1 Supplementary Methods

2

One-step growth and phage adsorption rate tests: The one-step growth curve and phage 3 adsorption rate tests for phage $B\phi$ -C62 were performed as described previously with some 45 modifications (1, 2). To evaluate the one-step growth curve of phage $B\phi$ -C62, bacterial cells were cultured in 5 ml LB medium (OD₆₀₀ = 0.2, 10^5 CFU/ml) for 2 h at 37°C and added to 6 7 phage solutions at a multiplicity of infection (MOI) of 0.001. After incubation for 5 min, free 8 phages in the mixture were removed by centrifugation, and the pellet was resuspended in 5 ml fresh LB medium. Triplicate culture samples (100 µl) were collected at 5 min intervals for 9 the first 30 min and at 10 min intervals for the next 100 min. Samples were immediately 10 11 examined for phage titration.

To estimate the adsorption rate, host bacteria were grown in LB broth $(OD_{600} = 0.5, 10^8$ CFU/ml) for 4 h at 37°C to the exponential phase and mixed with the phage solution at an MOI of 0.01. Mixed samples (100 µl) were collected at 1, 2, 3, 4, 5, and 10 min. After immediate centrifugation, the supernatant fluids were used to determine the titer of unabsorbed phages using the double layer agar plate method.

17

Thermal and pH stability tests: Evaluation of thermal and pH phage stability was performed as described previously with some modifications (3). Concentrated phage samples (10^9 PFU/ml) were incubated at the chosen temperature (RT, 37, 40, 50, 60, or 70°C) for 3, 6, or 9 h. Phage samples were also incubated at various pH levels (pH 4, 5, 6, 7, 7.5, 8, 9, and 10) for 1, 3, or 5 days and 1 and 10 months. The percentage of phage titer (PFU/ml) was compared to that of the control samples (4°C, pH 7.5).

24

25 **Cytokine analysis:** Cytokine concentration (TNF-α, IL-6) in lung lysates and serum samples

26	was	s determined in duplicate using the commercial DuoSet ELISA kit (R&D Systems, MN,
27	US	A) according to the manufacturer's recommendations.
28		
29	Suj	pplementary References
30		
31	1.	Lin NT, Chiou PY, Chang KC, Chen LK, Lai MJ. 2010. Isolation and characterization
32		of phi AB2: a novel bacteriophage of Acinetobacter baumannii. Res Microbiol 161:308-
33		314.
34	2.	Karumidze N, Kusradze I, Rigvava S, Goderdzishvili M, Rajakumar K, Alavidze Z.
35		2013. Isolation and characterisation of lytic bacteriophages of Klebsiella pneumoniae
36		and Klebsiella oxytoca. Curr Microbiol 66:251-258.
37	3.	Yang H, Liang L, Lin S, Jia S. 2010. Isolation and characterization of a virulent
38		bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol 10:131.
39		
40		
41		
42		
10		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		

53 Supplementary Figures and Table

Fig. S1. PFGE pattern of XbaI-restricted chromosomal DNA from 16 clinical A. baumannii isolates. Each column indicates dendrogram analysis by InfoQuest FP software (version 4.50, Bio-Rad Laboratories, Inc), PFGE pattern using a CHEF-DR II system (Bio-Rad, Hercules, CA) and identical number of collected isolates. (electrophoresis conditions: 1% agarose; 6 V/cm; high, 10 s; low, 3 s; in a linear manner for 20 h). Percent similarity is indicated on the scale.

Fig. S3. One-step growth curve and adsorption rate of *A. baumannii* phage B\$\operp\$-C62. One-step
growth kinetics (a) and the adsorption rate (b) of phage B\$\operp\$-C62 were evaluated using the *A. baumannii* YMC13/01/C62 host strain. The figure indicates alatent period of approximately
20 min and a burst size of 76 PFU/ml after 80 min (a) and shows that 80% of phages were
adsorbed onto the host bacteria at 1 min (b). Each time point is the mean of three independent
experiments, and the data are shown as the mean ± standard deviation.

Fig. S4. The stability of *A. baumannii* phage B ϕ -C62 at various temperature and pH values. Phage were evaluated for stability kinetics at RT (25°C), 37°C, 40°C, 50°C, 60°C, and 70°C for 9 h (a) and at different pH values (between pH 4 to pH 10) for 10 months (b) at the indicated time points. These values are represented as the percentage of surviving phages at each experimental point. Phage B ϕ -C62 exhibited high stability at RT and 37°C for up to 9 h (a) and at pH 7 and 7.5 for10 months (b). The results shown are the mean ± standard deviation of triplicate experiments.

Fig. S5. Circular map of the *A. baumannii* phage $B\phi$ -C62 genome prepared using DNAPlotter software. The putative ORFs along with transcription direction are represented by arrows, and the functional proteins, GC content, and GC skew are indicated by different colors.

Fig. S6. Cytokine levels and histopathology changes in mouse lungs in intranasally (*A. baumannii* YMC13/01/C62)-infected mice or phage B ϕ -C62-treated mice. TNF- α (a) and IL-6 (b) levels were evaluated using ELISA. One-way ANOVA with Turkey's multiple comparisons test was used to compare cytokine levels. Significant differences (****p < 0.0001) were observed at each time point.

Host stain	Amikacin	Ampicillin/ Sulbactam	Ceftazidime	Colistin	Cefepime	Cefotaxime	Gentamicin	Imipenem	Levofloxacin	Meropenem	Minocycline	Piperacillin/ Tazobactam	Cotrimoxazole	Tigecycline	Infectivity of B¢-C62 ^b
YMC13/02/R323	≥64 (R)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16(R)	≥8 (R)	≥16 (R)	≤4 (S)	≥128 (R)	≥320 (R)	≤1 (S)	-
YMC13/02/R291	≥64 (R)	≤16 (I)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16(R)	≥8 (R)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/B1502	≥64 (R)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16(R)	≥8 (R)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≤1 (S)	-
YMC13/02/B1178	≤8 (S)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≤2 (S)	≥16(R)	≥8 (R)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≤1 (S)	-
YMC13/02/R931	≥64 (R)	≤8 (S)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16(R)	≤4 (I)	≥16 (R)	≤4 (S)	≥128 (R)	≥320 (R)	≤1 (S)	-
YMC13/02/R401	≥64 (R)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16(R)	≥8 (R)	≥16 (R)	≤8 (I)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/R426	≥64 (R)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≤1 (S)	≥16(R)	≥8 (R)	≥16 (R)	≤8 (I)	≥128 (R)	≥320 (R)	≤1 (S)	-
YMC13/02/R427	≥64 (R)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≤1 (S)	≥16(R)	≥8 (R)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≤1 (S)	-
YMC13/02/R464	≥64 (R)	≤8 (S)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16(R)	≤4 (I)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≤1 (S)	-
YMC13/02/U501	≥64 (R)	≤16 (I)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16(R)	≥8 (R)	≥16 (R)	≤8 (I)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/R319	≥64 (R)	≤8 (S)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16(R)	≥8 (R)	≥16 (R)	≤8 (I)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/P148	≥64 (R)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16(R)	≥8 (R)	≥16 (R)	≤8 (I)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/P177	≥64 (R)	≤8 (S)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16(R)	≥8 (R)	≥16 (R)	≤8 (I)	≥128 (R)	≥320 (R)	≥8 (R)	-
YMC13/02/B2199	≥64 (R)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16(R)	≥8 (R)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/P180	≥64 (R)	≤16 (I)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16(R)	≥8 (R)	≥16 (R)	≤8 (I)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/P335	≥64 (R)	≤16 (I)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16(R)	≥8 (R)	≥16 (R)	≤8 (I)	≥128 (R)	≥320 (R)	≤2 (S)	-

Table S1. Antibiotic resistance profiles of A. baumannii strains used in this study^a and host spectrum of A. baumannii phage B ϕ -C62

^a, Antibiotic resistance was determined by the disk diffusion test method.

'Susceptible', 'Intermediate' and 'Resistant' are abbreviated as 'S', 'I' and 'R'.

^b, Phage activity against collected bacteria: -, No plaque.

Table S1. (Continued) Antibiotic resistance profiles of A. baumannii strains used in this study^a and host spectrum of A. baumannii phage B_φ-

C62

Host stain	Amikacin	Ampicillin/ Sulbactam	Ceftazidime	Colistin	Cefepime	Cefotaxime	Gentamicin	Imipenem	Levofloxacin	Meropenem	Minocycline	Piperacillin/ Tazobactam	Cotrimoxazole	Tigecycline	Infectivity of Bø-C62 ^b
YMC13/02/B2343	≥64 (R)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16 (R)	≥8 (R)	≥16(R)	≤1 (S)	≥128 (R)	≥320 (R)	≥8 (R)	-
YMC13/02/R796	≥64 (R)	≤16 (I)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/R808	≥64 (R)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16 (R)	≤4 (I)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/R855	≤8 (S)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≤1 (S)	≥16 (R)	≥8 (R)	≥16(R)	≤1 (S)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/R869	≥64 (R)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16 (R)	≥8 (R)	≥16(R)	≤1 (S)	≥128 (R)	≥320 (R)	≤1(S)	-
YMC13/02/R947	≥64 (R)	≤8 (S)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16 (R)	≤4 (I)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/R972	≤8 (S)	≤16 (I)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≤2(S)	-
YMC13/02/R978	≤8 (S)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≤2 (S)	≥128 (R)	≥320 (R)	≤1 (S)	-
YMC13/02/R1138	≥64 (R)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/R990	≥64 (R)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/U1368	≥64 (R)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/U1431	≥64 (R)	≥32 (R)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≤2 (S)	-
YMC13/02/P267	≥64 (R)	≤16 (I)	≥64 (R)	≤0.5 (S)	≥64 (R)	≥64 (R)	≥16 (R)	≥16 (R)	≥8 (R)	≥16 (R)	≤1 (S)	≥128 (R)	≥320 (R)	≥8 (R)	-

^a, Antibiotic resistance was determined by the disk diffusion test method.

'Susceptible', 'Intermediate' and 'Resistant' are abbreviated as 'S', 'I' and 'R'.

^b, Phage activity against collected bacteria: -, No plaque.

Cere no	Range		Initiation	Strand	Length	Putative function	Apposition source	F-value	NCBI BlastP	NCBI-Bank accession
Gene no.	start	stop	codon	Strand	(bp)	i diative function	Aniotation source	E-value	identity (%)	number
ORFI	5	394	ATG	-	390					
ORF2	448	615	ATG	-	168					
ORF3	602	808	ATG	-	207					
ORF4	798	1040	ATG	-	243					
ORF5	1037	1234	ATG	-	198	Binding HTH domain	[Acinetobacterphage	4E-37	100	AFV51517.1
ORF6	1237	1563	ATG	-	327		IME-AB2]			
ORF7	1563	1778	GTG		216					
ORF8	1771	1893	ATG		123					
ORF9	1890	2237	ATG	-	348					
ORF10	2301	2540	ATG	-	240					
ORF11	2681	2962	GTG	-	282					
ORF12	2949	3209	ATG		261					
ORF13	3206	3586	ATG		381					
ORF14	3579	4160	ATG	-	582					
ORF15	4157	4321	GTG	-	165					
ORF16	4318	4893	ATG		576					
ORF17	4890	5645	ATG		756					
ORF18	5971	6156	ATG		186					
ORF19	6256	6432	ATG		177					
ORF20	6429	6722	ATG		294					
ORF21	6719	6985	ATG		267					
ORF22	6996	8339	ATG	-	1344	Replicative DNA	[Acinetobacterphage	0	100	AFV51534.1
OPF23	8345	9211	ATG		867	helicase	IME-AB2]			
OPE24	0204	0682	ATG	-	480	UNIU and onucleases	[A sin at a hast amb ago	2E 112	100	AEV51526 1
00024	9204	9085	AIG		480	family protein	[Activerobacterphage IME-AB2]	515-112	100	AI-051550.1
ORF25	9696	9908	AIG	-	213					
ORF26	9923	10258	AIG	-	336					
ORF27	10442	10630	ATG	-	189					
ORF28	10824	11411	ATG	+	588					
ORF29	11464	11658	ATG	-	195					
ORF30	11758	12570	ATG	+	813	Transcriptional regulator	[Acinetobacter phage IME-AB2]	0	99	AFV51542.1
ORF31	12637	12894	ATG	+	258					
ORF32	12987	13319	ATG	+	333					
ORF33	13319	13501	ATG	+	183					
ORF34	13498	14397	ATG	+	900	Recombination DNA repair protein RecT	[Acinetobacterphage IME-AB21	0	100	AFV51546.1
ORF35	14433	15149	ATG	+	717					
ORF36	15150	15443	ATG	+	294					
ORF37	15440	15631	ATG	+	192					

Table S2. A. baumannii phage B&-C62 ORF summary.

ORF38	15628	15789	ATG	+	162					
ORF39	15789	16349	ATG	+	561	Nucleoside triphosphate pyrophospho-	[Acinetobacterphage IME-AB2]	6E-52	57	AFV51550.1
ORF40	16336	16977	ATG	+	642	hydrolase HNH endonuclease	[Staphylococcus phage	3E-34	43	AFV80851.1
ORF41	16970	17200	GTG	+	231		SA5]			
ORF42	17354	17908	ATG		555	Endolysin/	[Acinetobacter	5E-130	98	YP_006383807.1
ORF43	17920	18144	ATG	-	225	autolysin	bacteriophage AP22]			
ORF44	18179	18514	GTG		336					
ORF45	18582	20678	ATG		2097	Tail fiber protein	[Acinetobacter phage	5E-59	93	AFV51555.1
ORF46	20680	21510	GTG		831	Tail fiber protein	IME-AB2] [Acinetobacter	1E-119	70	YP_006383803.1
ORF47	21503	22129	ATG	-	627		bacteriophage AP22]			
ORF48	22129	23313	ATG	-	1185	Baseplate J-like	[Acinetobacter phage	0	99	AFV51558.1
ORF49	23310	23663	ATG		354	protein	IME-AB2]			
ORF50	23660	23806	ATG		147					
ORF51	23809	24456	ATG		648	Phage baseplate	[Acinetobacter phage	2E-154	99	AFV51561.1
ORF52	24437	25327	GTG		891	assembly protein	IME-AB2]			
ORF53	25716	26312	ATG	-	597					
ORF54	26320	28368	ATG	-	2049					
ORF55	28371	28613	GTG	-	243	Tail-fiber	[Acinetobacterphage	0	92	AFV51565.1
ORF56	28613	29038	ATG		426		IME-AB2]			
ORF57	29084	29533	ATG	-	450					
ORF58	29546	31009	ATG	-	1464					
ORF59	30999	31493	ATG		495					
ORF60	31490	31993	ATG	-	504					
ORF61	32038	32298	ATG	-	261	Capsid protein	[Acinetobacterbacterioph	0.16	33	YP_006383780.1
ORF62	32367	32552	ATG		186		age AP22]			
ORF63	32549	32986	ATG		438	RNA polymerase	[Acinetobacterphage	2E-88	86	AFV51492.1
ORF64	33030	33215	ATG		186		IME-AB2]			
ORF65	33289	33435	ATG	-	147	Phage tail tape measure protein	[Snodgrassellaalvi wkB2]	0.13	61	AHN27888.1
ORF66	33451	33903	ATG	-	453	lambda family				
ORF67	33903	34241	ATG		339					
ORF68	34321	35340	ATG	-	1020	Capsid protein	[Acinetobacter phage	0	100	AFV51496.1
ORF69	35350	35829	ATG		480	Structural protein	IME-AB2] [Acinetobacterphage	3E-109	100	AFV51497.1
ORF70	35837	37171	ATG		1335		IME-AB2]			
ORF71	37171	37335	ATG		165					
ORF72	37385	37591	ATG		207					
ORF73	37581	37856	ATG		276					
ORF74	37955	38317	ATG		363					
ORF75	38314	38706	ATG		393					
ORF76	38699	39121	ATG		423					

ORF77	39111	39464	ATG	-	354					
ORF78	39546	39692	ATG	-	147					
ORF79	39693	39857	ATG	-	165					
ORF80	40547	41254	ATG	-	708	Phage head protein	[Acinetobacterphage IME-AB2]	1E-171	99	AFV51508.1
ORF81	41320	41577	ATG	-	258					
ORF82	41564	42997	ATG	-	1434	Portal protein	[Acinetobacterbacterioph age AP22]	0	90	YP_006383767.1
ORF83	43001	44278	ATG	-	1278	Phage terminase large subunit	[Acinetobacter bacteriophage AP22]	0	84	YP_006383766.1
ORF84	44275	44829	TTG	-	555					