Manuscript title: Comparative analysis of plastid genomes of nonphotosynthetic Ericaceae and their photosynthetic relatives

Authors: Maria D. Logacheva, Mikhail I. Schelkunov, Viktoria Y. Shtratnikova, Maria V. Matveeva, Aleksey A. Penin

Supplementary figures and tables.

Supplementary figure 1.

Location of repeats in the plastid genomes of Ericaceae and two species from Ericales (*Actinidia chinensis* and *Camellia sinensis*). The dot-plot charts are built based on BLASTN self-alignment of the genomes. Detailed plots for regions that are particularly rich in repeats are shown in blue frames. Genomic positions are subscribed on the axes.

Supplementary figure 2.

Location of repeats within open reading frames containing an accD-like fragment. Dot-plots were built based on BLASTN self-alignments of respective sequences. Axes denote nucleotide positions within the open reading frames.

Supplementary figure 3.

Picture of a gel showing the expression of ORF357 in *Pyrola rotundifolia*. 1 – DNA ladder (0.1 – 1 Kb), 2 – empty, 3 – ORF357, 4 – no reverse transcriptase control, 5 – empty, 6 – petB, 7 – no reverse transcriptase control, 8 – empty, 9 – psaB, 10 – no reverse transcriptase control, 11 – empty, 12 - DNA ladder (0.1 – 1 Kb).

Supplementary figure 4.

Support of plastid genomes structure by mate-pair reads. The X-axis denotes a position in a plastid genome. The left Y-axis and a red line denote coverage by mate-pair inserts, i.e., how many mate-pairs reads there are in which the left read lies to the left of this position and the right one to the right of this position. The right Y-axis and a blue line denote the average insert length of such mate-pair reads over this position.

Supplementary table 1.

Fraction of repeats in Ericaceae plastomes.

Supplementary table 2.

Codon usage in plastid genomes of Ericaceae and Camellia sinensis.

Supplementary table 3.

Comparison of substitution rates in Ericaceae.

Supplementary table 4.

Sequence similarity for *accD* and *clpP* in Ericaceae.

Supplementary table 5.

Comparison of effect of an alignment tool on a selective pressure estimate for *accD* and *clpP*.

Supplementary table 6.

Characteristics of libraries, sequencing parameters and output.

Supplementary note 1.

Characteristics of the transcripts of *Hypopitys monotropa* with significant similarity to *accD* and *clpP* and sequences of contigs containing *clpP* and *accD* ORF.

Supplementary figure 1, whole genome dot plots.

Monotropa uniflora

Hypopitys monotropa

Vaccinium macrocarpon

Supplementary figure 1, continued.

Pyrola rotundifollia

Actinidia chinensis

Supplementary figure 2, AccD dot plots.

Monotropa uniflora

Hypopitys monotropa

Arbutus unedo

Pyrola rotundifollia

Actinidia chinensis

Camellia sinensis

Supplementary figure 3. Picture of a gel showing the expression of ORF357 in Pyrola rotundifolia. 1 - DNA ladder (0.1 - 1 Kb), 2 - empty, 3 - ORF357, 4 - no reverse transcriptase control, 5 - empty, 6 - petB, 7 - no reverse transcriptase control, 8 - empty, 9 - psaB, 10 - no reverse transcriptase control, 11 - empty, 12 - DNA ladder (0.1 - 1 Kb).

Supplementary figure 4. Support of plastid genomes structure by mate-pairs reads.

Supplementary tabl	e 1. Repeat	ts in plastid	genomes c	of Ericaceae	2									
The table describes	The table describes amount of repeats of different length in plastid genomes of Ericaceae. Numbers in parentheses denote numbers of such repeats per 1 kbp of genome													
Species	Monotrop	oa uniflora	Hypopitys	monotropa	Pyrola	rotundifolia	Vacciniu	m macrocarpon	Arbuti	us unedo	Camellia s	inensis	Arabidop	osis thaliana
Repeat orientation	direct	reverse	direct	reverse	direct	reverse	direct	reverse	direct	reverse	direct	reverse	direct	reverse
20-50 bp	21 (0.590)	20 (0.562)	13 (0.371)	6 (0.171)	61 (0.421)	54 (0.372)	50 (0.353)	51 (0.360)	16 (0.130)	20 (0.162)	24 (0.183)	21 (0.160)	51 (0.398)	49 (0.382)
51-100 bp	1 (0.028)	0 (0.000)	8 (0.228)	0 (0.000)	3 (0.021)	9 (0.062)	10 (0.071)	2 (0.014)	3 (0.024)	2 (0.016)	0 (0.000)	0 (0.000)	0 (0.000)	0 (0.000)
101-500 bp	0 (0.000)	1 (0.028)	4 (0.114)	0 (0.000)	18 (0.124)	23 (0.159)	9 (0.063)	3 (0.021)	5 (0.041)	6 (0.049)	0 (0.000)	0 (0.000)	0 (0.000)	0 (0.000)
>501 bp	0 (0.000)	0 (0.000)	0 (0.000)	0 (0.000)	15 (0.103)	10 (0.069)	3 (0.021)	2 (0.014)	0 (0.000)	1 (0.008)	0 (0.000)	0 (0.000)	0 (0.000)	0 (0.000)

The thre	ee numbers s) 2.number	denote, respective r of such codons pe	ely, 1.usage of this er 1000 codons ir	s codon among a a genome 3.tota	II codons of this ar I number of such o	nino acis (in codons among all	
genes c	of a genome	•					
		Hypopitys	Monotropa	Pyrola	Vaccinium		Camellia
		monotropa	uniflora	rotundifolia	macrocarpon	Arbutus unedo	sinensis
Phe	UUU	79 (28, 68)	90 (38, 92)	75 (28, 67)	70 (26, 64)	67 (24, 57)	70 (26, 63)
	UUC	21 (7, 18)	10 (4, 10)	25 (9, 22)	30 (11, 28)	33 (12, 28)	30 (11, 27)
Leu	CUA	11 (10, 25)	12 (12, 29)	13 (12, 29)	15 (14, 34)	14 (13, 31)	13 (11, 27)
		4 (4, 10)	3(3, 7)	5 (4, 10)	6 (6, 14) 24 (22, 52)	4 (4, 10)	6(5, 13)
		5(5, 12)	13 (13, 31)	21(19,47) 6(6.14)	24(22, 55)	5(5,12)	24(21, 51) 5(5(11)
		18 (17, 42)	13 (12, 30)	19 (17, 42)	18 (17, 41)	21 (20, 48)	19 (17, 41)
	UUA	37 (35, 85)	55 (54, 130)	35 (32, 78)	33 (30, 73)	33 (31, 75)	32 (28, 68)
lle	AUU	49 (46, 111)	51 (62, 149)	49 (45, 109)	48 (41, 99)	49 (41, 100)	46 (43, 103)
	AUA	37 (35, 84)	39 (47, 113)	37 (34, 82)	37 (32, 77)	34 (29, 69)	34 (31, 75)
	AUC	13 (12, 30)	10 (12, 28)	15 (14, 33)	15 (13, 31)	17 (14, 34)	20 (18, 44)
Met	AUG	100 (22, 54)	100 (19, 45)	100 (24, 59)	100 (21, 51)	100 (25, 60)	100 (25, 59)
Val	GUC	11 (5, 13)	4 (2, 4)	15 (7, 17)	13 (7, 17)	18 (10, 23)	9 (5, 12)
	GUU	39 (19, 45)	47 (20, 48)	38 (18, 44)	39 (21, 52)	34 (18, 43)	43 (23, 54)
	GUA	37 (18, 43)	38 (16, 39)	32 (16, 38)	32 (17, 42)	31 (17, 40)	33 (18, 42)
Sor	400 400	ເວ, ເວ) 8 (5, 12)	12(3, 12) 3(2, 4)	10(7,10) 5(3.8)	9 (6 14)	5 (3, 8)	10 (0, 19)
061		6(3, 12)	6 (4, 9)	11 (7 17)	8 (5, 13)	8 (5, 13)	9 (6, 15)
	UCA	21 (12, 30)	29 (18, 43)	20 (13, 31)	19 (12, 29)	18 (11, 27)	20 (13, 32)
	UCU	29 (17, 41)	27 (16, 39)	27 (18, 43)	33 (20, 50)	33 (21, 51)	32 (22, 52)
	UCC	15 (9, 22)	8 (5, 12)	17 (11, 27)	12 (8, 19)	18 (11, 27)	15 (10, 25)
	AGU	20 (12, 29)	27 (17, 40)	20 (13, 32)	18 (11, 28)	18 (12, 28)	20 (13, 32)
Pro	CCU	39 (14, 33)	47 (15, 36)	41 (15, 37)	34 (13, 31)	31 (12, 29)	34 (13, 31)
	CCA	33 (12, 28)	32 (10, 25)	30 (11, 27)	32 (12, 29)	34 (13, 32)	34 (13, 31)
	CCC	19 (7, 16)	14 (5, 11)	20 (7, 18)	24 (9, 22)	24 (9, 22)	22 (8, 20)
T L	CCG	8 (3, 7)	6 (2, 5)	10 (4, 9)	9 (3, 8)	11 (4, 10)	10 (4, 9)
Inr	ACA	29 (13, 32)	43 (18, 43)	34 (16, 40)	24 (12, 30)	29 (14, 34)	32(15, 36)
	ACC	25 (12, 26)	9 (4, 9) 5 (2, 5)	20 (9, 23) 8 (4, 9)	16 (8, 20)	24 (12, 20)	22 (10, 24)
	ACU	36 (17, 40)	44 (18, 44)	38 (18, 44)	36 (18, 45)	36 (17, 42)	35 (16, 39)
Ala	GCG	10 (5, 12)	6 (3, 7)	8 (4, 10)	9 (5, 12)	9 (5, 12)	8 (5, 11)
	GCC	15 (8, 19)	10 (5, 11)	17 (9, 22)	10 (5, 13)	13 (7, 18)	16 (9, 22)
	GCA	38 (20, 48)	39 (18, 43)	38 (21, 51)	43 (23, 55)	40 (23, 55)	38 (21, 51)
	GCU	37 (20, 47)	45 (20, 49)	38 (21, 50)	38 (20, 49)	38 (21, 51)	38 (21, 51)
Tyr	UAU	84 (32, 77)	88 (39, 95)	85 (29, 70)	86 (30, 73)	85 (28, 68)	83 (27, 64)
	UAC	16 (6, 15)	12 (5, 13)	15 (5, 12)	14 (5, 12)	15 (5, 12)	17 (5, 13)
HIS	CAU	13 (4, 9)	9 (2, 6)	15 (4, 9)	17 (5, 11)	17 (5, 11)	16 (5, 11)
Gln	CAG	07 (25, 59)	91 (25, 60) 13 (5, 11)	00 (21, 02) 16 (6, 15)	03 (22, 53)	03 (22, 34)	04 (25, 59)
GIII	CAG	86 (32, 76)	87 (31 75)	84 (32, 78)	83 (32, 78)	79 (30 73)	82 (31 75)
Asn	AAC	23 (12, 28)	14 (8, 19)	29 (16, 38)	28 (15, 36)	30 (15, 36)	29 (14, 34)
	AAU	77 (39, 93)	86 (48, 115)	71 (39, 94)	72 (38, 94)	70 (35, 84)	71 (35, 84)
Lys	AAA	83 (88, 211)	86 (106, 257)	81 (72, 176)	81 (72, 176)	80 (67, 162)	83 (59, 142)
	AAG	17 (18, 44)	14 (17, 41)	19 (17, 41)	19 (17, 41)	20 (17, 41)	17 (13, 30)
Asp	GAC	28 (9, 21)	10 (2, 6)	24 (7, 18)	30 (8, 20)	27 (8, 19)	30 (10, 23)
	GAU	72 (22, 53)	90 (24, 57)	76 (23, 56)	70 (19, 47)	73 (22, 52)	70 (22, 53)
Glu	GAA	81 (30, 72)	87 (29, 71)	86 (32, 79)	76 (32, 78)	80 (32, 76)	80 (37, 89)
Cure	GAG	19 (7, 17)	13 (5, 11)	14(5, 13)	24 (10, 24)	20 (8, 19)	20(9, 22)
Cys		19 (3, 7)	19 (2, 6)	3 (0 1)	14(2,5)	91(13, 31) 9(1, 3)	94 (13, 30) 6 (1, 2)
Trp	UGG	100 (10, 24)	100 (9, 22)	100 (9, 23)	100 (10, 25)	100 (11, 26)	100 (11, 26)
Ara	AGA	29 (28, 68)	40 (31, 74)	36 (38, 93)	34 (36, 89)	31 (34, 82)	33 (34, 82)
	CGG	7 (7, 17)	4 (3, 8)	3 (3, 8)	6 (6, 15)	4 (5, 11)	4 (4, 9)
	CGU	20 (20, 48)	21 (16, 39)	24 (25, 61)	25 (27, 66)	26 (28, 68)	24 (25, 59)
	CGA	26 (25, 60)	18 (14, 33)	27 (29, 70)	25 (27, 66)	27 (29, 70)	26 (27, 64)
	AGG	13 (13, 31)	11 (9, 21)	5 (6, 14)	6 (6, 15)	7 (8, 19)	9 (9, 22)
	CGC	5 (5, 11)	6 (5, 11)	5 (5, 13)	5 (6, 14)	4 (5, 11)	4 (4, 10)
Gly	GGC	17 (11, 26)	7 (4, 9)	8 (5, 13)	8 (5, 12)	9 (6, 15)	8 (6, 14)
	GGU	29 (18, 44)	38 (20, 48)	36 (23, 57)	35 (23, 55)	33 (23, 55)	35 (25, 59)
		19 (12, 28)	1 (4, 9)	14 (9, 22)	18 (11, 28)	10 (12, 30)	17 (12, 29)
	GGA	55 (22, 52)	40 (20, 02)	41 (27,00)	39 (20, 01)	Ja (27, 05)	40 (23, 03)
Total nu	umber of	2408	2416	2431	2443	2411	2399
rodone		2.00		- · · ·	2.10		2000

Supplementary table 3. Comparison of substitution rates in Ericaceae.

Species	Distance to the closest common ancestor of
	the five species (measured as an average
	number of substitutions per position in shared
	protein-coding genes)
Monotropa uniflora	0.320
Hypopitys monotropa	0.139
Arbutus unedo	0.024
Vaccinium macrocarpon	0.08
Pyrola rotundifolia	0.057

Supplementary table 4 - 0	divergence of <i>accD</i> and	clpP in Ericaceae		
D				
Divergence of accD in Eri	caceae			
Amino acid sequence sim	illarity			
	Monotropa uniflora	Hypopitys monotropa	Pyrola rotundifolia	Arbutus unedo
Monotropa uniflora		0,228	0,223	0,242
Hypopitys monotropa	0,228		0,296	0,357
Pyrola rotundifolia	0,223	0,296		0,297
Arbutus unedo	0,242	0,357	0,297	
Nucleotide sequence sim	ilarity			
	Monotropa uniflora	Hypopitys monotropa	Pyrola rotundifolia	Arbutus unedo
Monotropa uniflora		0,343	0,386	0,415
Hypopitys monotropa	0,343		0,432	0,444
Pyrola rotundifolia	0,386	0,432		0,426
Arbutus unedo	0,415	0,444	0,426	
Divergence of <i>clpP</i> in Eri	caceae	_		
Amino acid sequence sim	hilarity			
	Monotropa uniflora	Hypopitys monotropa	Pyrola rotundifolia	Vaccinium macrocarpon
Monotropa uniflora		0,282	0,2	0,206
Hypopitys monotropa	0,282		0,193	0,247
Pyrola rotundifolia	0,2	0,193		0,24
Vaccinium macrocarpon	0,206	0,247	0,24	
Nucleotide sequence sim	ilarity			
	Monotropa uniflora	Hypopitys monotropa	Pyrola rotundifolia	Vaccinium macrocarpon
Monotropa uniflora		0,431	0,354	0,345
Hypopitys monotropa	0,431		0,312	0,39
Pyrola rotundifolia	0,354	0,312		0,358
Vaccinium macrocarpon	0,345	0,39	0,358	

Supplementary table 5. Comparison of effect of an alignment tool on a selective pressure estimate for *accD* and *clpP*.

	Percent of codons under negative selection	Percent of codons evolving neutrally	Percent of codons under positive selection	P-value for presence of positive selection						
accD										
PRANK in the codon alignment mode	67%	32%	1%	0.13						
PRANK with TranslatorX	56%	41%	3%	0.087						
MUSCLE with TranslatorX	42%	47%	11%	2*10 ⁻⁹						
MAFFT with TranslatorX	55%	42%	3%	9*10 ⁻⁴						
ClustalW with TranslatorX	38%	30%	32%	less than 10 ⁻¹⁶						
T-coffee with TranslatorX	48%	47%	5%	2*10 ⁻⁴						
		clpP								
PRANK in the codon alignment mode	37%	57%	6%	0.011						
PRANK with TranslatorX	43%	51%	6%	0.14						
MUSCLE with TranslatorX	36%	49%	15%	0.004						
MAFFT with TranslatorX	32%	61%	7%	0.03						
ClustalW with TranslatorX	32%	45%	23%	6*10 ⁻⁶						
T-coffee with TranslatorX	26%	50%	24%	5*10 ⁻⁷						

Supplementary table 6. Characteristics of libraries, sequencing parameters and output.								
Species Species mean inser length and in length standa deviation, b		read length, bp	number of reads ^{**}	mean plastid genome coverage (minimum coverage, maximum coverage)				
	486±35	2*251	5,814,486					
Hypopitys monotropa	5158±885 (mate- pairs libraries)	2*251	6,889,666	720 (219, 1404)				
	8705±2537 (mate-pairs libraries)	2*151	7,143,258					
	301±62	2*101	111,913,428					
	457±40	2*251	1,542,300					
Monotropa uniflora	2205±325 (mate-pairs libraries)	2*101	9,340,990	2274 (1115, 4149)				
	459±63	2*300	4,703,724					
	547±109	2*300	2,246,208					
Pyrola rotundifolia	5630±1026 (mate-pairs libraries)	2*101	4,140,794	442 (25, 1408)				
	5630±1026 (the same library)	2*220	16,687,564					
	5630±1026 (the same library)	2*301	3,504,218					

* - Estimated by mapping reads to the plastomes

** - A read pair counts as two reads. For mate-pairs libraries only properly paired reads count (so-called groups A, B, C in NextClip terms).

Supplementary note 1. Characteristics of the transcripts of *Hypopitys monotropa* with significant similarity to *accD* and *clpP* and sequences of contigs containing *clpP* and *accD* ORF (ORF are marked by asterisks and sequences are italicized).

accD								
Contig name	Length	E-value of a BLASTN match between the <i>Hypopitys</i> ' plastid <i>accD</i> and this transcript.	FPKM	Matching region in the plastome	Commentary			
c36330_g1_i5	3577	0.0	33.73	BLASTN alignment to the plastome indicates that this transcript matches to a region with coordinates from 27,598 to 31,174. There are no mismatches with the plastome sequence.	Includes <i>clpP</i> and a part of <i>accD</i> gene			
c36330_g1_i7	3594	0.0	0	BLASTN alignment to the plastome indicates that this transcript matches to a region with coordinates from 27,598 to 31,174. The only difference in an insertion of 17 base pairs, that falls into an intergenic region.	Includes <i>clpP</i> and a part of <i>accD</i> gene. Seems to be a rare form of the main isoform c36330_g1_i5.			
c37588_g2_i1	1230	0.0	32.89	BLASTN alignment to the plastome indicates that this transcript matches to a region with coordinates from 31,405 to 32,634. Includes one single- nucleotide differences from the plastid genome within a tRNA gene.	Includes a part of <i>accD</i> and three tRNA genes. Due to a similarity of FPKM with the FPKM of c36330_g1_i5, we suppose that this is a part of the same transcript. The inability of Trinity to assemble them as a whole may originate from, for example, an RNA editing.			

c82722_g1_i1	269	10 ⁻²⁶	3.12	BLASTN alignment to the plastome indicates that this transcript matches to a region with coordinates from 31,061 to 31,188 with a sequence similarity of 80%. This is a region within <i>accD</i> .	We suppose, this is a pseudogene within the nuclear or the mitochondrial genomes. The best match of BLASTN alignment against NCBI NT with default parameters is within a plastid genome of <i>Actinidia chinensis</i> isolate AD-6
c95803_g1_i1	122	2*10 ⁻²³	0	BLASTN alignment to the plastome indicates that this transcript matches to a region with coordinates from 30,911 to 30,987 with a sequence similarity of 92%. This is a region within <i>accD</i> .	We suppose, this is a pseudogene within the nuclear or the mitochondrial genomes. The best match of BLASTN alignment against NCBI NT with default parameters is within a plastid genome of <i>Monotropa hypopitys</i> isolate 2KALR
c60384_g1_i1	294	3*10 ⁻²¹	1.89	BLASTN alignment to the plastome indicates that this transcript matches to a region with coordinates from 31,819-31,906 with a sequence similarity of 86%. This is a region within <i>accD</i> .	We suppose, this is a pseudogene within the nuclear or the mitochondrial genomes. The best match of BLASTN alignment against NCBI NT with default parameters is within a plastid genome of <i>Monotropa hypopitys</i> isolate 2KALR
c136046_g1_i 1	125	9*10 ⁻¹⁵	0	BLASTN alignment to the plastome indicates that this transcript matches to a region with coordinates from 30541-30601 with a sequence similarity of 90%. This is a region within <i>accD</i> .	We suppose, this is a pseudogene within the nuclear or the mitochondrial genomes. The best match of BLASTN alignment against NCBI NT with default parameters is within a plastid genome of <i>Monotropa hypopitys</i> isolate 2KALR

c31896_g2_i1	1361	4*10 ⁻⁶	88.38	BLASTN alignment to the plastome returns a short match (35 bp) with a region from 31,852 to 31,886 bp. This is a region within <i>accD</i> .	Alignment by BLASTN to NCBI NT indicates the closest match to <i>Vitis</i> <i>vinifera</i> 's clathrin gene with e-value 3*10 ⁻¹²⁸ and a similarity of 78%. This is, possibly, a transcript of <i>Hypopitys</i> ' clathrin, with a random coincidence of its short region to a short part of <i>accD</i> .
				clpP	
Contig name	Length	E-value of a BLASTN match between the <i>Hypopitys</i> ' plastid <i>clpP</i> and this transcript.	FPKM	Matching region in the plastome	Commentary
c36330_g1_i5	3577	0.0	33.73	BLASTN alignment to the plastome indicates that this transcript matches to a region with coordinates from 27,598 to 31,174. There are no differences from the plastome sequence.	Includes <i>clpP</i> and a part of <i>accD</i> gene.
c36330_g1_i7	3594	0.0	0	BLASTN alignment to the plastome indicates that this transcript matches to a region with coordinates from 27,598 to 31,174. The only difference in an insertion of 17 base pairs, that falls into an intergenic region.	Includes <i>clpP</i> and a part of <i>accD</i> gene

c61870_g1_i1	367	7*10 ⁻²⁵	0.74	BLASTN alignment to the plastome indicates that this transcript matches to a region with coordinates from 28,765 to 28,654 with a sequence similarity of 85%. This is a region within <i>clpP</i> .	We suppose, this is a pseudogene within the nuclear or the mitochondrial genomes. The best match of BLASTN alignment against NCBI NT with default parameters is within a plastid genome of <i>Monotropa hypopitys</i> isolate 1VOLR
c37530_g3_i1	233	3*10 ⁻¹⁰	0	BLASTN alignment to the plastome indicates that this transcript matches to a region with coordinates from 28,497 to 28,536 with a sequence similarity of 98%. This is a region within <i>clpP</i> .	We suppose, this is a pseudogene within the nuclear or the mitochondrial genomes. Although the similarity to the plastid <i>clpP</i> is high, the length of the matching subsequence is very short (40 bp). The best match of BLASTN alignment against NCBI NT with default parameters is within a plastid genome of <i>Monotropa hypopitys</i> isolate 1VOLR
c81526_g1_i1	150	10 ⁻⁸	0	BLASTN alignment to the plastome indicates that this transcript matches to a region with coordinates from 28,787 to 28,536 with a sequence similarity of 74%. This is a region within <i>clpP</i> .	We suppose, this is a pseudogene within the nuclear or the mitochondrial genomes. The best match of BLASTN alignment against NCBI NT with default parameters is within a plastid genome of <i>Monotropa hypopitys</i> isolate 1VOLR
c67804_g1_i1	165	10-8	0	BLASTN alignment to the plastome indicates that this transcript matches to a region with coordinates from 28,653 to 28,719 with a sequence similarity of 81%. This is a region within <i>clpP</i> .	We suppose, this is a pseudogene within the nuclear or the mitochondrial genomes. The best match of BLASTN alignment against NCBI NT with default parameters is within a plastid genome of <i>Monotropa hypopitys</i> isolate 1VOLR

c54708_g1_i1	238	5*10 ⁻⁸	0	BLASTN alignment to the plastome indicates that this transcript matches to a region with coordinates from 27,982 to 28,030 with a sequence similarity of 88%. This is a region within <i>clpP</i> .	We suppose, this is a pseudogene within the nuclear or the mitochondrial genomes. The best match of BLASTN alignment against NCBI NT with default parameters is within a plastid genome of <i>Monotropa hypopitys</i> isolate 1VOLR
--------------	-----	--------------------	---	--	---

>c36330_g1_i5 - includes clpP and a part of accD

GAGGCTCTTGCTCAGTCTTATCTTTTGCTTCTGCAGCAAGATGCTCTTGCTCAGCCTTCTC CCTTTCTTTATAAGTTCTTTTAAGTTCTCGTGTATCTCCTCAATTATTTCGTCTACCCCAGA CTCCCATTTAACAAAATCAAAAGGCTTCACTTCTTTTCATAATCAAATTCAATGGGATCCAG AGAGAACATGTCCTCATCCATAGGAGACCAAGTGTCTGAATCAACCAAAAAGCCTATTCTA *TCTGAACTATTCATTTGCACATGTGATTGGCACCATTCACAAATATACAGTTTTGAATTAAAA* AGCGATTTATAATTTATTCCATAACAACTTTTGCATTGAACCCACAAATGGCTATAATCGGG ATCTATTTTTTTCTGTTGAAAAGGACCATTATCAGGACCATTATCAGGGTATATTATTTCTCT GTGTATTGGTCAAAATCCCCCATCGATATCTCCCTGGTTCTCCTTTGATCTAATGCACGCTG TTGCTTTCTTTCAGTTGATTCCTTGCACCCTCTAGATCTAGGATGCGTTGTTCTAAATC TTCTTTAAATCGATCGGTGTCTCTAAAGTAATTGATAACAACACTTAGATGTTCGGATGCCA GTCCACGGGTTTTATTCTCTAGATCTACTATATCAAAATTTTTATCAAATTTTTTATGTTTCCT TCTATGATTATCCGACACAGACTCATCCCGCCTCTTGGCATTACCTAAATTTTTAAAATTAG AGGATATTTGTGTCTGCTTCAATTTACTAAGTTTGTAGCTCCAAATAGCAAAAATACTGAAA GGAACTACCCCTATATTGCCGATTAATTTTTTTTTTTGCAT*ACTATATACCTCAGGTGTA AAATATAATTTTAATTAAAAAATAAAAAGTATGGTAGATTCAAACGAGCGTTCTATC TAATCGTATGGTTAAGATTTAGTTTTCCCATACAATTAGTTTTCCCATACAATTAGTT TTCCCATACAATTAATTAATAATTCGTCCGCATAAACTAAAACTATTAAAAATTTTT AAGAACCCTTTAAGAATGCGTCCACAGATAACCAAAACCAGACAAGTCCGATATAA CAAAAAGATTTATCCATATAGGCTCTCCTAATTTTAATTTTTAATATTTAATAGTAGA AATAATAGTCTACTTCTACGTTTGACAACAACATGCCCAGAGAAGATTGAATAAA GAAAGAATTAAAATTAATATTGGAAATTTTTTTTGTCAAATAGGCAAAATAGAATGG ATCTACTTTATCTATTTTGCAAGCGTGTCCATGGTCGAGAATTACCCAAACTGCTATG TAATCTTTTACATTACACAGGACAAAGATAATAAGAATTCGCATTATTATGTCAACT TTCTTGCTCAACAGTTTGAATACTATAAACAGTGGAATATTAAGGAAAAAAGTAATC ATATAGATTCTATAGAAATATCCTACTTGATCCGTGTTGATAGGGTTAACTTTTTTAA GATATAAAACTAAAACAATAATAAGAGACTTGAACAAGTCCTTAATATTCCAGTGG TTAAAGGTAAAACTATTAACGAACTCTCTCTTATAAAATCTTTGAGTTTTATAGTCA AAATTGACTAAACAAGTAATCAAAAAGATTACAGGTAGATTTTTAATTATATAGTTA GGATCGGCGACTTGGAACAGTTGAAACGAAGTATACTTTTTCAGACCATGGATACAT ATCCAACCTGCCAGCCAATCTTTGCTAGTCCAAATTGCACAAATAATAGCAGCTCGT GTTACACTGTTGTTCAGCGGGTTCACGATAAATACCGCTATAACAGTGCAAAAAGTC ATAACTTTGAGAAGATTCAAGTAATAATAGCTGAGGATATCTACATATAAATAGGA

GGATTTCATATTATGAAACTTTCGCAAATAATAGAATACCGGCCAGATCTTTACCGC ATCTTTTAGAATACAAAGTAATACTATATCTAATTTAAGCATTTT*TTATTCCCCATTTT TGTCTGATTTTTCCTGGGTTTCATCCTCAGGTTTTTTAAAATTAAAACCACGTATGATCTCGT CGATAATTCCGTACTCTCGGGCTTCTGCCGCGGACATATAACGCACTCTTCTTCCTATATC TCTTATAAATTCAGGAGGTTGCCCCGTTTTTTCCGTAAAAATATCTTGTAGAGATCCACATA TCTGCAATTTTATGTTTGCATCAACTTCATATTCTGAGGGTGGAAGACGCGGATCCAATTTA ATGTTCGGTCGAGAAAGCAGGAACGAACAGTTAGGGAATGCTAAACGTGTCCTTCCCCCA AGCAAGGCATAGATTCCCGGTCCTCCAACCTGCCCGCAGCCTATTGTCTCTATGTTTATGT CTGACCCCTCATTCATGAAATTACAAAGAGTCCTTGAAGCAAGTAGGCTTCCTTTAGAGCA GTTTATAAGAACGCTTGCCGTTTCCGTCGCATCACCATAAATATCAAGGCATATTATCAATT *TTATAATTTTATTAGCGACCTCCATAGTGAGATTTTCCCATAGAAATATAATACCGTTCTTAT* ATTTCTGCCTCATCCTCATCCTCATCCCCATTTTCACTGTCATTAGGTTCATTTCAATTCTT *TCTAACTCTTCAACTTCTTCTATTTCTATAAGGAACTTTAGGGATAATTATTTTAGGCTCTT* TAGGCTCTTTTTCTCCTTCTTCTTCCTTTTACCCTTTTATCCTTTTCATCCCCTTCATCGTC AAAAGGATCGTCAAAAGGATCTGCGTTTATGTAATTTCGATAAAAAATCAT*TTCCTTTTGG TGTTGTAGTTTGTTGTTTTATTTAGGTGTTTTACCTTGGCAAGTCCCCCTTTTTACCTT **GGTAAGTTCCCCTTTAAGTCTTCTATTAAAAAACTTATATTTTCAATTAAAGGACATC** CAATATTTCAATATACCATATTTTATTTTTATACTTTGTCAAAAGAAGCCCGTCCTCA CCCGGGCTAGACGCGTACTTATATGGTATGATTGAATTCTAATGATAATCTGGTTAC AAAAATGGAAAACGAGCAAGCTTGTAAGGTAGATGACTATTGGAGACATTCCTTTT ATTCCTTTATTATTAAAAATATATGGATATATCCATTTTATA

>c37588 g2 i1 - includes the other part of accD, plus three tRNA genes CCCGCAGCTTCCGCCTTGACAGGGAGGTGCTCTGACCAATTGAACTCCAATCCCAGG GAGGCATATATTATGTTTGTCTCAGTTTATAATCTTATGGTATATGGTATATCGGTGA ATTATTGAGCCGAGCTGGATTTGAACCAGCGTAGACATATTGCCAACGAATTTACAG TCCGTCCCCATTAACCACTCGGGCATCGACCCGGTAAGAATAATTTTAATTTTAGA TTTATTGGTAATCACTGATAAAACTCCTTTATTAGTACTCTACCCCCAGGGGAAATT GAATCCCCGCTGCCTCCTTGAAAGAGAGAGATGTCCTGAACCACTAGACGATAGGGGC ACACACTTGCCCGGCTGCTACTTACATCATACTAAGATCATAGTATAAACTTCTTTT GTAACACAAAATATAAAGATATAAAAAAAGGGTAATGATAATAAAGTTAAAGGAAC AATAACCTCTTATCAATTCTATATCTATAAGTATAAGAACAAGAGGTTATATAAATA TTATATAAATATAAATTAAATTAACAAAAACAGTCTATTTCATTTCATTGACTTTA GATATAGCAAAGACAGAATTCTTTTAAAAATACTTACGTGAAAGGATTAGATCGAAGGCGCC CTTTTGGAATAAATATTCGGTCTCTTGGGCACCCTCAGGGACTTCTATATGCAATGTTTCTT CAATTACTCTTCTGCCCGCAAATGCAATGACGGCCCCGGGTTCGGAAATAATTACATTCCC CAACATACCAAAACTAGCTGTCACCCCACCAGTCGTAGGAGATGTAAGGATTGATACATAA AATAGTTTTTATCTAATTTATAAGTATATAATGCACAAGCTATTTTACTCATTTGCATCAAGC TCAAACTCCCTTCTTGCATACGCGCACCCCCAGAAGCACATATTATAACAAGGGGTAGAAA TTCTTTGATAGCATACTCGATCAAACGGGTAATTTTTTCTCCCAACTACGGACCCCATAGTAC CCGCTATAAACTTAAAATCCATAACCCCCAAGTGCTACCGGAATACCCTTTATTTCAGCTATG CCTGTTTGAATAGCATCATTTAAGCCTGTCTCGCTTTGATAATAATTGAGGCGCTCTTCATA *GGTCTTATCCTTTTCTTCTTCTTCTTCTGCATCAAGATGCTCTTGT*