Supplementary Material

A novel alignment-free method for detection of lateral genetic transfer based on TF-IDF

Yingnan Cong Yao-ban Chan Mark A. Ragan

1 Pseudocode for the TF-IDF algorithm

```
1.
    Begin
2.
        Recognise all the different k-mers of size k and label as 1, 2, ..., U.
        // Compute Matrix M
3.
4.
        \mathbf{M} \leftarrow Zeros(n \times U)
                                        // Zeros returns an all-zero matrix of the specified dimensions.
5.
        For each sequence i do
           For each k-mer \kappa in sequence i do
6.
7.
              \mathbf{M}(i,L(\kappa)) \leftarrow \mathbf{M}(i,L(\kappa)) + 1
                                                             // L(\kappa) returns the label of k-mer \kappa.
           End For
8.
        End For
9.
        // Compute Matrix R
10.
11.
        R \leftarrow Zeros(n \times m)
12.
        For each sequence i do
13.
           For each group j except \Theta(i) do
                                                             // \Theta(i) returns the group of sequence i.
14.
               For each sequence i' in group j do
15.
                   \mathbf{R}(i, j) \leftarrow \mathbf{R}(i, j) + \mathbf{\Omega}(i, i')
                                                             // \Omega(i, i') returns the number of
16.
                                                    // common elements between sequences i and i'.
17.
              End For
18.
           End For
19.
        End For
20.
                                        // avg(\mathbf{R}) returns the average value of elements of \mathbf{R}.
        t \leftarrow avg(\mathbf{R})
21.
        // Compute \tau
        \tau \leftarrow Zeros(m)
22.
        For each group j do
23.
                                         // \mathbf{M}(j, \circ) returns the rows that represent the sequences in j
24.
           K \leftarrow \mathbf{M}(j, \circ)
25.
           \tau(j) \leftarrow numel(K)/numel(unique(K))
        End For
26.
27.
        // Detect LGTs
28.
        (i, j, v) \leftarrow Fmax(\mathbf{R})
                                        // Fmax(R) returns the maximum value of R as v, with
29.
                                         // corresponding sequence i and group j.
30.
        While v > t
31.
          // Cut sequence i
32.
           \boldsymbol{\omega} \leftarrow Zeros(m)
33.
           For each k-mer \kappa in sequence i do
34.
              \omega(i) \leftarrow ismember(\kappa, j)
                                                   // ismember(\kappa,j) returns 1 if \kappa exists in at
35.
                                                   Il least one sequence of species j, 0 otherwise.
36.
           End For
           TagS \leftarrow 0
37.
38.
           TagE \leftarrow 0
39.
           Intrpt \leftarrow 0
40.
           For each element \zeta (p-th) in \omega do
41.
              If ζ=1
42.
                  If TagS = 0
43.
                      TagS \leftarrow p
44.
                      TagE \leftarrow p
45.
                  Else
46.
                      TagE \leftarrow p
47.
                  End If
48.
                  Intrpt \leftarrow 0
49.
              Else
50.
                  If Tag \neq 0
51.
                      Intrpt \leftarrow Intrpt + 1
52.
                      If Intrpt > 2 \times k
53.
                         Add (TagS, TagE) to f
                                                                       II f denotes segments of interest
```

54.	$TagS \leftarrow 0$
55.	End If
56.	End If
57.	End If
58.	End For
59.	For each segment ϕ in f do
60.	$\varepsilon \leftarrow 0$
61.	For each sequence i' in group $\vartheta(i)$ do
62.	For each k-mer κ in ϕ do
63.	$\varepsilon \leftarrow \varepsilon + \mathbf{M}(i', L(\kappa))$
64.	End For
65.	End For
66.	If $\varepsilon < \Gamma(i) \times l$ // l denotes the length of the fragment, i.e., TagE – TagS
67.	Add f as a LGT.
68.	// Update Matrix R
69.	$\mathbf{R}(i,j) \leftarrow 0$
70.	End If
71.	End For
72.	$(i, j, v) \leftarrow \mathbf{Fmax}(\mathbf{R})$
73.	End While
74.	End Begin

2 Details of our simulation

The simulation process is as follows:

Step 1: Generate groups

- Generate one random sequence as ancestor of all sequences.
- Set a phylogenetic tree to generate different groups. Here, we use a 4-level full binary tree, thus generating 16 sequences, each of which will become the ancestor of a group. The branch lengths of the tree are identical and control the variation between groups.

Step 2: Generate individuals in each group

- Pick one sequence generated in last step as the ancestor of a group.
- Set a phylogenetic tree to generate individuals. As with the last step, we use a 4-level full binary tree to generate 16 individuals. The branch lengths of the tree are identical and control the variation within groups.
- Repeat the previous two lines until all sequences generated in Step 1 have been used.

256 sequences are generated in this step.

Step 3: Add LGT events

- Set the total number of LGT events. We use 20 in our experiments.
- Determine the distribution of LGT events. We take LGTs only to group 1 from other groups. The LGT donors are distributed evenly (5 each) among the following four sets: group 2, groups 3 and 4, groups 5 to 8, and groups 9 to 16.

Step 4: Evolve post-LGT

- Set a 2-level full binary tree. The branch lengths are identical and control the variation post-LGT.
- Let every sequence evolve following this tree, and add deletion simultaneously to get 4 descendants.
- Randomly pick one descendant from each sequence.

This generates a final simulation dataset with 256 sequences.

Parameters

Variation between = 0.01, 0.05, 0.1, 0.15, 0.2, within = 0.01, post_LGT = 0, deletion = 0, *k*=40 Variation between = 0.1, within = 0.001, 0.005, 0.01, 0.015, post_LGT = 0, deletion = 0, *k*=40 Variation between = 0.1, within = 0.01, post_LGT = 0, 0.02, 0.04, 0.06, 0.08, 0.1, deletion = 0, 0.025, 0.05, 0.075, 0.1, 0.125, *k* = 40

 $\pi_T = \pi_c = \pi_A = \pi_G = 0.25, \kappa = 2$ under HYK85 model.

 $\pi_T = 0.291, \pi_c = 0.275, \pi_A = 0.304, \pi_G = 0.130, \kappa = 2$ under F84 model.

Simulated	LGT	Inferred I	Inferred LGT		Donor
				(Sequence)	(Group)
Start	Length	Start	Length		
297	95	297	97	1	16
182	56	182	56	4	16
786	177	786	177	7	15
614	170	614	172	4	15
532	142	532	143	15	11
552	131	552	131	7	6
157	50	157	50	7	8
739	50	739	50	1	5
722	51	722	53	13	6
92	50	92	53	5	7
445	95	444	96	6	3
112	50	111	52	3	4
163	115	161	118	14	4
62	167	62	169	15	3
585	206	585	206	2	3
662	134	662	215	11	2
562	66	562	66	3	2
525	127	525	127	1	2
39	96	38	98	1	2
58	117			2	2

3 Coordinates of simulated and inferred LGT regions in Group 1 for Figure 2

4 Performance of TF-IDF under the F84 model (variation between and within groups)

Here we replicate the TF-IDF analyses shown in Figures 3 and 4, under the F84 evolution model.

5 Full comparison of recall of TF-IDF and ALFY for variation within groups

6 Performance of TF-IDF with variation post-LGT and deletion with different sequence lengths.

Performance on variation post-LGT and deletion (sequence length = 100,000 nt)

Deletion

Performance on variation post-LGT and deletion (sequence length = 30,000 nt)

Performance on variation post-LGT and deletion (sequence length = 10,000 nt)

Performance on variation post-LGT and deletion (sequence length = 3,000 nt)

Performance on variation post-LGT and deletion (sequence length = 1,000 nt)

7 Supplementary Table S1. Detection of lateral regions in *Staphylococcus aureus* TW20 by TF-IDF, at *k* = 30 and *k* = 40

Annotated functions of proteins fully or partially contained within an LGT region of *Staphylococcus aureus* TW20, as discovered in this dataset by TF-IDF (k = 40). The first row is the length range of LGT segments selected for analysis.

		2000- 3999 nt	4000- 5999nt	6000+ nt	2000+ nt	2000+ nt
Annotated	Annotated	Number	Number	Number	Number	%
Tunction	in genome					
adhaalan /	4	0	0	2	2	50
adhesion /	4	0	0	Z	Z	50
autiportor	10	1	0	1	2	20
cancular	10	0	0	1	16	100
nolvenecharido	10	0	0	10	10	100
cansule	3	0	0	3	3	100
coagulase	1	0	0	1	1	100
offlux	1	1	0	1	2	50
integrase	9	0	1	0	1	11
lactamase	8	0	0	5	5	62
lysine	13	0	0	1	1	8
metallonroteinase	3	1	0	1	2	66
/metallopentidase	5	1	0	1	2	00
penicillin	6	1	0	3	4	66
permease	45	8	5	18	31	69
phage	249	12	14	0	26	11
recombinase	6	0	0	0	0	0
resistance protein	9	0	1	1	2	22
restriction	9	0	0	3	3	33
siderophore	5	0	0	5	5	100
surface protein	5	1	1	4	6	100
toxin	19	1	0	0	1	5
transport protein	28	3	1	7	11	39
transporter	98	14	3	28	45	46
transposase	30	0	2	2	4	13
uptake	4	1	1	0	2	50
ribosomal protein	60	2	1	5	8	13
polymerase (DNA/RNA)	15	5	2	1	8	53

Annotated functions of proteins fully or partially contained within an LGT region of *Staphylococcus aureus* TW20, as discovered in this dataset by TF-IDF (k = 30). The first row is the length range of LGT segments selected for analysis.

		2000- 3999 nt	4000- 6499 nt	6500+ nt	2000+ nt	2000+ nt
Annotated	Annotated	Number	Number	Number	Number	%
function ¹	in genome					
adhesion /	4	0	0	4	4	100
adhesion						
antiporter	10	7	0	1	8	80
capsular	16	0	0	16	16	100
polysaccharide						
capsule	3	0	0	3	3	100
coagulase	1	0	0	1	1	100
efflux	4	1	1	1	3	75
integrase	9	2	1	0	3	33
lactamase	8	1	0	4	5	62
lysine	13	2	0	3	5	38
metalloproteinase	3	2	0	1	3	100
/metallopeptidase						
penicillin	6	3	2	2	$(7)^2$	100
permease	45	11	7	15	33	73
phage	249	13	17	0	30	12
recombinase	6	2	0	0	2	33
resistance protein	9	1	0	1	2	22
restriction	9	0	0	3	3	33
siderophore	5	0	0	5	5	100
surface protein	5	0	1	2	3	60
toxin	19	1	0	0	1	5
transport protein	28	8	1	11	20	71
transporter	98	26	11	22	59	60
transposase	30	4	0	2	6	20
uptake	4	1	1	1	3	75
ribosomal protein	60	13	9	32	54	90
polymerase (DNA/RNA)	15	5	2	5	12	80

Notes:

1. As annotated in GenBank NC_017331.1

2. The 5' and 3' ends of the penicillin binding protein 2B gene fall into different inferred LGT regions.