Exogenous fatty acids protect *Enterococcus faecalis* from daptomycin induced membrane stress independent of the response regulator LiaR

John R. Harp¹, Holly E. Saito¹, Allen K. Bourdon², Jinnethe Reyes³, Cesar A. Arias^{3,4}, Shawn R. Campagna², and Elizabeth M. Fozo¹*

Author Affiliations

¹Department of Microbiology, University of Tennessee, Knoxville, TN, USA

²Department of Chemistry, University of Tennessee, Knoxville, TN, USA

³Department of Internal Medicine, Division of Infectious Diseases and Department of

Microbiology and Molecular Genetics, University of Texas Medical School at Houston, TX,

USA

⁴Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics Universidad El Bosque, Bogotá, Colombia

*To whom correspondence should be addressed: Tel.: +1 865 974 4028; Fax: +1 865 974 4007; Email: efozo@utk.edu

Running title: Fatty acids protect LiaR-deficient E. faecalis from damage

SUPPLEMENTAL MATERIALS AND METHODS

For supplemental materials and methods, refer to materials and methods in the main text.

Proton Nuclear Magnetic Resonance (¹H NMR) Profile

1.23 mM Daptomycin: ¹H NMR (500 MHz, Methanol- d_4) δ 7.65 (dd, J = 8.3, 1.5 Hz, 1H), 7.54 (dt, J = 7.9, 1.0 Hz, 1H), 7.32 (dd, J = 8.2, 0.9 Hz, 1H), 7.21 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.15 (s, 1H), 7.07 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 6.98 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.70 (dd, J = 8.5, 1.1 Hz, 1H), 6.54 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 5.45 – 5.39 (m, 1H), 4.72 (t, J = 6.7 Hz, 1H), 4.64 (t, J = 6.7 Hz, 1H), 4.63 – 4.58 (m, 2H), 4.54 (d, J = 3.4 Hz, 1H), 3.99 (d, J = 4.3 Hz, 1H), 4.48 (t, J = 5.4 Hz, 1H), 4.36 – 4.30 (m, 1H), 4.28 (t, J = 7.1 Hz, 1H), 3.99 (d, J = 4.3 Hz, 1H), 3.94 (d, J = 11.7 Hz, 2H), 3.86 (qd, J = 11.0, 9.9, 4.2 Hz, 3H), 3.51 (q, J = 7.0, 4.6 Hz, 1H), 3.24 (dd, J = 14.3, 7.8 Hz, 1H), 3.12 (dd, J = 14.3, 7.3 Hz, 1H), 2.98 – 2.79 (m, 5H), 2.74 (dt, J = 15.9, 7.5 Hz, 3H), 2.69 – 2.58 (m, 3H), 2.40 (dd, J = 15.6, 6.5 Hz, 1H), 2.30 – 2.12 (m, 5H), 1.97 (d, J = 0.7 Hz, 1H), 1.91 – 1.76 (m, 2H), 1.72 (q, J = 7.6 Hz, 2H), 1.50 (q, J = 7.6 Hz, 2H), 1.38 – 1.27 (m, 9H), 1.27 – 1.14 (m, 16H), 0.97 (d, J = 6.9 Hz, 3H), 0.89 (t, J = 7.0 Hz, 4H).

50 mM Oleic Acid: ¹H NMR (500 MHz, Methanol-*d*₄) δ 5.34 (ddd, *J* = 5.7, 4.4, 1.1 Hz, 2H), 2.27 (t, *J* = 7.4 Hz, 2H), 2.03 (q, *J* = 5.8 Hz, 4H), 1.59 (p, *J* = 7.3, 7.3 Hz, 2H), 1.39 – 1.24 (m, 20H), 0.89 (t, *J* = 6.9 Hz, 3H).

1.20 mM Daptomycin and 1.20 mM Oleic Acid: ¹H NMR (500 MHz, Methanol-*d*₄) δ 7.66 (d, *J* = 8.1 Hz, 1H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.21 (t, *J* = 8.0 Hz, 1H), 7.14 (s, 1H), 7.07 (t, *J* = 7.5 Hz, 1H), 6.98 (t, *J* = 7.5 Hz, 1H), 6.70 (d, *J* = 8.4 Hz, 1H), 6.54 (t, *J* = 7.6 Hz, 1H), 5.46 – 5.39 (m, 1H), 5.34 (t, *J* = 4.9 Hz, 1H), 4.70 (t, *J* = 6.7 Hz, 1H), 4.67 – 4.52 (m,

4H), 4.47 (s, 1H), 4.37 – 4.26 (m, 2H), 4.06 – 3.97 (m, 1H), 3.94 (d, J = 15.3 Hz, 2H), 3.88 (d, J = 16.6 Hz, 3H), 3.52 (s, 2H), 3.44 (p, J = 1.6 Hz, 2H), 3.16 (p, J = 1.7 Hz, 2H), 3.12 (dd, J = 14.4, 7.3 Hz, 1H), 2.97 – 2.91 (m, 2H), 2.89 – 2.66 (m, 4H), 2.66 – 2.58 (m, 2H), 2.39 (dd, J = 15.5, 6.6 Hz, 1H), 2.33 – 2.13 (m, 6H), 2.06 – 1.99 (m, 2H), 1.92 – 1.78 (m, 1H), 1.72 (q, J = 7.5 Hz, 2H), 1.65 – 1.56 (m, 1H), 1.52 – 1.45 (m, 2H), 1.38 – 1.27 (m, 20H), 1.23 (dd, J = 16.8, 5.5 Hz, 15H), 0.98 (d, J = 6.9 Hz, 4H), 0.89 (td, J = 6.9, 5.0 Hz, 5H).

1.10 mM Daptomycin and 5.50 mM Oleic Acid: ¹H NMR (500 MHz, Methanol- d_4) 8 7.66 (d, J = 8.1 Hz, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 7.24 – 7.18 (t, J = 8.0 Hz, 1H), 7.14 (s, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.98 (t, J = 7.5 Hz 1H), 6.70 (d, J = 8.1 Hz, 1H), 6.54 (t, J = 7.6 Hz, 1H), 5.46 – 5.39 (m, 1H), 5.34 (ddd, J = 5.6, 4.4, 1.1 Hz, 10H), 4.71 (m, 1H), 4.62 (t, J = 6.4 Hz, 1H), 4.54 (s, 2H), 4.47 (s, 1H), 4.37 – 4.26 (m, 1H), 4.02 (d, J = 16.2 Hz, 1H), 3.94 (d, J = 15.0 Hz, 2H), 3.85 (d, J = 15.8 Hz, 3H), 3.52 (s, 2H), 3.44 (p, J = 1.7 Hz, 2H), 3.16 (p, J = 1.6 Hz, 2H), 2.94 (s, 3H), 2.89 – 2.67 (m, 9H), 2.63 (d, J = 15.3 Hz, 2H), 2.40 (dd, J = 15.5, 6.4 Hz, 1H), 2.25 (t, J = 7.5 Hz, 10H), 2.18 (t, J = 7.6 Hz, 3H), 2.07 – 1.99 (m, 20H), 1.76 – 1.69 (m, 2H), 1.64 – 1.55 (m, 10H), 1.49 (s, 3H), 1.38 – 1.27 (m, 100H), 1.27 – 1.19 (m, 12H), 0.98 (d, J = 6.9 Hz, 4H), 0.89 (td, J = 6.9 S.3 Hz, 18H).

1.21 mM Daptomycin and 1.64 mM Calcium Chloride:¹H NMR (500 MHz, Methanol-d₄) δ 7.65
(dd, J = 8.3, 1.5 Hz, 1H), 7.53 (s, 1H), 7.30 (s, 1H), 7.24 (s, 1H), 7.15 (s, 1H), 7.07 (t, J = 7.6 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.75 (d, J = 10.6 Hz, 1H), 6.58 (s, 1H), 5.45 - 5.39 (m, 1H), 4.72 (t, J = 6.7 Hz, 1H), 4.64 (t, J = 6.7 Hz, 1H), 4.63 - 4.58 (m, 2H), 4.54 (d, J = 3.4 Hz, 1H), 4.52 (d, J = 7.6 Hz, 1H), 4.49 (s, 1H), 4.36 - 4.30 (m, 1H), 4.29 (s, 1H), 4.02 (s, 1H), 3.94 (m, 2H), 3.86

(m, 3H), 3.53 (m, 1H), 3.31 (dd, J = 7.3, 2.2 Hz, 1H), 3.12 (m, 1H), 2.96-2.84 (s, 5H), 2.77 (s, 3H), 2.69 – 2.58 (m, 3H), 2.38 (d, J = 18.0 Hz, 1H), 2.30 – 2.12 (m, 5H), 1.95 (s, 1H), 1.77 (s, 2H), 1.72 (m, 2H), 1.45 (s, 2H), 1.33 (m, 9H), 1.29 – 1.13 (m, 16H), 0.95 (s, 3H), 0.89 (t, J = 7.1 Hz, 4H).

1.20 mM Daptomycin, 1.60 mM Calcium Chloride, and 1.20 mM Oleic Acid: ¹H NMR (500 MHz, Methanol-d₄) δ 7.71 (s, 1H), 7.53 (s, 1H), 7.30 (s, 1H), 7.24 (s, 1H), 7.07 (t, J = 7.6 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.74 (s, 1H), 6.58 (s, 1H), 5.46 – 5.39 (m, 1H), 5.34 (m, 1H), 4.70 (t, J = 6.7 Hz, 1H), 4.67 – 4.52 (m, 4H), 4.49 (s, 1H), 4.29 (s, 2H), 4.01 – 3.92 (m, 3H), 3.79 (s, 3H), 3.54 – 3.12 (m, 7H), 2.96 (s, 2H), 2.87 – 2.80 (m, 4H), 2.66 – 2.58 (m, 2H), 2.38 (d, J = 18.2 Hz, 1H), 2.34 – 2.13 (m, 6H), 2.06 – 1.97 (m, 2H), 1.94 – 1.78 (m, 1H), 1.77 (s, 2H), 1.60 – 1.45 (m, 3H), 1.35 – 1.25 (m, 20H), 1.24 (s, 15H), 1.19 (s, 2H), 1.13 (s, 2H), 0.89 (t, J = 7.1 Hz, 4H).

1.05 mM Daptomycin, 1.45 mM Calcium Chloride, and 5.8 mM Oleic Acid: ¹H NMR (500 MHz, Methanol- d_4) δ 7.70 (s, 1H), 7.53 (s, 1H), 7.30 (s, 1H), 7.24 (s, 1H), 7.14 (s, 1H), 7.07 (t, J = 7.6 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.74 (s, 1H), 6.58 (s, 1H), 5.34 (ddd, J = 5.7, 4.5, 1.1 Hz, 10H), 4.71 (m, 1H), 4.63 (t, J = 6.4 Hz, 1H), 4.54 (m, 2H), 4.48 (s, 1H), 4.29 (s, 1H), 4.02 (d, J = 16.5 Hz, 1H), 3.79 – 3.40 (m, 7H), 3.21 (td, J = 5.0, 2.4 Hz, 2H), 2.96 (s, 3H), 2.87 – 2.62 (m, 11H), 2.40 (s, 1H), 2.27 – 2.11 (m, 10H), 2.03 – 1.95 (m, 20H), 1.77 (s, 2H), 1.63 – 1.56 (m, 10H), 1.45 (s, 2H), 1.36 – 1.26 (m, 100H), 1.24 (s, 15H), 1.19 (s, 3H), 1.13 (s, 2H), 0.95 (s, 4H), 0.89 (td, J = 7.0, 4.8 Hz, 15H).

	Percent of total membrane content for indicated strain and supplement $(avg \pm SD)^a$		
Strain	WT	$\Delta liaR$	$\Delta liaR::liaR$
Fatty Acid	Ethanol ^b	Ethanol ^b	Ethanol ^b
C _{12:0}	1.4 ± 1.1	1.3 ± 0.9	0.9 ± 0.1
C _{14:0}	4.6 ± 0.4	4.2 ± 0.2	6.4 ± 0.1
C _{16:1}	5.7 ± 0.3	5.5 ± 0.8	8.7 ± 0.1
C _{16:0}	39.8 ± 0.5	42.7 ± 1.8	37.5 ± 0.1
C _{17:1}	ND	ND	ND
С17:0 2ОН	7.5 ± 1.0	5.3 ± 3.1	5.9 ± 0.3
C _{18:1 cis 9}	0.3 ± 0.6	0.7 ± 1.3	0.6 ± 0.5
C _{18:1 cis 11}	34.0 ± 1.0	32.6 ± 1.1	35.7 ± 0.1
C _{18:0}	5.6 ± 0.1	6.9 ± 0.8	3.2 ± 0.1
C _{20:0}	ND	ND	ND
C _{18:2}	ND	ND	ND
Others ^c	0.7 ± 0.3	0.4 ± 0.4	0.7 ± 0.2
Sat:Unsat	1.3 ± 1.0	1.4 ± 1.1	1.1 ± 0.6
C_{10} - C_{17} : C_{18} - C_{20} ^d	1.5 ± 0.3	1.5 ± 0.03	1.5 ± 0.1

SUPPLEMENTARY TABLE S1. Membrane analysis of wild type and mutant strains during log phase growth.

Membrane content determined by GC-FAME analysis by Microbial ID, Inc. Values represent average and standard deviations of three independent cultures. ND indicates fatty acid was not detected.

b Ethanol solvent control was added to a final concentration of 0.2%.

С Others indicates fatty acids comprised <1% of the total membrane content.

^d Total fatty acid length ratios including both saturated and unsaturated fatty acids.

	Percent of total membrane content for indicated strain and supplement $(avg \pm SD)^a$		
Strain	S613	R712	
Fatty Acid	Ethanol ^b	Ethanol ^b	
C _{12:0}	1.0 ± 0.0	0.7 ± 0.1	
C _{14:0}	5.5 ± 0.1	3.8 ± 0.2	
C _{16:1}	8.0 ± 0.1	7.8 ± 0.4	
C _{16:0}	36.4 ± 0.2	29.3 ± 1.0	
C _{17:0 2OH}	4.4 ± 0.3	4.5 ± 3.9	
C _{18:1 cis 9}	0.9 ± 0.1	ND	
C _{18:1 cis 11}	39.1 ± 0.4	50.0 ± 2.1	
C _{18:0}	3.8 ± 0.1	3.5 ± 0.1	
C _{20:0}	ND	ND	
C _{18:2}	ND	ND	
C _{20:4}	ND	ND	
Others ^c	0.4 ± 0.7	ND	
Sat:Unsat	1.0 ± 0.4	0.6 ± 0.6	
C_{10} - C_{17} : C_{18} - C_{20} ^d	1.3 ± 0.02	0.9 ± 0.08	

SUPPLEMENTARY TABLE S2. Membrane fatty acid analysis of clinical isolates during log phase growth.

^{*a*} Membrane content determined by GC-FAME analysis by Microbial ID, Inc. Values represent average and standard deviations of three independent cultures. ND indicates fatty acid was not detected.

Ethanol solvent control was added at a final concentration of 0.2%.

^c Others indicates fatty acids comprised <1% of the total membrane content.

^d Total fatty acid length ratios including both saturated and unsaturated fatty acids.

Supplemental Fig S1. Mixing 1:1 daptomycin and oleic acid reveals no observable interaction. Visual comparison of three individual ¹H NMR spectra, between 0.0 to 10.0 ppm, shows no interaction between daptomycin and oleic acid. The top spectra (blue) represents a 1mM solution of oleic acid, the middle spectra (black) represents a 340µM solution of daptomycin, and the bottom spectra (red) represents a 1:1 mixture of daptomycin:oleic acid. All solutions were made using methanol-d4, and spectra were generated using a VNMRS 500 MHz instrument. Spectra were superimposed using MestReNova software.

Supplemental Fig S2. Excess oleic acid reveals no observable interaction when mixed with daptomycin. The overlap of three individual ¹H NMR spectra, between 0.0 to 10.0 ppm, shows no spatial interaction with daptomycin in the prescence of excess oleic acid. The top spectra (blue) represents a 1mM solution of oleic acid, the middle spectra (black) represents a 340 μ M solution of daptomycin, and the bottom spectra (red) represents a 1:5 mixture of daptomycin:oleic acid. All solutions were made using methanol-d4, and spectra were generated using a VNMRS 500 MHz instrument. Spectra were superimposed using MestReNova software.