

Fig. S1 HS decreased the mycelial dry weight of G. lucidum.

The wild-type strains were cultured on PDA liquid cultures with shaking for 5 days and then exposed to 42 °C for 0 to 24 h and followed until the 7th day at 28 °C in stationary PDA liquid cultures. The mycelial dry weight in the heat-stressed strains was measured and subjected to statistical analysis. The values are the means \pm SD of three independent experiments. Asterisks indicate significant differences compared to untreated strains (Student's *t* test: ***P* < 0.01).

Fig. S2 Phylogenetic analysis of HSP17.4, HSP22, HSP70 and HSP90.

The amino acid alignment and tree construction were performed using MEGA 5.1. A. Phylogenetic tree of HSP17.4 sequences. The GenBank accession numbers included Ganoderma lucidum (GL23242-R1), Dichomitus squalens (XP 007369368), Gloeophyllum trabeum (XP_007861096), Coprinopsis cinerea (XP_001829984), Metarhizium robertsii (XP_007826570), Trichophyton rubrum (KMQ44830), Colletotrichum gloeosporioides (XP_007278592) and Lotus japonicus (AEO22030). B. Phylogenetic tree of HSP22 sequences. The GenBank accession numbers included Ganoderma lucidum (GL19532), Dichomitus squalens (XP_007363953), Gloeophyllum trabeum (XP_007866791), Coniophora puteana (XP_007768211), Fusarium graminearum (XP_011316926), Aspergillus fumigatus (XP_754172), Neurospora tetrasperma (XP_009856494) and Galdieria sulphuraria (XP_005707918). C. Phylogenetic tree of HSP70 sequences. The GenBank accession numbers included Ganoderma lucidum (GL23436), Dichomitus squalens (XP_007362246), Coniophora puteana (XP_007767273), Gloeophyllum trabeum (XP_007864074), Coccidioides posadasii (XP_003070073) Neosartorya fischeri (XP_001264502), Aspergillus fumigatus (XP_752631), and Brassica rapa (XP_009147592). D. Phylogenetic tree of HSP90 sequences. The GenBank accession numbers included Ganoderma lucidum (GL24667), Dichomitus squalens (XP_007361188), Coniophora puteana (XP_007764667), Punctularia strigosozonata (XP_007385736), Lodderomyces elongisporus (XP_001523700), Saccharomyces cerevisiae (NP_013911), Candida dubliniensis (XP_002421403), and Prunus mume (XP_008234835). The numbers above the branches in all of the points indicate the frequency percentage of the two branches in 1000

bootstrap samples, and the distance scale length is 0.05.

Fig. S3 Characterization of the G. lucidum cchi and plci strains. A. Phylogenetic tree of cch sequences.

The GenBank accession numbers for the cch sequences were as follows: Ganoderma lucidum (GL23103), Moniliophthora roreri (XP_007848898), Heterobasidion irregulare (XP_009551146), Coprinopsis cinerea (XP_001838182), Aspergillus niger (XP_001392456), Candida albicans (XP_718121), Saccharomyces cerevisiae (NP_011733) and Musca domestica (XP_005178247). The numbers above the branches in all of the points indicate the frequency percentage of the two branches in 1000 bootstrap samples, and the distance scale length is 0.1. B. Construction of cch RNAi expression cassette plasmids. The cch fragment was double-digested with the restriction sites KpnI and SpeI and inserted into the plasmid pAN7-dual after KpnI/SpeI restriction digestion. In the plasmid, ura3 transcription and cch are driven by the 35S promoter and the gpd promoter. C. The relative mRNA levels of cch in G. lucidum. The expression level of the cch gene in the WT strain was arbitrarily set to 1. D. Phylogenetic tree of plc sequences. The GenBank accession numbers for the plc sequences were as follows: included Ganoderma lucidum (GL20551), Dichomitus squalens (XP_007367392), Fomitiporia mediterranea (XP_007267331), Gloeophyllum trabeum (XP_007870641), Aspergillus niger (XP_001392747), Sclerotinia sclerotiorum (XP_001592832), Neosartorya fischeri (XP_001264434) and Falco cherrug (XP_005442881). The numbers above the branches in all of the points indicate the frequency percentage of the two branches in 1000 bootstrap samples, and the distance scale length is 0.1. E. Construction of plc RNAi expression cassette plasmids. The plc fragment was double-digested with the restriction sites KpnI and SpeI and inserted into the plasmid pAN7-dual after KpnI/SpeI restriction digestion. In the

plasmids, *ura3* transcription and *plc* are driven by the 35S promoter and the *gpd* promoter. F. The relative mRNA levels of *plc* in *G. lucidum*. The expression level of the *plc* gene in the WT strain was arbitrarily set to 1. The values are the means \pm SD of three independent experiments. Asterisks indicate significant differences compared to WT strains (Student's t test: ***P* < 0.01).

Fig. S4 *Cch*-silenced and *plc*-silenced strains displayed thermosensitive phenotypes compared with the wild-type (WT) and empty vector (CK) strains after HS.

WT, CK1, CK2, *cch*-silenced strains (cchi6, cchi16) and *plc*-silenced strains (plci14, plci19) were cultured on PDA plates for 3 days and then exposed to 42 \degree for 0 min to 120 min followed by 2 days at 28 \degree . B. The mycelial growth rate of the WT, CK1, CK2 and *cch*-silenced strains (cchi6, cchi16) in cm day⁻¹ was measured following 2 days of 28 \degree after HS and was subjected to statistical analysis. C. The mycelial growth

rate of the WT, CK1, CK2 and *plc*-silenced strains (plci14, plci19) in cm day⁻¹ was measured following 2 days of 28 °C after HS and was subjected to statistical analysis. The values are the means \pm SD of three independent experiments. Asterisks indicate significant differences compared to WT strains (Student's t test: ***P* < 0.01).

Fig. S5 Cch and plc participate in regulating cytosolic Ca^{2+} concentrations under HS.

A. Wild-type (WT), CK1, CK2 (transformed with the empty plasmid), cch-silenced strains (cchi6, cchi16) and plc-silenced strains (plci14,

plci19) were cultured on PDA plates with or without 2 mM CaCl₂ for 5 days and then exposed to 42 $^{\circ}$ for 20 min. To detect cytosolic Ca²⁺ concentrations, 50 μ M Flu-3AM, a Ca²⁺ fluorescent probe, was used, and the intensity was monitored using CLSM. Green fluorescence represents free cytosolic Ca²⁺. B. Changes in the Ca²⁺ fluorescence ratio in the heat-stressed strains. The Y-axis is the Ca²⁺ fluorescence ratio measured by CLSM, and the X-axis represents the different treatments. The values are the means \pm SD of three independent experiments. Different letters indicate significant differences between the lines (*P*< 0.05, according to Duncan's multiple range test).

Table S1 Oligonucleotide primers used

Primer	Sequence (5' to 3')	Description	
HSP17.4RT-F	GCCGA GCTTCCTGGTGTCA	Detects the <i>hsp17.4</i> expression	
HSP17.4RT-R	GCTGCCGTA GTTTGCGTTT		
HSP22RT-F	AGCCCTTCTACACCCTCTC	Detects hsp22 expression	
HSP22RT-R	TTCTGGTCCCTGTCCTCAT		
HSP70RT-F	GCGTTCGTCTGGGGGTCATA	Detects the $hsp70$ expression	
HSP70RT-R	TCTTCCGTTCCTCA GTGTC		
HSP90RT-F	GTTCATCTCTTACCCCATCC		
HSP90RT-R	CTCTTCGTCCTCGACTTCC	Detects <i>hsp90</i> expression	
SqsRT-F	CTGCTTATTCTACCTGGTGCTACG	Detects the Sqs expression	
SqsRT-R	GGCTTCA CGGC GA GTTTGT		
OscRT-F	AGGGAGAA CCCGAAGCATT	Detects the Osc expression	
OscRT-R	CGTCCA CA GCGTCGCATAAC		
HmgrRT-F	GTCATCCTCCTATGCCAAAC	Detects the Hmgr expression	
HmgrRT-R	GGGCGTA GTCGTA GTCCTTC		
Plc RT-F:	CAACTTT GACGACGTA GAGC	Detects the <i>Phospholipase C</i> expression	
PlcRT-R:	GGC GT GCCTT GA GG GA CTT		
CchRT-F:	GCTGGTGCTGGGTAGGA	Detects the <i>cch</i> expression	

C	CchRT-R:	TCCA GTCA GGCAAATAGG		
C	Cchi-F	ACT Ggttacc GGA GAA CA GCGA CA GCCCTAA	Get the fragment of G. lucidum cch gene	
C	Cchi-R	ACT Gactagt GCAAATCCTACCCA GCA CCA G		
Р	lci-F	GTACggtaccAAGAATCGTGGCTACCT	Get the fragment of <i>G. lucidum</i> Phospholipase C gene	
Р	Plci-R	GTACactagtCGGAGTTATCTGCTGAAA Ge		
Ν	/lidRT-F	AACTTGTCCTTGCCATCACC	Detects the mid expression	
Ν	/lidRT-R	CCAGCCATCCGTATTCTTC		
Y	/vcRT-F	ATTTGTCGTCCTTATGGTTATCG		
Y	/vcRT-R	GGGAAACTCGTGAGCCTGAT	Detects the yvc expression	
C	Ca ²⁺ exchanger(26136)RT-F	TT GTT GA GTATCA GCGTA GGG	2	
C	Ca ²⁺ exchanger(26136)RT-R	TGCGTATGGGA CCA GA GTT	Detects the Ca ²⁺ exchanger expression	
C	Ca ²⁺ exchanger(16447)RT-F	GGGGACCTGGTTGTTGTTAC	Detects the Ca ²⁺ exchanger expression	
C	Ca ²⁺ exchanger(16447)RT-R	TTCA GTTCA GTTCA CTATGGA		
C	Ca ²⁺ exchanger(26055)RT-F	GGCAA GATCA GCAA GGA GT	Detects the Ca ²⁺ exchanger expression	
C	Ca ²⁺ exchanger(26055)RT-R	CCA GGGATA GCGT GA GTTTA		
C	Ca ²⁺ exchanger(27830)RT-F	CCAACGCA CCA GGCA CAAT	Detects the Ca ²⁺ exchanger expression	
C	Ca ²⁺ exchanger(27830)RT-R	ACCCGAA GA GCA CAAGCAAA G		
C	Ca ²⁺ exchanger(24479)RT-F	AGGGCCTCAA GGTTATCTC	Detects the Ca ²⁺ exchanger expression	
C	Ca ²⁺ exchanger(24479)RT-R	TCA CGGTGA CCA GGA GTA G		

Ca ²⁺ exchanger(23942)RT-F	CCATTGTCCCGA CGCTGTT
Ca ²⁺ exchanger(23942)RT-R	GGGTCA GGGTGC GTGTAAT
Ca ²⁺ pump(21462)RT-F	TGTCACCCACGAACCCTTAT
Ca ²⁺ pump(21462)RT-R	GGA GGA CCTTT GCTA GACG
Ca ²⁺ pump(28993)RT-F	CGCGAATGTCCTCCCTACT
Ca ²⁺ pump(28993)RT-R	GCAA CACCTTCCA CCCAAT
Ca ²⁺ pump(21619RT-F	TGACGAA GAACGA GCA GA C
Ca ²⁺ pump(21619)RT-R	T GTT GCA GACCGA GCCTATC
Ca ²⁺ pump(28969)RT-F	CA GAACCA CGCA GAA GCA C
Ca ²⁺ pump(28969)RT-R	CATTCGCGGCCATA GGA GT
Ca ²⁺ pump(24243)RT-F	CTCGCTATCGCCCGTCA GGT
Ca ²⁺ pump(24243)RT-R	CCGTCCTCCTCTTTGGGTT
Ca ²⁺ pump(25555)RT-F	CTTTCTGCCA GATGGATTGC
Ca ²⁺ pump(25555)RT-R	GGGTCA GA GTGCCTGTTTT
Ca ²⁺ pump(29594)RT-F	GA CGGCA GGTT GGTCTTT G
Ca ²⁺ pump(29594)RT-R	GGCTTTGCTTGGCGGCTTCT
Ca ²⁺ pump(22885)RT-F	ACAAGGGAAA GGGA GAA CA
Ca ²⁺ pump(22885)RT-R	TGGGCA GCCATACGA GTA G
Ca ²⁺ pump(22533)RT-F	GTCGCTATTGCCCTTTCCA

Detects the Ca²⁺ exchanger expression Detects the Ca²⁺ pump expression

Ca ²⁺ pump(22533)RT-R	AGCCA GGGA GTCCATGA GA
Ca ²⁺ pump(30508)RT-F	CGCTCA GCAATCA CAAA GT
Ca ²⁺ pump(30508)RT-R	TATGCGGA GGGTGA GAAAA
Ca ²⁺ pump(25712)RT-F	TATTCCCTCATCCA GTTCACC
Ca ²⁺ pump(25712)RT-R	CGATACTTGCCA GGACTTTCT
Ca ²⁺ pump(27118)RT-F	TACA GGCATACTTCATCTC
Ca ²⁺ pump(27118)RT-R	ATACCATTGACGGA GCA CTT
CrzRT-F	ACGCCCCTTCCTATGCGAGTG
CrzRT-R	AGGAAACGGCGTCAGTAGC
CNA1RT-F	AAGTGTACGATGCGTGTATCAAGTCC
CNA1RT-R	CTGGTTCCTCAAAGCGGTTTATGT
CNA2RT-F	GCTCTGCTCGCTTGCCATAC
CNA2RT-R	CCCTTGCCCTCTTCGGATT
CNBRT-F	ATGGA GGA GGCA CGGTA GA
CNBRT-R	CTTTA GGA CGA GGAACA GC
CamRT-F	CCCCGA GTTCCTGA CGATG
CamRT-R	AGCTTCTCGCCGA GGTTGG
CamK1RT-F	GTCGATATGTGGTCAACAGGGATT
CamK1RT-R	ACGGTCGGTGGGAA GTCA GC

Detects the Ca²⁺ pump expression

Detects the Ca²⁺ pump expression

Detects the Ca²⁺ pump expression

Detects the Calcineurin-responsive zinc finger tanscription factor expression

Detects the CNA1 expression

Detects the CNA2 expression

Detects the CNB expression

Detects the proteins that undergoes conformational change upon binding to $${\rm Ca}^{2+}$ expression}$

Detects the CamK1 expression

CamK2RT-F	GAAGTTCCACCTCTTGACGG		
CamK2RT-R	TCA CCA CGGATGATA GCC	Detects the <i>CamK2</i> expression	
CamK3RT-F	TATCAA GCCCGA GAACCTG		
CamK3RT-R	TGTA GTGTCCACGA GCAACC	Detects the <i>CamK3</i> expression	
CABPRT-F	AGATGCTTCA GATCGTCCA GTC		
CABPRT-R	CTTCCCTCCACAAACTCCTCGT	Detects the CABP expression	
calreticutin RT-F	TAGA CGA GCCCATT CA CAA		
calreticutin RT-R	CTTTCA CA GGA GCA A CGA TA	Detects the calreticutin expression	