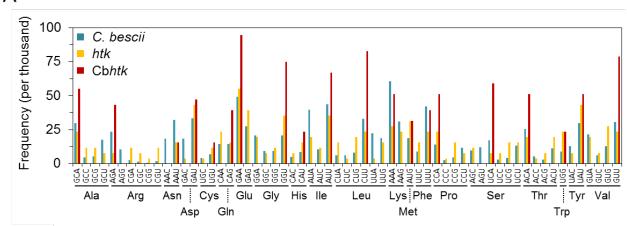
Highly Thermostable Kanamycin Resistance Marker Expands the Toolkit for Genetic Manipulation of *Caldicellulosiruptor bescii*

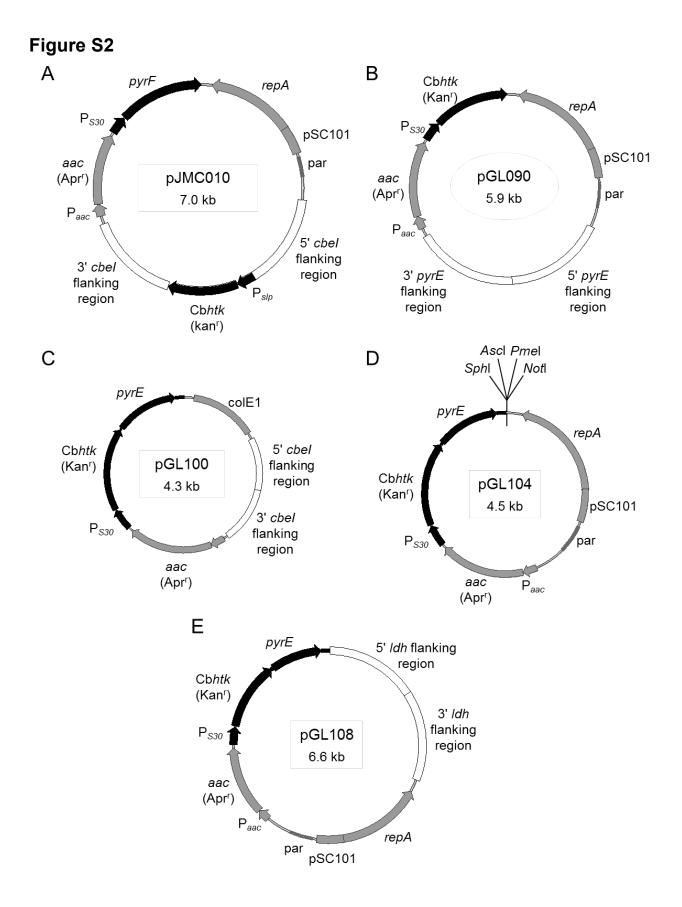
Gina L. Lipscomb^a, Jonathan M. Conway^b, Sara E. Blumer-Schuette^{b*}, Robert M. Kelly^b and Michael W. W. Adams^a#

^aDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA ^bDepartment of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905


[#]Address correspondence to Michael W. W. Adams, adams@bmb.uga.edu.

*Current address: Department of Biological Sciences, Oakland University, Rochester, MI.

Supplemental Material:


Figure S1 Figure S2 Figure S3 Figure S4 Figure S5 Figure S6

А

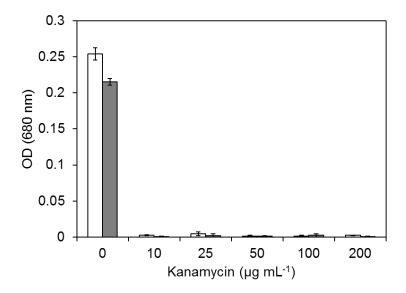
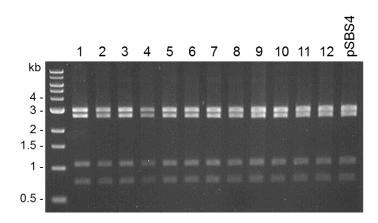
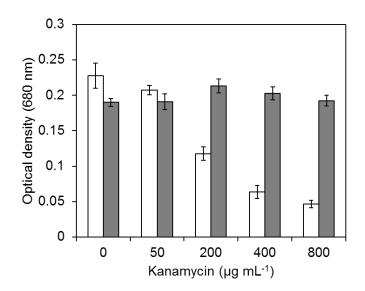

В

Figure S1. Codon optimization of *htk* for use in *C. bescii*. (A) Codon usage for *C. bescii* genome, *htk* (from pUB110) and codon-optimized Cb*htk*. (B) Nucleotide sequence of codon-optimized Cb*htk*.




Figure S2. Plasmids used in *C. bescii* strain construction. (A) Plasmid for insertion of Cb*htk* cassette into *C. bescii* JWCB018 chromosome at Δ*cbel* locus using selections based on Cb*htk* and *pyrF*. (B) Plasmid for targeted deletion of *pyrE* from wild-type *C. bescii* using selection based on Cb*htk*. (C) Plasmid for deletion of *cbel* in MACB1018 using selections based on Cb*htk* and *pyrE*. (D) Plasmid employing the Cb*htk-pyrE* cassette and containing a mini multiple cloning site. (E) Plasmid for deletion of *ldh* in MACB1018 using selections based on Cb*htk* and *pyrE*. For all plasmids shown, marker cassettes used for genetic selection in *C. bescii* are shown in black, *E. coli* elements are shown in grey, and flanking regions for homologous recombination are shown in white.

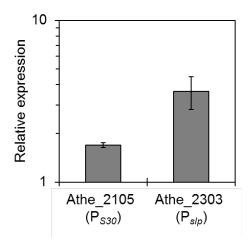

Figure S3. Kanamycin sensitivity of *C. bescii.* Wild-type (white bars) and JWCB018 (grey bars) were grown for 20 h in CC516 medium containing kanamycin at the indicated concentrations. Growth was measured by optical density at 680 nm. Error bars represent standard deviation; n = 3.

Figure S4. Confirmation of pSBS4 plasmid transformation of wild-type *C. bescii.* Total DNA from MACB1015 was transformed into *E. coli*, and plasmid isolates (1-12), along with purified pSBS4 as a control, were restriction digested with *Ava*l, resulting in expected fragment sizes of 3.0, 2.7, 1.1 and 0.8 kb.

Figure S5 Kanamycin resistance of strains containing a Cb*htk* expression cassette. MACB1015 (white bars) and RKCB106 (grey bars) were grown for 20 h in CC516 medium with 20 μ M uracil and containing kanamycin at the indicated concentrations. Growth was measured by optical density at 680 nm. Error bars represent standard deviation, *n* = 3.

Figure S6. Expression levels of native genes downstream of P_{S30} and $P_{s/p}$ promoters. Wild-type *C. bescii* was grown to mid-log phase, RNA was extracted, and reverse-transcriptase quantitative PCR was performed using primer pairs targeting the Athe_2105 and Athe_2303 genes, downstream from the P_{S30} and $P_{s/p}$ promoters, respectively. Expression is shown relative to that of the control gene Athe_1406, encoding the glycolytic enzyme GAPDH. Error bars represent standard deviation, n = 2 technical replicates.