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Abstract

Transmission blocking vaccines for malaria are not designed to directly protect vaccinated
people from malaria disease, but to reduce the probability of infecting other people by inter-
fering with the growth of the malaria parasite in mosquitoes. Standard membrane-feeding
assays compare the growth of parasites in mosquitoes from a test sample (using antibodies
from a vaccinated person) compared to a control sample. There is debate about whether
to estimate the transmission reducing activity (TRA) which compares the mean number of
parasites between test and control samples, or transmission blocking activity (TBA) which
compares the proportion of infected mosquitoes. TBA appears biologically more important
since each mosquito with any parasites is potentially infective; however, TBA is less repro-
ducible and may be an overly strict criterion for screening vaccine candidates. Through a
statistical model, we show that the expected value of the sample TBA depends on µc, the
mean number of parasites in the control mosquitoes, a parameter not easily experimentally
controlled. We develop a standardized TBA estimator based on the model and a given target

∗The authors gratefully acknowledge the Intramural Research Program of the National Institute of Allergy and
Infectious Diseases, NIH and also the PATH Malaria Vaccine Initiative
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value for µc which has better mean squared error than alternative methods. We discuss types
of statistical inference needed for using these assays for vaccine development1.

Keywords: assay normalization, standardization, negative binomial, zero inflation; Plasmodium
falciparum.

1Please regard everything after the references (Sections 9 and 10) as a separate online supplement excluded from
manuscript page counts; included here for the purposes of reviewing ease.
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1 Introduction

Malaria remains a daunting global public health problem, with the World Health Organization

estimating that in 2015 there were about 214 million cases and 0.4 million deaths, with most

deaths in children under 5 (WHO, 2015). Malaria is caused by infection with a Plasmodium

parasite, and deaths are mainly due to Plasmodium falciparum (WHO, 2015). No highly effective

malaria vaccine has been developed, although the new RTS,S/AS01 malaria vaccine given to infants

and young children has shown vaccine efficacy during the 20 months after vaccination of 45% (95%

CI: 41% to 49%) (RTS,S Clinical Trials Partnership, 2014). However, in 5-17 month old children,

using a bi-phasic exponential model, the vaccine efficacy to prevent new infections is estimated to

begin at 74%, but reduces to 28% at 1 year after vaccination (White et al., 2015). Therefore, next

generation vaccines or other types of tools are needed to accelerate elimination and eradication of

malaria.

Transmission blocking vaccines (TBVs) offer one such tool. Transmission blocking vaccines

for malaria are not designed to confer direct and immediate protection of vaccinated people from

malaria disease, but rather to reduce the probability of infecting other people by interfering with

the growth of the malaria parasite in mosquitoes. Under conditions of sufficient vaccine efficacy

and coverage, this approach is expected to accelerate local malaria parasite elimination. TBVs are

designed to produce human antibodies that interfere with malaria parasite development inside the

mosquito (WHO, 2015). Several TBVs are being developed and an efficacious TBV may be an

important addition to malaria vaccines in controlling malaria epidemics and eradicating malaria

(malERA Consultative Group on Vaccines et al., 2011; Nunes et al., 2014).

For a final Phase III test of the efficacy of TBVs, a cluster randomized trial would probably be

ideal (Delrieu et al., 2015), but other approaches for licensure have been discussed (Nunes et al.,

2014). For the early stages of TBV development it is useful to measure the transmission blocking

efficacy for each vaccinated individual. Additionally, for models of malaria transmission, having

estimates for the probability that a mosquito becomes infected during a single feed-day for both a

3



vaccinated individual and an unvaccinated individual is useful (Smith et al., 2011). Such estimates

are possible via assays. There are many types of assays that have been developed to measure

mosquito transmission of Plasmodium parasites (Sinden et al., 2012).
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Figure 1: SMFA and the two readouts: TRA and TBA. From left to right: Several containers

of mosquitoes (COMs) are fed on the same feed-day and are maintained for a week. Then each

mosquito is dissected and oocysts in the midgut counted. Mosquitoes with 0 oocysts are uninfected,

those with 1 or greater are infected. Within each test and control COM, 20 mosquitoes are

summarized by their oocyst counts mean (µ) and prevalence (p) (e.g., proportion infected). Those

summary measures then inform the calculations of TRA and TBA.

The direct skin-feeding assay (DSFA, mosquitoes fed malaria infected blood through skins of

malaria infected subjects) and direct membrane-feeding assay (DMFA, mosquitoes fed mixture of

malaria infected blood collected from human and control/test antibody through a feeding appa-

ratus) need to be conducted in a field site where malaria is endemic (transporting gametocytes

– parasites in the transmissible stage – destroys their viability). Unfortunately these procedures

have high failure rates in producing infective mosquitoes for study (Bousema et al., 2012). Com-

paratively, the standard membrane-feeding assay (SMFA) has advantages over DSFA and DMFA.
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SMFA is conducted in a lab and mixes a large enough number of lab raised parasites into the blood

to make it infective to mosquitoes with very high probability. Another advantage of SMFA over

DSFA is that SMFA contains a control sample which is used to adjust for some of the day-to-day

biological variability of the assay. In SMFAs mosquitoes feed on one of two samples: the test sam-

ple or the control sample. The test sample contains blood mixed with the lab-raised gametocytes

and with test antibodies (e.g., antibodies produced by a vaccinated individual), while the control

sample is similar except using control antibodies (e.g., antibodies from individuals that have not

been exposed to malaria or the vaccine). The two samples are fed to mosquitoes and the resultant

yield of parasites (in the oocyst stage) growing in each mosquito is enumerated (see Section 2.2 for

more details). Bousema et al. (2013) argue that “the SMFA is rightfully the current gold standard

for ranking TRI [transmission-reducing intervention] candidates and prioritizing the most promis-

ing TRI candidates for further development”. Due to SMFA’s importance to the development of

TBVs, this paper focuses solely on the SMFA.

Despite its status as the gold standard assay, the preferred readout used from the SMFA is

not clear. Two common assay results are the transmission reducing activity (TRA, also called

the percent inhibition of mean oocyst intensity) and the transmission blocking activity (TBA, also

called percent inhibition of prevalence). We write TRA for a single individual as

r = 100

(
1− µ̂t

µ̂c

)
, (1)

and TBA as

b = 100

(
1− p̂t

p̂c

)
(2)

where µ̂t and µ̂c are the mean number of oocysts per mosquito from the test sample and from the

control sample, respectively, and p̂t and p̂c are the proportion of infected mosquitoes (that is, the

proportion of mosquitoes with at least 1 oocyst) from the two samples (Figure 1). Some argue

that TBA is biologically the more important measure (because in the field if a mosquito has a

single oocyst, it has the potential to become infective).
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We propose that TRA should be the preferred readout. While TBA might be the biologically

preferred measure, its dependence on the control sample is problematic. Empirically for replicate

SMFAs for a given test, the ratio of means in TRA stays roughly constant for different µ̂c, whereas

the ratio of proportions in TBA does not, indicating that TBA is more dependent on the control

sample than TRA (e.g., see Figure 4 in Churcher et al., 2012). This implies that if a control mean

in the field is different than that of the lab, the TBA of the same test will differ between the two

settings, whereas the TRA will be consistent. Typically µ̂c is larger in SMFAs than in the field.

For TBA to be a useful readout from SMFA, there is a need to be able to bridge the readout from

these lab-based SMFAs to expected results from field-based assays such as the DSFA or DMFA

(Nunes et al., 2014). When TBA is desired, we suggest a standardized TBA calculated from the

TRA and a specified target control mean (Section 5.2).

The pipeline of TBV development starts from preclinical animal studies and then involves

multi-stage human clinical trials (phase I, II, and III). Early on, SMFAs play a crucial role. An

SMFA can be used on a single subject at one time to determine how antibodies in her blood would

affect malaria transmission. Either TRA or TBA could be the readout, although for the latter

some standardization is generally needed. For the single subject, confidence intervals to convey

the uncertainty are needed. For studies with multiple samples per arm, effective ways to combine

information are needed. For example, we may want to test individual efficacy in a randomized trial

of a control vaccine vs. a TBV using some assay such as the SMFA. In Phase III development,

a cluster randomized vaccine trial could be used in which case no SMFA would be needed for

the primary endpoint; however, other approaches for this phase have been discussed which use

individual assays (Nunes et al., 2014). The ultimate question of “How will vaccine roll-out affect

future malaria rates” may require TBA estimates that are standardized for the field, for which our

measures developed for SMFAs will be useful.

In this paper, we analyze an extensive data set for the SMFA. We use this data set to show

that a reasonable model for the number of oocysts in each mosquito in the SMFA is a zero inflated,
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negative binomial model with random effects specified for each container of mosquitoes and each

feed-day that the assay is performed. Others have used this or similar models (Churcher et al.,

2012; Miura et al., 2013), and have discussed the relationship between TRA and TBA estimates,

r and b. The contribution of this paper is to more formally describe the estimands related to the

TRA and TBA, develop a standardized TBA estimator that allows for standardizing the lab-based

results to a TBA estimand that is interpretable in a malaria endemic field, and then carry out

traditional statistical inferences using the estimators.

Using this model, the estimand for TRA, ΩR, does not depend on µc, the true mean oocyst

count for a mosquito in the control group. In contrast, the general estimand associated with TBA,

ΩB(µc) depends on µc. These features of the estimands reflect empirical results and clarify that

if we report b for TBA without reporting µ̂c, we do not know which estimand within the class

{ΩB(µc)} we are estimating. The important TBA estimand within the class is ΩB(µ∗c), where µ∗c

is a fixed target mean oocyst count in the field, as opposed to ΩB(µ†c), where µ†c the mean oocyst

count in the lab (which may vary substantially from feed-day to feed-day). Thus, when evaluating

the effect of a vaccine candidate versus placebo, the size of the vaccine effect could be very different

if each subject’s TBA response is estimating the ΩB(µ†c) for that subject rather than ΩB(µ∗c).

We discuss two estimators for ΩB(µ∗c). A restricted TBA estimator, Ω̂B1, measures many control

samples and only uses those with µ̂c ≈ µ∗c in the calculation of b. A standardized TBA estimator,

Ω̂B2(µ∗c), uses the statistical model so we can use all control samples, then input the target control

mean value, µ∗c , into that estimator. Through simulations, we show that the standardized estimator

is much more efficient to use than the restricted estimator. The standardized estimator provides

one method to predict the vaccine efficacy in a field from the results of a SMFA.

Here is an outline of the paper, written to address the needs of SMFA-use in the TBV devel-

opment pipeline. In Section 2 we give more details on the biological issues of the problem. In

Section 3, we describe the assay development data set which had many replicated assays for poly-

clonal control samples and motivate a representative count model (RCM) of the data generating
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process on these controls. We then examine the fit of the RCM on SMFA test sample data of

monoclonal and polyclonal antibodies. In Section 4, we define the estimand and estimator for

TRA and the confidence intervals for a single subject. Analogously for TBA, in Section 5 we define

the estimand, and propose two estimators, each with a different way to handle the dependence on

the control mean. We compare the two estimators as well as provide confidence intervals for single

subject TBA. In Section 6 we show how results from single subject TRAs can be combined. For

example, in a randomized trial of an experimental transmission blocking vaccine versus a placebo

vaccine, we could compare the two vaccine groups. We end with a short section on designing assays

for vaccine studies (Section 7) and a discussion (Section 8).

2 Background

2.1 Plasmodium falciparum

Plasmodium falciparum has a complicated life cycle, with part of its development occurring within

humans and part within mosquitoes. We start the description of the cycle when a mosquito

takes a blood meal that includes red blood cells that contain the sexual stage of the parasite

(the gametocytes). The parasites mature in the mosquito and develop into oocyst stage parasites

in approximately 1 week’s time. Each oocyst internally creates many sporozoites and eventually

releases them, which travel to the salivary gland of the mosquito. If the mosquito bites a human

after that, the sporozoites invade the liver cells. Within the liver cell the sporozoites change and

multiply into many merozoites, which are released when the liver cell ruptures and invade red

blood cells. In this blood-stage of the parasite, there can be many cycles where the red blood cells

are invaded, the parasites multiply, and the red blood cells rupture to release more merozoites to

repeat the cycle. This blood-stage parasite is responsible for all malaria symptoms, such as fevers,

headaches, nausea, vomiting, fatigue, and other severe outcomes – including death. Some blood-

stage parasites differentiate into gametocytes and may be taken up by a mosquito and complete
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the life cycle.

2.2 Standard Membrane-Feeding Assay

There is no globally accepted standard reagents or protocols for the SMFA. Here we give a brief

review of the way the SMFA was done for the data in this paper. To start, the NF54 strain of

Plasmodium falciparum is maintained in the lab for 14-16 days to induce mature, infectious, game-

tocytes. For each day the feeding assay is performed, the cultures are mixed with normal human

serum (the liquid part of blood without blood cells or clotting factors) and normal human red blood

cells in predefined proportions (0.15-0.2% gametocytes and 50% red blood cells by volume). The

two types of samples are created by combining that gametocyte mixture with the test antibodies

or control antibodies in predefined amounts. The concentration of antibodies in the samples will

differ depending on the test sample. The test samples are classified into two types: polyclonal

antibody or monoclonal antibody. The polyclonal antibodies are produced in vivo, from either an-

imals or humans, depending on the study. The monoclonal antibodies are produced from a hybrid

of an antibody producing white blood cell (a B cell) that produces the antibody of interest and

a cancerous white blood cell (myeloma). Then either the test sample or a control sample is put

in a feeding apparatus that is covered with a membrane which is exposed to about 50 mosquitoes

(Anopheles stephensi) of approximately the same age (3-7 days old). After the mosquitoes feed

on a blood meal (a mixture of gametocyte culture and test (or control) antibody) through the

membrane, the mosquitoes are maintained for 8 days. We call a group of mosquitoes which feed

on the same blood meal a container of mosquitoes (COM). Then a subset of the mosquitoes that

have taken blood meals (typically n = 20 per sample) are dissected manually to count the number

of oocysts in each mosquito (see Figure 1).

As is clear from the description, many aspects of the SMFA have been standardized. Despite

this standardization, there remains considerable variability in the assay. Some of this is due to

the biological variability and difficulties in raising highly similar gametocytes and mosquitoes. Al-
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though they are raised in a temperature-controlled environment, with highly regimented protocols,

some biological variability cannot be easily eliminated. Moreover, this assay is very labor intensive

and takes a long time to complete (about 3 weeks). Thus, repeating the assay on two different

aliquots from the same sample would almost double the already large labor burden of the assay.

Furthermore, in some cases there is not enough antibody to repeat the assay on several aliquots.

Since the within-sample variability cannot be reduced to a negligible part of the between sample

variability, it is important to have a good model of assay variability, and to report that variability

(e.g., through confidence intervals for each assay readout).

3 Fitting a Model to Data

3.1 Description of Data

The ultimate goal is to develop methodology and inference for the TRA and TBA, but to do so

we first need a reasonable model of the data-generating process, which we term the representative

count model (RCM). We develop the RCM on data from mosquitoes in the control COMs using

control antibodies. Later we will show that the model and the specific parameter estimates from

it will fit test COMs.

One oocyst count is from the observation-level mosquito; mosquitoes are clustered into con-

tainers of mosquitoes (COMs); and COMs are clustered into feed-days. For this model-building

data we have 9804 mosquitoes, in 492 COMs on 105 feed-days, translating to about 20 mosquitoes

per COM and about 5 COMs per feed-day. For 9804 mosquitoes, the oocyst counts have a mean

of 18.66 and a variance of 522.3, which is 28 times larger than the mean, so the data are clearly

overdispersed compared to a simple independent Poisson model. The distribution of oocyst counts

shows a pronounced proportion of zeroes and a skewing to the right, both extremes contributing

to the overdispersion (Figure 2).

The data exhibit a hierarchical structure, which could explain some of that overdispersion. To

10



Figure 2: Histogram of 9804 oocyst counts from polyclonal control COMs with Poisson(λ = 18.66)

density overlay. Note the excessive proportion of zeroes and skewing to the right, both extremes

contributing to overdispersion.

get a sense of the variation across feed-days, we calculate each COM’s mean oocyst count over

the 20 mosquitoes. Then within feed-day, we calculate the average of the COM-wise mean oocysts

along with t-distribution confidence intervals on that average. (Figure 3; note: some days have

only 1 COM, others 16). For this case study, the feed-day effect is substantial.

The relation between the sample COM-wise means and standard deviations (or variances) are

of interest to inform model choice. We plot the within-COM standard deviation versus the within-

COM mean (both on the log scale) against the equality line for the variance and mean (Figure 4).
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Figure 3: The oocysts found in 20 mosquitoes of each COM are averaged (we call this the “COM-

wise mean”), and then the average of the COM-wise means is taken within each feed-day. 25

feed-days had 1 COM (left-most dots), 1 feed-day had 16 COMs (right-most dot). One feed-day

had 11 COMs, and its average COM-wise mean was about 75. Each average COM-wise mean

oocyst is presented with t-distribution 95% confidence intervals (feed-days with 1 COM set to∞).

3.2 A Representative Count Model

To develop methods and inference, a statistical model of the data generating process will be justi-

fied. We propose a zero-inflated negative binomial random effects model, denoted as ZINB2-RE.

Let Yijk be the oocyst count of the kth mosquito in the jth COM of the ith feed-day experiment,
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Figure 4: The COM-wise standard deviation vs. the COM-wise mean on the log scale for polyclonal

controls and the mean-variance equality line (dashed). If these data followed the Poisson model,

we would expect the dots to fall on the dashed line. From the rug plot and alpha blending, we see

a majority of the data have a COM-wise mean greater than 10.

where each mosquito’s likelihood contribution is:

Lijk (Yijk = yijk|ψ) =


π + (1− π)

(
1 +

λij
θ

)−θ
, yijk = 0

(1− π)
Γ(yijk+θ)

Γ(yijk+1)Γ(θ)

(
λij
θ

)yijk(
1+

λij
θ

)yijk+θ , yijk = 1, 2, . . .

The mean oocysts of the COM is modeled as (1−π)λij, where π is the zero inflation parameter, and

λij is the random mean effect from the negative binomial portion of the model. Let log(λij) = γ +

fi+cij, where γ is the overall (log) control mean oocysts, fi is the random effect for the ith feed-day,

and cij is the random effect for the ijth COM. We assume the random effects are all independent

and normally distributed with means 0 and standard deviations either σf (for feed-day random

effects) or σc (for COM random effects). Further there is a negative binomial dispersion parameter,
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θ. The model is completely defined by the five parameters, ψ = [γ, π, σc, σf , θ]. Such a model on

the 9804 counts rendered ψ̂RCM = [γ̂ = 2.57, π̂ = 0.056, σ̂c = 0.2306, σ̂f = 1.042, θ̂ = 1.93]. The

necessity of zero-inflation, negative binomial (as opposed to Poisson), or random-effects can be

tested via likelihood ratio tests (LRTs), due to the ZINB2-RE nesting simpler models. Each of the

LRTs for zero-inflation (π = 0), negative binomial (θ = ∞), and/or random-effects (σf = σc = 0)

involve a parameter on the boundary of its domain, so the likelihood ratio test will be conservative

(Self and Liang, 1987). Even so, the choice ZINB2-RE is resoundingly supported by the data

(results in Supplementary Materials). Its fit to the 9804 control mosquitoes is deemed the RCM.

3.3 Validating the Representative Count Model

Figure 5: Standard deviation of oocyst counts (log10-scale) by mean oocyst counts (log10-scale).

For each panel, the solid line is the predicted (log10-scale) standard deviation from the ZINB2-RE

RCM as a function of the mean. The dashed line is the relation for a Poisson distributed oocyst

count, where mean=variance. The points (Ȳ , s), vary across panels, and are the sample mean and

standard deviation of the oocyst counts from 20 mosquitoes in a COM with R2 values of (0.91,

0.94, 0.92, 0.98) from left to right. Poly-Ctrl are the polyclonal controls upon which the RCM is

built. The remaining three panels are the test COMs of monoclonal 4B7 antibodies; test COMs of

monoclonal 1B3, 3E12, or IIC5B10 antibodies; and test COMs of polyclonal antibodies (Poly-Test).
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The RCM model was developed on control data and we assess its generalizability to test COMs data.

Specifically, we check how the mean-variance relationship of the RCM holds for the test COMs of

different antibodies. For many of the feed-days for which we have polyclonal IgG controls, we also

have test COMs. We group these test COMs into three distinct datasets: COMs of monoclonal 4B7

antibodies, COMs of monoclonal 1B3, 3E12, or IIC5B10 antibodies, and test COMs of polyclonal

antibodies. Test COMs of monoclonal 4B7 antibodies consist of 4295 mosquitoes among 215 COMs

across 104 feed-days tested at various doses. Test COMs of monoclonal 1B3, 3E12, or IIC5B10

antibodies are 1240 mosquitoes among 62 COMs across 18 feed-days tested at various doses. Test

COMs of polyclonal antibodies are 5255 mosquitoes among 264 COMs across 33 feed-days.

Within each of the three test datasets, the observed log transformed standard deviation of the

oocyst counts in a COM is compared to the RCM-predicted log transformed standard deviation at

each observed log transformed mean oocyst counts in a COM to calculate a R2 value. That is, the

predicted RCM variance is a function of the COM-wise mean:

V RCM
ij (m; ψ̂RCM) = m+ (

π̂

1− π̂
+

1

θ̂

1

1− π̂
)m2.

For an observed COM-wise mean, Ȳij =
∑Kij

k=1 Yijk/Kij, we calculate σRCMij =
√
V RCM
ij (Ȳij; ψ̂RCM)

and compare it to the observed COM-wise standard deviation sij =
∑Kij

k=1(Yijk − Ȳij)2/(Kij − 1)

on the log10 scale,

R2 = 1−
∑

(log10 σ
RCM
ij − log10 sij)

2∑
(log10 σ

RCM
ij − 1

T

∑
i,j log10 σ

RCM
ij )2

,

where T is the total number of COMs in the dataset.

These calculations lend themselves nicely to visual checks (Figure 5, with R2 values listed in

caption). The high R2 and mean-variance line tracing centered on each cloud of data indicates a

trustworthy representation of the mean-variance relation and the data generating process, for both

control and test data of different antibody types.

15



3.4 The RCM with covariates

In practice there are test samples and control samples on the same feed-day. A covariate can be

included in the mean of the RCM so that an effect for each test sample can be estimated. To

accommodate test samples, let log(λij) = γ + βhI(Xij = 1) + fi + cij, where βh is the effect of

the hth test sample (which is measured on the ijth COM), Xij = 1 if the ijth COM (i.e., the jth

COM of the ith feed-day) is a test sample and Xij = 0 if the ijth COM is a control sample. With

this update, the model is completely defined by the six parameters, ψX = [γ, π, σc, σf , θ, βh] and

the likelihood contribution, Lijk
(
Yijk = yijk|Xijk, ψ

X
)
, now depends on Xij.

For the development of TRA and TBA, we assume any and all variation follows that of the

controls as estimated by the RCM and that all of the information of the test sample enters the model

through βh via the λij parameter (this assumption seems reasonable given the generalizability of

the mean-variance relationship of the RCM to the test COMs in Section 3.3). We assume that the

test sample does not affect the zero inflation parameter, π, so that the zero inflation represents

some process independent of the vaccine effects that somehow stops all oocyst development for

both test and control samples. That is, the RCM is analogous to fitting generalized linear models:

once the family is selected, shifts around the linear predictor (in this case log(λij)) are analyzed.

As we will show, nonparametric estimates of βh are straightforward.
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4 TRA

4.1 Defining the TRA Estimand

For all of Section 4, we consider only one test sample so we drop the h subscript in βh. From the

RCM, the TRA ΩR directly corresponds to the fixed effect ρ = exp(β):

ΩR = 100

(
1− E(Yijk|Xij = 1)

E(Yij′k′|Xij′ = 0)

)

= 100

1−

∫∞
−∞

∫∞
−∞(1− π) exp (γ + β + s+ t) 1

σc
φ
(

t
σc

)
1
σf
φ
(

s
σf

)
ds dt∫∞

−∞

∫∞
−∞(1− π) exp (γ + s+ t) 1

σc
φ
(

t
σc

)
1
σf
φ
(

s
σf

)
ds dt


= 100 (1− ρ)

=: ΩR (ρ)

where φ(·) is the standard normal density. Note that a feed-day-specific TRA gives the same result:

ΩRi = 100

(
1− E(Yijk|Xij = 1, feed-day = i)

E(Yij′k′|Xij′ = 0, feed-day = i)

)
= 100 (1− ρ) = ΩR (ρ) .

This allows TRA to be estimated across feed-days or within feed-days, depending on the application.

4.2 Estimating TRA

The TRA estimator of the model’s TRA estimand ΩR (ρ) only requires an estimate of the ratio of

means, ρ. Thus we use ρ̂ = µ̂c/µ̂t making Ω̂R = r (from the Introduction). This simple estimate

uses no data from other samples, ensuring the independence of TRA values between different

samples. We can consider the case of sample replicates. Suppose we have k replicates of a sample

(each with its own control replicate) over many feed-days. Let µ̂ic and µ̂it be the control and

treatment mean for the ith replicate, and let ρ̂i = µ̂it/µ̂ic. Then two simple estimates of ρ are

either a mean of ratios ( 1
k

∑
ρ̂i) or a ratio of means (µ̄t/µ̄c, where µ̄c = 1

k

∑
µ̂ic and µ̄t = 1

k

∑
µ̂it).

We simulated two replicates with nt = nc = 20 mosquitoes per COM using the RCM with ψ̂RCM
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and ΩR values of 10%, 50% and 90%, and 105 simulations. In practice, feed-days with µ̂ic = 0

would not be used, but for the simulation we replace those values with 0.5/nc. Using the mean

squared error (MSE) on ρ, we find that neither is uniformly better (simulated MSE for the ratio of

means over simulated MSE for the mean of ratios is 1.03 [ΩR = 10%], 1.02 [ΩR = 50%], and 0.89

[ΩR = 90%]).

4.3 Confidence Intervals on a Single Sample TRA

In practice we only run one feed-day and observe the oocyst counts from nt mosquitoes from one

COM using the test sample and nc from a different COM using the control sample. In this case,

we cannot estimate the standard deviation of the random effects for feed-day, σf , since there is

only one feed-day observed. Further, we cannot estimate the standard deviation of the COMs, σc,

since there are only two COMs sampled, and they have different samples.

We consider 6 methods for calculating confidence intervals on the TRA. The first 4 methods

assume that there is no variability in the COMs (implying that σc = 0). The fifth and sixth methods

assume that the data follow the RCM with σc > 0 and uses a simulation method to calculate the

confidence intervals. We undertake a simulation study to evaluate coverage probabilities under

different scenarios for the six methods.

For the first three methods, we start by taking the log transformation of the counts, replacing

zero counts with 0.5. Then on the transformed responses, we either do a t-test with the associated

confidence intervals (denoted t-Welch, using Welch’s version of the t-test which allows different

variances for the two groups), or the Wilcoxon-Mann-Whitney (WMW) test with the Hodges-

Lehmann CIs. These are the default confidence intervals for t.test and wilcox.test in R. Then we

transform the difference in log means (for t-test) or the shift in distribution (for WMW test) to

the TRA scale using

Ω̃R = 100
(

1− exp(β̃)
)
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where β̃ is the estimated difference in means or shift. A third method is a delta method approach.

The third method considers the variance of log(ρ̂) as approximated by the delta method:

V̂ ar(log(ρ̂)) =

(
1

ntµ̂t
+

1

ncµ̂c

)
+

1 + π̂θ̂

(1− π̂)θ̂

(
1

nt
+

1

nc

)
,

constructing the 95% CI for log(ρ) by log(ρ̂)± 1.96

√
V̂ ar(log(ρ̂)) using ρ̂ = µ̂t/µ̂c with π̂ and

θ̂ from the RCM. The 95% CI for log(ρ) are converted to the TRA scale. The fourth method

uses a zero-inflated negative binomial model on the untransformed counts using the normal theory

confidence intervals (ZINB-Norm). We used the R package pscl (Zeileis et al., 2008; Jackman,

2015). The fifth method (ZINBRE-Sim1) uses a simulation method that does not assume σc = 0.

This method involves simulated data with the means estimated from the data while using the RCM

parameter values ψ̂RCM . We specifically estimate the means for the fixed effects from the negative

binomial part of the model (e.g., for exp(γ + β) for the test sample) using λ̂t = µ̂t/(1 − π̂) and

λ̂c = µ̂c/(1 − π̂) for the test and control samples respectively. Then we simulate data 2000 times

using those means to define the parameters in the simulation model, adding random effects for the

feed-day and COM, and including zero inflation. We then recalculate the TRA 2000 times, once

for each data set, using the 100(1− µ̃t/µ̃c) estimator, where for a ∈ {c, t} we let µ̃a = µ̂a unless all

na mosquitoes had 0 oocysts, then µ̃a = 0.5/na. We use the middle 95% of the simulated TRA

values to get the confidence interval. The sixth method (ZINBRE-Sim2) builds upon the fifth,

replacing the static σ̂c = 0.2306 with a random σc that follows a log-normal distribution with mean

0.2306 and standard deviation 0.0071505 (the standard error of σ̂c estimated from the RCM).

We evaluate the 6 methods by simulation under 12 scenarios. The (TRA, σc) pair denote

the simulation scenarios. We carry out 4 levels of TRA (0, 20, 50, 80) and 3 levels of COM

variability (σc from the RCM, and the lower and upper 95% bootstrap CI bounds for σc using

the 9804 control mosquitoes and 2000 bootstrap samples) for a total of 12 simulation scenarios.

Each scenario had a 1000 iterations, and the percent of iterations where the calculated 95% CI

covered the true TRA are displayed in Table 1. Although assuming σ̂c is known and fixed is a crude
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ZINBRE

TRA Q(σc) σc t-Welch WMW-HL Delta ZINB-Norm Sim1 Sim2

0 est 0.2306 86.3 83.4 80.1 75.6 94.7 95.9

20 est 0.2306 86.9 84.3 80.8 74.5 95.9 96.7

50 est 0.2306 85.0 82.5 81.3 78.6 94.5 95.6

80 est 0.2306 74.4 76.1 81.3 81.3 94.7 96.3

0 2.5% 0.1587 91.0 89.0 88.6 84.9 98.7 99.2

20 2.5% 0.1587 90.7 87.2 88.1 84.8 98.0 98.7

50 2.5% 0.1587 88.9 87.8 88.7 84.7 98.5 98.7

80 2.5% 0.1587 78.7 81.1 87.6 87.0 98.3 98.2

0 97.5% 0.3006 79.3 75.3 71.8 69.2 90.4 91.8

20 97.5% 0.3006 82.0 77.4 74.3 69.1 92.2 93.2

50 97.5% 0.3006 78.8 74.9 73.3 68.5 90.8 92.4

80 97.5% 0.3006 73.2 73.4 75.6 72.7 91.2 91.9

Table 1: Coverage Probabilities of 1 Feed-Day Confidence Intervals.

approximation (ZINBRE-Sim1), Table 1 shows that both simulation approaches perform better in

terms of simulated coverage than implicitly assuming σc = 0 as is done for the first 4 methods.

Allowing variability on σ̂c (ZINBRE-Sim2) gives slightly higher coverage than σ̂c fixed.

5 TBA

The TRA estimand afforded by the model has no dependency on the control mean or random

effects. Thus, the TRA for a test sample can be estimated from a single feed-day (with a COM

for test and a COM for control), or it can be estimated by dividing the test sample into multiple

aliquots that can be measured on different feed-days (each with their own control COM) and using
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the ratio of the mean of the test COMs over the mean of the control COMs. We show in this

section the expected value of the naive TBA estimate, b, depends on the TRA, control mean, and

the standard deviations of the feed-day and COM random effects. We develop a feed-day specific

TBA estimand assuming no COM random effects. This estimand depends on the feed-day specific

control mean, which can be replaced with a target mean as a possible way of standardization, as

demonstrated by the standardized TBA estimators in Section 5.2.

5.1 Defining the TBA Estimand

Using the fact that if Z is a zero-inflated negative binomial random variable,

E(I(Z > 0)) = (1− π)

{
1−

(
θ

µ+ θ

)θ}
,

and π does not depend on Xij, the overall TBA would be derived from the model as:

Ωoverall
B = 100

(
1− E(I(Yijk > 0)|Xij = 1)

E(I(Yi′j′k′ > 0)|Xi′j′ = 0)

)

= 100

1−

∫∞
−∞

∫∞
−∞

{
1−

(
θ

exp(γ+β+s+t)+θ

)θ}
1
σc
φ
(

t
σc

)
1
σf
φ
(

s
σf

)
ds dt

∫∞
−∞

∫∞
−∞

{
1−

(
θ

exp(γ+s+t)+θ

)θ}
1
σc
φ
(

t
σc

)
1
σf
φ
(

s
σf

)
ds dt

 ,

which has no closed form. Aside from being mathematically intractable, the result depends on

nuisance COM effects (the ideal assay should have no COM effect (σc = 0)). The feed-day effect

is also a nuisance component of the model (but with a more substantial variance component

σ̂f
2 = 1.08). Given these points, the nuisance of feed-day effects will be handled via conditional

expectation and then the result taken as a limit of σc → 0.
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Consider a feed-day-specific TBA,

Ωf
B = 100

(
1− E(I(Yijk > 0)|Xij = 1, feed-day = i)

E(I(Yij′k′ > 0)|Xij′ = 0, feed-day = i)

)

= 100

1−

∫∞
−∞

{
1−

(
θ

exp(γ+β+fi+t)+θ

)θ}
1
σc
φ
(

t
σc

)
dt

∫∞
−∞

{
1−

(
θ

exp(γ+fi+t)+θ

)θ}
1
σc
φ
(

t
σc

)
dt



= 100

1−

∫∞
−∞

{
1−

(
θ

ρµci exp(t)+θ

)θ}
1
σc
φ
(

t
σc

)
dt

∫∞
−∞

{
1−

(
θ

µci exp(t)+θ

)θ}
1
σc
φ
(

t
σc

)
dt


=: Ωf

B (µci, ρ, θ, σc)

where µci = exp(γ + fi). In the limit when σc goes to zero, we have

Ωf
B(µci, ρ, θ, 0) ≡ lim

σc→0
Ωf
B(µci, ρ, θ, σc) = 100

1−
1−

(
θ

ρµci+θ

)θ
1−

(
θ

µci+θ

)θ
 .

Note that Ωf
B depends on the feed-day i, even with very small random effects for COM. There

is little practical interest in a TBA for a particular feed-day. For a general TBA, µci could be set

to some target value, say µ∗c , to give the targeted TBA estimand:

ΩB(µ∗c , ρ, θ) := Ωf
B(µci = µ∗c , ρ, θ, 0),

which is our estimand of interest for TBA.

5.2 Two estimators of ΩB(µ∗c)

We propose two estimators of ΩB(µ∗c , ρ, θ), a restricted TBA estimate that discards samples that

have a control mean outside of an envelope around a target mean, and a standardized TBA that

uses the model to utilize any sample regardless of the observed control mean.
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Restricted TBA

For the ith feed-day let µ̂ic and p̂ic be the mean oocyst count and the sample proportion for the

control COM, and similarly define µ̂it and p̂it for the test COM. For a target control mean µ∗c , define

two restriction bounds τL < µ∗c and τU > µ∗c and calculate TBA only if µ̂ic ∈ (τL, τU), otherwise

discard the feed-day. The restricted TBA is then

Ω̂B1,i = 100

(
1− p̂it

p̂ic

)
,

provided µ̂ic ∈ (τL, τU).

Standardized TBA

For a target control mean µ∗c , a standardized TBA for the ith feed-day is

Ω̂B2,i = Ω̂B(µ∗c , ρ̂i, θ̂)

= 100

1−
1−

(
θ̂

ρ̂iµ∗c+θ̂

)θ̂
1−

(
θ̂

µ∗c+θ̂

)θ̂
 .

where ρ̂i = µ̂it/µ̂ic and θ̂ = 1.93 is estimated from the RCM. Note Ω̂B2,i is calculated regardless of

the value of µ̂ic, and it discards no data, unlike Ω̂B1,i.

5.3 Demonstration of the Need for TBA Standardization or Restriction

In this section we use monoclonal antibodies to create 100 ostensively identical test samples and

compare unstandardized and standardized TBA estimators. We show that the unstandardized

TBA estimators are highly dependent on the control mean, while the standardized ones are not.

We take 100 test samples (from 98 feed-days) of 4B7 monoclonal antibody each prepared at

a concentration of 94 µg/ml. We randomly assign each test sample to a unique control COM

from the same feed-day; that is we opt to omit a few test COMs to ensure that each COM
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in the analysis is used once. For the ith pair we calculate an unstandardized TBA estimate,

bi = 100 (1− p̂it/p̂ic), where p̂it and p̂ic are the proportion of infected mosquitoes from the test and

control COM, respectively. On the left three panels of Figure 6 we plot these bi by the associated

control mean, µ̂ci, using circles, together with 95% confidence intervals calculated using melded

binomial confidence intervals on the ratio, p̂it
p̂ic

(Fay et al., 2015), and transforming the confidence

limits on the ratios to limits on the TBA. The three left panels are ‘low’ (µ̂ic ∈ (0, 6]), ‘med’

(µ̂ic ∈ (6, 30]), and ‘high’ (µ̂ic ∈ (30, 81]). On the right three panels we plot the standardized

TBA estimates with circles, using Ω̂B2,i(µ
∗
c = 2, ρ̂i, θ̂), where ρ̂i = µ̂it/µ̂ic and θ̂ = 1.93. Actual

µ values in the malaria endemic fields can be very low and also vary depending on many factors,

such as endemicity, season, and mosquito species. For the sake of argument, µ∗c = 2 was chosen

as a reasonable, representative value in the field. The associated 95% confidence intervals are the

single-subject TRA confidence intervals (ZINBRE-Sim2, Section 4.3) converted to the TBA scale.

In other words, we take the single-subject TRA confidence intervals, convert them to limits on ρi,

then insert those limits into the function Ω̂B2,i(2, ρ̂i, θ̂) to get 95% confidence limits on ΩB(2).

We summarize the TBA estimates within each panel using a one sample t-test on the trans-

formed values log(1 − TBA/100). We use that transformation so that the values are closer to

normally distributed. The means and 95% confidence intervals on the transformed values are

back-transformed onto the TBA-scale, and are presented as squares and vertical bars on the right

side of each panel (ignore the corresponding x-value). (The meta-regression estimates (triangles)

and bars are an alternate way of summarizing the data are discussed in Sections 6 and Supplemen-

tary Section 10.)

In Figure 6 we see from the square symbols that the unstandardized TBA estimates decrease

as the control mean increases, while the standardized TBA estimates do not. The standardization

tends to shift up the estimates of the medium and high control mean groups to a similar level of

the low control mean group, which is expected because the target mean of 2 is in the range of the

low group. We can think of the unstandardized TBA estimates in the leftmost panel as restricted
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TBA estimates, restricted to µ̂ic ∈ (0, 6]. We expect the unstandardized TBA estimates in the

med and high panels to be poor estimators of ΩB(2), because their control means are far from the

target of µ∗c = 2. The right two panels of Figure 6 clearly show that we can estimate ΩB(µ∗c) by

standardized TBA fairly well.

Figure 6: Comparing Unstandardized and Standardized TBAs for a 4B7 monoclonal antibody 94

µg/ml dose, with meta-estimates, stratified by control mean groups (low, med, high). For a target

mean of 2, the Unstandardized-low panel corresponds to the empirical restricted TBA estimator,

the Unstandardized-med and Unstandardized-high would be discarded. The 3 right panels show

the Standardized TBA estimator; note how standardization tends to shift Unstandardized TBA

estimates of the med and high group up to resemble those of the low group (which contains the

target mean), effectively removing the dependence of unstandardized TBA on the control mean.

The meta-regression and t-test meta-estimates are very similar due to the sample sizes being equal

for every TBA estimate.

5.4 Comparing the Two estimators of ΩB(µ∗c)

If the single-subject TBA is desired, the estimand and estimators imply some kind of restriction

or standardization is in order. In the previous section we showed how this might take place with
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a real-data demonstration. Here we compare the restricted and standardized TBA estimators in

a variety of conditions. Using ψ̂RCM (Section 3.2), we simulated 10,000 data sets for each of 80

simulation scenarios (10 TRAs × 4 levels of mosquitoes in a COM × 2 target control mean oocysts).

Let I+ be the number of iterations where µ̂ic ∈ (µ∗c − 2, µ∗c + 2), the simulated mean squared

error (sMSE) of Ω̂B1 is calculated as:

1

I+

∑(
Ω̂B1,i − ΩB(µ∗c , ρ, θ̂)

)2

where the summation is only over the I+ iterations that are not discarded.

To give equal footing, we compare each restricted TBA to an average of standardized TBAs,

averaged over the iteration that calculated the restricted TBA and all subsequent iterations that

were discarded before the next restricted TBA was calculated. In other words, we compare Ω̂B1,j

with Ω̂B2avg,j = 1
gj

∑k
i=j Ω̂B2,i where the (k+1)st iteration is the next iteration that is not discarded,

and gj = k − j + 1. The associated sMSE is

1

I+

∑(
Ω̂B2avg,i − ΩB(µ∗c , ρ, θ̂)

)2

Simulated mean squared errors are calculated for each estimator and displayed in Figure 7.

26



Figure 7: Simulated MSEs of the restricted TBA (shaded triangles) and standardized TBA (black

dots) approaches for targets of µ∗c = 2 and µ∗c = 15 for different number of mosquitoes in each COM

(M ∈ {20, 30, 40, 50}) and different True TRA values ΩR ∈ {0, 5, 10, 20, 40, 60, 80, 85, 90, 95}.

The standardized TBA is more precise across all levels except for the highest TRA of control

mean 2. For a given target control mean and TRA, increasing the number of mosquitoes in each

COM will lower the MSE.

5.5 Confidence Interval for single-subject Standardized TBA

In addition to being more efficient than the restricted TBA, as shown in the previous section,

the standardized TBA provides a simple mechanism for single-subject confidence intervals. If

(TRAL, TRAU) are the lower and upper bound for the 95% CI for a TRA estimate, then the 95%
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CI of a TBA estimate for a target control mean µ∗c is:100

1−
1−

(
θ̂

ρLus+θ̂

)θ̂
1−

(
θ̂

us+θ̂

)θ̂
 , 100

1−
1−

(
θ̂

ρUus+θ̂

)θ̂
1−

(
θ̂

us+θ̂

)θ̂



where ρK = 1 − TRAK/100. Since these are monotonic increasing functions for ρ given a fixed

µ∗c , the coverage probabilities for the targeted TBA would match those of the corresponding to

the (TRAL, TRAU) for the true TRA as reported in the Section 4.3. Additionally, any assay that

showed TRA significantly greater than 0 would induce targeted TBA significantly greater than 0,

regardless of the target control mean. For example, if a TRA estimate in the lab was 85 (95% CI

(82, 88)), we would estimate the TBA in the lab (µ∗c = 15) to be 21 (95% CI (17, 27)) whereas

in the field (µ∗c = 2) to be 67 (95% CI (62, 73)). The discrepancy of TBA standardized to two

different µ∗c values underscores the importance of standardization as part of the decision making

process in the TBV development pipeline.

6 Combining Information from Different Test Samples

In many situations, the assay results for many test samples will need to be combined. For example,

consider an animal study or a human phase II trial of a transmission blocking vaccine compared to

placebo. The primary efficacy outcome for each subject may be the TRA at one specific time post

vaccination. We use TRA instead of TBA since the TRA does not depend on the true unknown

control means. Additionally, the ranks of the TRA and the standardized TBA will be the same

anyway. For a two sample test, we can simply use a Wilcoxon-Mann-Whitney (WMW) test on the

sample TRA (r, from equation 1). Even if our model induces some bias due the study design and

the lack of fit of the model to the true one, then because of randomization, the WMW test will

still produce valid inferences.

If we wanted estimates of effect size, we can use t-test (or Hodges-Lehman) confidence in-

tervals. For these confidence intervals we first transform the responses, using `k = log(ρ̂k) =
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log(1 − T̂RAk/100) as the outcome for the kth subject, since these transformed values will have

a distribution that is closer to a normal distribution. When we observe complete blockage (all

mosquitoes in the test COM have 0 oocysts), then we add 0.5 to the first mosquito before taking

the log transformation. The Welch’s t-test will naturally lead to estimates and confidence intervals

on the mean difference in the `k between the groups. Some have used meta-analysis regression to

combine information across many assays (Da et al., 2013), but upon closer examination, there is

little practical advantage of using meta-analysis regression over t-tests in the SMFA setting (see

Supplement Section 10).

Let us interpret that difference within the context of our model. Previously, we used µij to

represent the mean oocyst count in the ith feed-day and the jth COM within that feed-day.

Now add super scripts to denote the subject and whether the COM is the test or control COM

associated with that subject. For example, µktij and µkcij′ are the mean oocyst counts for the kth

subject’s test COM and associated control COM, respectively. Let the TRA effect for the kth

subject be 100(1− exp(βk)). Then according to our model,

E(`k) = E
{

log(µktij )− log(µkcij′)
}

(3)

= E(γ + βk + fi + cij − γ − fi − cij′) = βk + E(cij − cij′) = βk.

Assume that if subject k got the experimental vaccine (or placebo), then βk comes from a distri-

bution with mean Bv (or Bp). Then the expected difference in means of the `k values would be

Bv −Bp. We can interpret 100(1− exp(Bv −Bp)) ≡ TRAvp as the estimand of the vaccine’s TRA

effect compared to placebo, and call this the transmission reducing vaccine activity (TRVA). In

terms of the model, letting `vk and `pk′ be typical responses from the vaccine (ijth feed-COM) and

placebo (abth feed-COM) group, we get,

E(`vk − `
p
k′) = E

{
log(µktij )− log(µkcij′)−

[
log(µk

′t
ab )− log(µk

′c
ab′)
]}

= E
{

log(µktij )− log(µk
′t
ab )
}

+ E
{

log(µk
′c
ab′)− log(µkcij′)

}
= E

{
log(µktij )− log(µk

′t
ab )
}
. (4)
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By comparing equations 3 and 4, we see that in the TRVA effect, the placebo effect is acting like

the control in the single sample TRA. For the TBA effects, there is no such simple vaccine effect,

since the TBA effect for the kth subject depends on the target control mean and the overdispersion

parameter. Thus, for simplicity of reporting, we recommend presenting inferences in terms of TRVA

for two sample situations, rather than defining an analogous estimand for TBA. Alternatively, we

can simply estimate the expected value of individual standardized TBA values within group using

the t-test (see Section 5.3).

7 Designing Multiple Assays for a Study

Consider a two sample trial comparing a novel vaccine to a standard vaccine. If our concern was

only with the TRVA, then we need not use control COMs at all. From the TRVA definition (see

equation 4) the control COM effects cancel out and need not be measured. Ideally, we would

randomly assign an equal number of new vaccine sample COMs and standard vaccine sample

COMs on each assay feed-day. Then the TRVA could be estimated using a linear model on the log

transformed means for those COMs (with suitable adjustments for zero counts), with vaccine-type

and feed-day main effects. Alternatively, a stratified Wilcoxon-Mann-Whitney test could compare

the means from the new vaccine COMs and the standard vaccine COMs. In either of these cases,

we automatically account for the random COM effects, since those effects would be part of the

random response error, where the subjects’ responses are their COM means.

Practically speaking, it is likely that subject level estimates of TRA or standardized TBA

will be desired, so it makes sense to include at least one control COM within each feed so that

those estimates can be calculated. In this latter case, the TRA estimates (and standardized TBA

estimates that depend on them) would be correlated, so they would only be used as descriptive

statistics.

30



8 Discussion

In this paper we have developed a statistical model for SMFAs used for the development of trans-

mission blocking vaccines in malaria. This assay measures counts of oocysts from two sets of

mosquitoes, those fed from a control sample and those fed from a test sample. Of the two pos-

sible readouts, TRA and TBA, we have demonstrated that TRA is usually preferred due to its

generalizability among different assays.

In some cases a TBA estimate is desired. Users of this assay have realized that the TBA

measurement (equation 2) depends on the mean oocyst counts from the control sample, which is

difficult to control by experimental design. An expensive solution is to restrict TBA measurements

to only those values associated with control means within a narrow range, and discard many

assays outside of that range. Our statistical model addresses this problem by defining a TBA

estimand from the model. The TBA estimand depends on a target control mean, the TRA, and

the overdispersion parameter. With this model, we define a standardized TBA estimator based on

the sample TRA that can be standardized to any pre-specified target control mean. For a single

sample assay run, this requires using θ̂, an estimated overdispersion from extensive SMFA replicate

data. We have shown through simulations that this standardized TBA estimator is much more

efficient than using a restricted TBA estimator (restricting to only control means within a range).

Ideally, the assay readout from a test sample should have variability small enough that it is

ignorable. But unfortunately, that is not feasible in this situation. Therefore, it is desirable to

have confidence intervals for each test readout, to determine if each test sample shows significant

transmission blocking (or reducing) activity. We have shown that simple methods which treat each

mosquito as independent do not perform well and have developed a simulation-based method to

calculate individual assay readout confidence intervals for both TRA and TBA. These confidence

intervals also depend on θ̂.

We have demonstrated a pressing need for standardization of the TBA estimate (see Section 5.3),

and proposed one standardized TBA estimator. A potential drawback of our standardized TBA
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estimate is its dependency on one specific model, and on the specific value, θ̂. A concern is that

the model may not fit SMFA data well from other laboratories or on slightly modified assays. We

have partially addressed this question by showing that the model developed and fit using control

polyclonal antibody data fits test polyclonal and monoclonal antibody data quite well (with R2

values greater than 0.90). Churcher et al. (2012) used a similar but more complicated model for

SMFA data, which allows the zero inflation and the overdispersion parameters to depend on the

mean oocyst counts through non-linear functions. Although they have not used their model for

standardizing TBA estimates, their model does relate the TBA, control mean, and the TRA (see

Churcher et al., 2012, Figure 2B), and it provides a similar relationship as our simpler model

(Reference Blinded). Although Churcher et al. (2012) show that the added complexity of their

model is better for their data, it is not clear how their model will perform on data from other

laboratories. As with any model building, we need to balance the closeness of the fit to the model-

building data (which can be improved with more complex models) and expected closeness of fit to

other data sets from slightly modified assay designs (which may be diminished with overly complex

models). We have shown that our models fit the independent polyclonal and monoclonal data well,

but further work can be done to explore the use of our model (or similar models, e.g., Churcher

et al., 2012) on different data (e.g., from other laboratories). Especially of interest is how much the

overdispersion parameter estimate changes between laboratories, and how this will affect inferences.

Despite this potential drawback, one advantage of the proposed standardized TBA, which bases

the TBA confidence intervals on the associated confidence intervals for TRA, is that the TBA and

TRA inferences will match in the sense that test samples that have TRA statistically significantly

different from 0 will also have statistically significant standardized TBA different from 0 and vice

versa. This matching property does not depend on the target control mean, the goodness-of-fit of

our model, or its generalizability. The fit of the model is more important when a TBA estimate is

needed to use in some other prediction model (see e.g., Smith et al., 2011). Nonetheless, we have

proposed a model for malaria researchers to use to address the issues with TBA, and rigorously
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demonstrated whether restriction or standardization is used, some kind of adjustment must be

administered if TBA estimates are used. Future applications of the model will determine its ability

to enhance the utility of the the SMFA in vaccine development.
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9 Model Selection Statistics (online supplement)

We consider a zero inflated negative binomial model with random COM and feed-day effects. The

negative binomial part of the model can be parameterized to have a linear mean-variance relation

(mean: λ, variance: λθ) or a quadratic relation (mean: λ, variance: λ + λ2/θ), which we refer

to as NB1 and NB2 respectively (McCullagh and Nelder, 1989). We list 12 versions of the model

in Table 2, each version choses one of 3 count components (NB1,NB2, or PO for Poisson), zero

inflation (ZI) or not, and random effects (RE) or not. If there were no random effects, then each

COM from the model-building data would have the same mean since that data are all control

COMs, and we could not differentiate between NB1 and NB2. So for that model-building data we

can only differentiate the two negative binomial models within the context of the random effects.

Of the two zero-inflated negative binomial models with random effects (Models 1 and 5) which

have the same number of parameters, Model 1 (ZINB2-RE) has the larger log-likelihood (-34798.4

vs. -35062.8). Thus, we prefer NB2 to NB1. We show that NB2 is significantly better than Poisson

by comparing Model 1 (ZINB2-RE) to Model 9 (ZIPO-RE) by the likelihood ratio test (LRT) of

θ = ∞. Although this LRT (and the others that follow) is on the boundary of the parameter

space, we calculate a naive p-value ignoring this fact since this naive p-value is conservative and

all our results are highly significant by this method anyway (see Self and Liang, 1987). Model

1 is statistically significantly better than Model 9 (-34798.4 vs. -53031.8, naive p-value < 0.001

on 1 d.f.). We show that zero inflation is needed by comparing Model 1 (ZINB2-RE) to Model 2

(NB2-RE) by the LRT π = 0. Model 1 is statistically significantly better (-34798.4 vs. -35065.5,

naive p-value < 0.001 on 1 d.f.). We show that the random effects are needed comparing Model 1

(ZINB2-RE) to Model 3 (ZINB2) by the LRT σf = σc = 0. Model 1 is statistically significantly

better (-34798.4 vs. -38177.5, naive p-value < 0.001 on 2 d.f.).
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Model Label γ θ π σ2
f σ2

c logL

1 ZINB2-RE 2.57 1.93 0.056 1.085 0.053 -34798.4

2 NB2-RE 2.51 1.39 - 1.103 0.057 -35065.5

3 ZINB2 2.98 0.76 0.052 - - -38177.5

4 NB2 2.93 0.63 - - - -38217.5

5 ZINB1-RE 2.66 11.75 0.031 0.692 0.034 -35062.8

6 NB1-RE 2.65 14.13 - 0.620 0.037 -35336.8

7 ZINB1 2.98 26.96 0.052 - - -38177.5

8 NB1 2.93 30.40 - - - -38217.5

9 ZIPO-RE 2.31 - 0.089 3.415 0.095 -53031.8

10 PO-RE 2.49 - - 1.107 0.096 -66480.9

11 ZIPO 2.57 - 0.153 - - -72583.4

12 PO 2.93 - - - - -129840.0

Table 2: The 12 models fitted to 9804 Control Mosquitoes (in 492 COMs). Note, the θ parameter

has a different interpretation in the NB1 models than in the NB2 models.

10 Using Meta Regression to Combine Assay Results (on-

line supplement)

One approach to inferences on TRVA using the `k is to use the information from the model about

the variance of the `k in a meta regression approach (see Da et al., 2013). However, this meta

regression approach does not necessarily increase efficiency of inferences. Let sk be an estimate

of the standard deviation of `k. We can estimate sk from the simulation that is used for the kth

confidence interval by using the simulated standard deviation of `k. Alternatively, we can estimate
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sk using a 100(1 − α)% (typically 95%) confidence interval for for the TRA for subject k, say

(Lk, Uk), using

sk =
log(1− Lk

100
)− log(1− Uk

100
)

2Φ−1(1− α)
(5)

where Φ−1(q) is the qth quantile from the standard normal. Then we can use the (`k, sk) pairs in

a meta regression analysis. Specifically, let Xk be a treatment indicator. Then we assume that

`k = ξ + φXk + εk

where εk are normal independent errors with mean 0 and variance τ 2 + s2
k, where s2

k is the within-

assay variance and τ 2 represents the between-test-sample variance. Typically, we use the estimated

s2
k and assume that it is estimated without error (see Viechtbauer et al., 2010). Although this may

be reasonable for meta analyses where sample sizes vary widely, for the SMFA data most assays

will be measured on a similar number of mosquitoes. Besides ignoring the variability of s2
k, another

problem is that the true individual variances may depend in a complex way on the mean (Böhning

et al., 2002). Thus, we recommend combining information across different assays using equal

weights (i.e., using the unweighted mean of the `k), and simply using the t confidence intervals

described above.
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