
Appendix A: Details of Scaling in Organisms

This appendix gives the full derivation of the scaling equations. We begin with the total network

resistance discussed in Section 3.1, and its subsequent effect on the energy time product scaling.

Assume that Dl = 3 for 3 dimensional organisms and that λ−H = N−1. Using these values and

simplifying, equation 6 is transformed.
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Case 1: Dr = 3: In this case the exponent is equal to 0, and the S = H + 1 ∝ log(N), and
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, because log(N) in this case grows much more slowly than N , it is reasonable to
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Case 2: Dr < 3: Here (and in subsequent cases) we can use the geometric series to calculate

the exact value of S. In particular
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If we let c = λ(
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Because 4
3
− 4

Dr
< 0 is negative in this case and N is large in practice, cN ( 4

3
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) is small,

and S is proportional to a constant (S ≈ 1
1−c ). This implies that R ∝ N−1. Once again,

equation 4 scales as ∝ l0 + u−10 N2− 2
Dr .

Case 3: Dr > 3: In this case the exponent in S is positive, meaning that S scales directly with

N . Note that c > 1 in this case and we can write
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This means that S ∝ N ( 4
3
− 4

Dr
). This implies that R ∝ N−1S ∝ N ( 1

3
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). This means that

resistance still scales inversely with size, but at a faster rate than if Dr ≤ 3. This implies the

energy time produce scales as ∝ N
4
3
− 4

Dr + N2− 2
Dr . Note that this results in a positive scaling

of R with N if Dr > 12.

6.1 Length, Velocity and Mass Scaling

We determine the scaling of l0, u0 and M following the method presented in Banavar et al. [3].

Specifically, we assume that M ∝ V ∝ Vnet, where V is the volume of the organism, Vnet is

the volume of the network transporting oxygen molecules, and
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We calculate Vnet as:
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Note that s ∝ l0 is the linear distance between oxygen molecules that will be delivered to

the same capillary, allowing narrower vessels when oxygen travels at higher velocity (see [3]

Figure 3 for further explanation). The calculation assumes that 1
Dl

+ 2
Dr
− 1 > 0 which will

always be the case with 2 < Dr < 3, and Dl = 3.

Therefore M ∝ N
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Dr , where Dl = 3. Additionally
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Combining these results with Esys and Tsys in Table 1, we derive how metabolic rate, B

(measured in power), scales with the mass of an organism.
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Appendix B: Details of Scaling in Electronics

In this section we give a detailed analysis of the derivation of the scaling of the network capac-

itance and network latency discussed in Section 3.3.

7.1 Capacitance

Recall that Dl = 2 for 2 dimensional computer chips and that λ−H = N−1. We can then

calculate capacitance as:
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Similar to how we handled organsims we are interested in whether the exponent 1
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+ 1
Dw
−1

is positive or negative.

Let the summand S =
∑H
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Case 1: Dr = Dl
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: In this case the exponent is equal to 0, and the S = H + 1 ∝ log(N), and

C ∝ log(N)N
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Dl , because log(N) in this case grows much more slowly than N1− 1
Dl and we

know Dl = 2 for 2 dimensional chips, it is reasonable to conclude that C ∝ N
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Case 2: Dr >
Dl
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: Here (and in subsequent cases) we can use the geometric series to calculate

the exact value of S, using a similar approach to 6. In this case the exponent is negative and S

is a small constant, leaving C ∝ N
1
2

Case 3: Dr <
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: In this case the exponent in S is positive, meaning that S scales directly

with N . Now the summand contributes an N
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1
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7.2 Network Delay

Recall that we wish to determine the network latency L which is defined as:
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Li will scale differently depending on the relative values of Dr and Dl.

Case 1: Dr > Dl: In this case the fraction in the exponent is greater than 0 and the latency will

be highest when i = H , resulting in L ∝ N
2
Dl
− 2

Dr .

Case 2: Dr < Dl: In this case the exponent is negative and the highest latency occurs at the

bottom of the network i = 0, leaving L ∝ l20
r20
∝ N0

Case 3: Dr = Dl: In this case the exponent is 0 and there is equal latency at all levels and

L ∝ N0.

7.3 Chip Data

We obtain data on chip power usage and throughput from several third party sources. For power

output we consulted two web archives of over 523 chips listing power consumption and tran-

sistor count [48, 30]. When possible the figures were cross checked with data directly from the

manufacturer. For throughput data, we consulted a combination of third party sources, starting

with a list published on wikipedia [57]. Each source for the data was consulted independently

and verified before inclusion in the dataset. Additional throughput data was obtained from

benchmarks performed by online technology publication Tom’s Hardware [24]. The data can

be found in the supplementary information.


