrep, for a gene given its location, χi on

the chromosome, as well as the standard deviation in the replication timing, σtr = σtrep into Equation S20, we can

construct a measure for for goodness of fit:

Θ = ∑
i∈genes

( 〈Psingle copy〉(〈tr,i〉,σtr)− ni
mi

√

〈Psingle copy〉(〈tr,i〉,σtr)
(

1−〈Psingle copy〉(〈tr,i〉,σtr)
)

/mi

)2

m (S21)

and vary µtrep, Trep, and σtrep in order to minimize it. Importantly, here ni denotes the number of cells (with gene

i labeled) observed with a single copy, mi denotes the total number of cells (with gene i labeled) observed, and the

term

√

〈Psingle copy〉(〈tr,i〉,σtr)
(

1−〈Psingle copy〉(〈tr,i〉,σtr)
)

/mi denotes an estimate for the error in the experimentally

observed fraction of cells with one gene copy. This estimate is based in the assumption that a cell has probability

〈Psingle copy〉(〈tr,i〉,σtr) of being in a one-copy state, and that each measured cell represents an independent Bernoulli

trial. This error estimate was introduced in order to give greater weight during fitting to the genes for which we have

greater numbers of experimental images.

We assumed a value for στ of 12 minutes, and, because Θ was found to change little with variations in σtr , we

initially required 20.2 < σtr < 24.0 (such that its value stays within the error bounds found by the more complete

fitting method presented in the main manuscript, see Table I). Θ was then minimized using the Minimize routine in

Mathematica. This resulted in estimates for µtrep and Trep of 34.4 and 45.9 minutes, respectively. We note this value

for Trep is well within the standard error reported in Table I but the value for µtrep differs from the results of the main

text by approximately 2.6 standard deviations. Comparison of the fit and experimental single-gene fractions shows

similar qualitative agreement as was obtained using the method presented in the main text (see Figure S6). For the

sake of comparison, releasing the bounds on σtr had only a minor effect on Θ, µtrep, and Trep (their values changed by

about 0.05%, 3%, and 0.2%, respectively), but the fit value of σtr fell to an unreasonably low value of approximately

0.25 seconds.

S3 Fitting mRNA Distributions

The exact analytical theory set out in Peterson et al. describes the noise of idealized constitutively expressed genes

which undergo duplication during the cell cycle3. As no experimental data is available to compare to the distributions

of messengers computed in the RBM at the time of writing, the results were compared to this theory. Due to the fact

that the ribosomal protein operon messengers are the only transcripts competing for the ribosomes, they are bound up
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and effectively prevented from degradation. In the future, all cellular transcripts will be considered, thus the RBM will

need to be reparameterized. By fitting the theory of Peterson et al. to the RBM simulations, we can estimate what the

new parameters would need to be to give the same results as the RBM.

Distributions computed using Eq. S22 of3 were computed with varying kt and kd and compared to the RBM sim-

ulated distributions. The mean squared deviation was computed between these simulations. The kt and kd associated

with the distribution that has the minimum deviation from the simulated distribution represent the “effective” tran-

scription and degradation rates that will be applicable in future simulations that include realistic counts of competing

mRNAs. The fitted rates and fits can be seen in Table V and Figure 6. Fitted kt and kd are essentially scaled versions

of the rates used in the RBM (as demonstrated in Figure S9). Fit kd are about four times smaller than experimental

values, while kt are about four times as large.

S4 Varying Numbers of Non-ribosomal Genes in the SAM

We used the SAM to study the simultaneous effect of varying gene loci (which effects the timing of gene replication)

and c on the mRNA copy number statistics for an “average gene” (see Section S1.2). Interestingly, we found that

with increasing numbers of actively-expressed genes (while holding kt and kd constant), gene expression became

significantly less noisy (see Figure S10b). This was found to be due largely to the fact that the messenger-ribosome

dissociation constant was very small (ku/kmrna_assoc ∼ 10−10 M). By comparison, the concentration of a single mRNA

in a bacterial cell of volume ∼1 fl is approximately 1.7×10−9 M. This means that every messenger produced should

have a high probability of being bound to a ribosome, provided a ribosome is available for binding. When small

numbers of non-ribosomal genes are expressed (the small-c regime), the total number of messengers does not exceed

the total number of ribosomes, and so every messenger is likely to be quickly bound and thereafter protected from

degradation. The statistics of a given gene’s mRNA in this regime are then essentially the same as those of a model in

which already bound messengers are produced (at some transcription rate kt) and only lost through cell division (with

roughly half going to each daughter). The model of Peterson et al.3 in the limit where kd → 0 (see Figure S10b, left-

most dots, and see Equation S12 in the Supporting Information) gives exactly these statistics. At values of c between

30 and 50, the total mRNA content of the cell approaches and then surpasses the total number of ribosomes. From

there on, with increasing values of c, the probability of a given messenger binding a ribosome becomes increasingly

small. For any specific gene of interest, this results in an increase in the fraction of unbound mRNAs (relative to

ribosome-bound mRNAs), and in turn an increase in the messenger’s effective degradation rate, a decrease in its mean

copy number, and a decrease in its Fano factor. In the limit where c→ ∞, the probability that any specific messenger

is ever bound by a ribosome approaches zero; the total messenger count is then dominated by the unbound messengers

and the statistics converge again to those of a model in which ribosome interactions are entirely neglected, e.g. that

of Peterson et al.3 (see Figure S10b right-most dots). These findings are in good agreement with additional explicit

stochastic simulations (see Figure S10b, diamonds, and see Section 4.3).

We note that the SAM described here remains somewhat incomplete. It neglects, for example, the potential for

transient non-specific mRNA-ribosome interactions5 which have been shown to significantly impact ribosome diffu-

sivity. Such interactions have been estimated to last on the order of a few seconds and may play a role in ribosomal

50S-30S subunit search and association5. Assuming that the transiently-bound mRNA are, like the specifically-bound

mRNA, protected from degradation, then this type of interactions should have the net effect of lowering the free mes-

senger counts, and in turn, lowering the effective degradation rate. When c in the SAM is small (e.g. c = 8), the

effective degradation rate is already approximately zero, and so non-specific ribosome binding can not significantly

affect the mRNA statistics. When c is in the biologically realistic regime (c∼ 1000), an upper-bound for the possible

changes in the mRNA statistics can be roughly estimated by considering the effect of increasing the ribosome con-

centration in the SAM. For example, if we assume that only one messenger can transiently bind a ribosome at a given

time, and that the transient mRNA-ribosome association rate is fast (e.g. occurring at a diffusion-limited rate on the

order of 109 M−1 s−1), then we can expect that the available non-specific binding sites should essentially always be

occupied, and the mRNA statistics can be approximated simply by doubling the ribosome concentration in the SAM.

For a gene situated on the chromosome halfway between the origin and terminus, this has the effect of increasing mean

messenger count from 8.6 to 11.3 per cell, and only modestly changes the Fano factor from 1.6 to 1.7.
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S5 Algorithms used in RBM

Algorithm 1 details the process of pruning the intermediate species graph. This method is used by Earnest et al.2 to

reduce the approximately 1600 potential intermediates down to a number of species that can be simulated with RDME.

The RDME trajectory generation process is detailed in Algorithm 2. The cell growth process is implemented

using pyLM’s “hybrid solver” interface4 which allows for user-defined processes to occur during regular intervals

when simulation data is saved. This is when cell geometry is updated to account for growth, and to add new DNA

operons to the simulation to reflect the replication process.

The process for building the diving cell geometry is shown in Algorithm 3. Algorithm 4 is the process of dis-

cerning which discrete lattice sites fall inside a spherocylinder described via two points at the cylinder ends and a

radius. Algorithm 5 detects boundaries between different site types and changes those sites to a third type. It is used

to construct the membrane between the cytoplasm and extracellular space.

Algorithm 1: Ribosome SSU intermediate species network pruning

Data: graph G = (V,E) with intermediate species as vertices and directed edges indicating reactions

Result: G′ = (V ′,E ′) representing pruned network

V ′ =V

E ′ = E

repeat

Compute fluxes through G′

D←− vertex in G′ with lowest flux

while |D|> 0 do

for v ∈ D do

for e ∈ E ′ do // Remove edges to and from v

if v ∈ e then

E ′ = E ′− e

end

end

V ′ =V ′− v // Remove v

end

D = /0

// Locate dead-end vertices

for v ∈V ′ do

if number of edges in or out of v = 0 then

D = D+ v

end

end

end

until |V ′|< maxSpecies
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Algorithm 2: RDME trajectory process for RBG and cell division

Data: Initial particle lattice, time step τ , DNA Operons and their replication time

Result: particle lattice at simulation end time T

t = 0

latticeWriteTime = writeInterval

while t < T do

x_axis_diffusion(lattice)

y_axis_diffusion(lattice)

z_axis_diffusion(lattice)

perform_reactions(lattice)

t = t + τ
if t > latticeWriteTime then

if t < doublingTime then

buildGrowingCells(cell dimensions, t/doublingTime)

for op ∈ Operons do

if t >= opbirth then

Replicate Operon op

end

end

end

latticeWriteTime = latticeWriteTime+writeInterval

end

end

Algorithm 3: buildGrowingCells: Construct lattice sites for growing cells

Data: length, width, nucWidthFraction, nucLengthFraction, gp

Result: lattice with sites matching cell geometry

r = width/2 // Cell radius

h = (length−width)/2 // Capsule cylinder height

/* Determine total growth length, gp is a value in [0,1] to denote time in the cell

cycle. The linear term ensures at least one lattice space of separation between

daughter cells */

growth = length∗ (2gp−1)+gp

/* Find the capsule center points; one at each end of the inner cylinder */

mother1 = {xcenter,ycenter,zcenter−h/2−growth}
mother2 = {xcenter,ycenter,zcenter +h/2−growth}
daughter1 = {xcenter,ycenter,zcenter−h/2+growth}
daughter2 = {xcenter,ycenter,zcenter +h/2+growth}
Mark every site in sites as extracellular

buildCapsule(mother1, mother2, r, cytoplasm)

buildCapsule(daughter1, daughter2, r, cytoplasm)

buildMembrane(cytoplasm, extracellular)

/* Determine nuclei dimensions. Cell width and length are scaled by nucWidthFraction

and nucLengthFraction, respectively. */

nr = r ∗nucWidthFraction // Nucleus radius

nh = h− (1−nucLengthFraction)∗ length/2 // Nucleus cylinder height

mother1 = {xcenter,ycenter,zcenter−nh/2−growth}
mother2 = {xcenter,ycenter,zcenter +nh/2−growth}
daughter1 = {xcenter,ycenter,zcenter−nh/2+growth}
daughter2 = {xcenter,ycenter,zcenter +nh/2+growth}
buildCapsule(mother1, mother2, nr, nucleus)

buildCapsule(daughter1, daughter2, nr, nucleus)
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Algorithm 4: buildCapsule

def buildCapsule(c1, c2, r, type): /* Construct capsule by building two spheres of radius

r, centered at points c1 and c2, and a cylinder of radius r from c1 to c2. */

for s ∈ sites do

if distance(s, c1)< r2 or distance(s, c2)< r2 or (s2
x + s2

y < r2 and c1z < sz < c2z) then

stype = type

end

end

Algorithm 5: buildMembrane

def buildMembrane(inside,outside): /* Locate boundary sites of an inside type that are

touching a site marked as an outside type. Convert these boundary sites to membrane

sites. */

for s ∈ sites do

if stype = inside then

N←− all sites adjacent to s

if ∃n ∈ N : ntype = outside then

stype = membrane

end

end

end
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S6 Supplementary figures

FIGURE S1 Examples of rejected regions. (f, j, q) Cell partially out of focal plane. (d, i, p) No fluorescence. (a,

b, e, f, g, h, k, l, m) Poor dynamic range in fluorescence channel. (c, d, e, m, n, o) Bad morphology of thresholded

brightfield image. (n) Debris on surface.
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FIGURE S2 Fraction of cells observed with one or two operon copies and total count of cells with one or two copies.

FIGURE S3 Distribution of cell widths. The cells were measured to have a mean of 0.715 µm and standard deviation

of 0.059 µm.
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FIGURE S4 Comparison of experimental length distributions to fitting of growth/replication model. The number

of cells binned and fractional position of the gene along its replichore are specified in each subplot as N and χ
respectively. Blue denotes cells with two copies, green with one copy.
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FIGURE S5 Comparison of inferred cell age distributions to fitting of growth/replication model. The number of cells

binned and fractional position of the gene along its replichore are specified in each subplot as N and χ respectively.

Blue denotes cells with two copies, green with one copy, the orange and black curves are the predicted and observed

average copy numbers respectively.
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FIGURE S6 Fractions of cells with a single gene copy. Blue bars indicate the fraction of experimental cells observed

with a single copy, while red bars indicate the fraction predicted by minimizing Θ in Equation S21 (while requiring

20.2 < σtr < 24.0).

FIGURE S7 Cryo-electron tomogram of slow-growing E. coli6 used to measure the nucleoid geometry for the whole-

cell simulations. Units are in nanometers.
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FIGURE S8 Reduced assembly network for SSU assembly at 40 ◦C. There are 147 SSU intermediates used in

the biogenesis model, excluding the completed SSU and bare 16S. Each node is an assembly intermediate, labeled

according to which proteins are bound. A three digit number describes the set of r-proteins bound to each domain (5′-,
central-, and 3′- respectively), All remaining r-proteins are listed after the three digit number. The edges connecting

the intermediates represent the r-protein binding reactions. The width represents the total amount of intermediate

converted by that reaction, and the color indicates the binding domain of that protein (5′-red, central-yellow, and

5′-blue.) Predicted assembly intermediates from pulse/chase qMS and cryoEM7 are represented using rectangles.
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FIGURE S9 Comparison of fitted kd and kt estimated by minimizing the mean square deviation between the distri-

butions calculated in the RBM and those predicted by Peterson et al.3. The dotted lines indicate y = x. The solid line

indicates the linear trend between the fitted kt and the value used in the RBM.
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FIGURE S10 (a) Fano factor plotted versus mean messenger for ribosomal protein operon messengers from the

biogenesis simulations. Statistics from ribosome biogenesis simulations (blue dots) are poorly represented by the

analytical theory of Peterson et al.3 (plus symbols). This prompts a new theory (SAM) that includes the effect of

mRNA sequestration by unbound ribosomes (red squares) which better captures the simulated data. Additionally, it is

shown that in the limit where the number of competing mRNAs is large, the SAM theory converges nearly to the theory

of Peterson et al. (yellow triangles). (b) Fano factors for an average ribosomal protein mRNA as a function of gene loci

and number of competing genes. Color indicates fraction along genome from oriC to terC. Circles indicate predictions

from theory3 either without modification (right-most) or in the limit where kd → 0 (left-most). Diamonds indicate the

results of CME simulations of a models that explicitly account for gene duplication, cell division, interactions with

ribosomes, and varying numbers of genes being expressed. Lines indicate the semi-analytical model developed herein.
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