1	Ecophysiological distinctions of haloarchaea from a hypersaline Antarctic
2	lake determined using metaproteomics
3	
4	Bernhard Tschitschko, Timothy J. Williams, Michelle A. Allen, Ling Zhong, Mark J.
5	Raftery and Ricardo Cavicchioli
6	
7	Supplemental material
8	
9	MATERIALS AND METHODS
10	Sample collection from Deep Lake. Biomass was collected from Deep Lake (68°33'36.8S,
11	78°11'48.7E), Vestfold Hills, Antarctica between November 30 and December 5, 2008, by
12	filtering water taken from 5, 13, 24 and 36 m depths (50 litres except 25 litres from 36 m),
13	through a 20 μ m prefilter sequentially onto 293 mm polyethersulfone membrane filters with
14	3.0, 0.8 and 0.1 μm pore sizes, as described previously (1). In addition, a surface sample (50
15	litres) was taken from close to the lake shore. All filters were placed in storage buffer, frozen
16	in liquid nitrogen and cryogenically maintained at -80°C until being processed (1).
17	Metaproteomics. Protein extractions, mass spectrometry and data analysis were
18	performed based on methods described previously (2), with minor modifications. Briefly,
19	proteins were extracted without filtering protein suspensions through a 0.22 μ m filter, protein
20	concentrations were determined with the Pierce BCA Protein Assay Kit (Thermo Fisher
21	Scientific, Rockford, IL, USA), and 25 μ g protein of each sample was processed for mass
22	spectrometry (MS) in a buffer containing a final concentration of 25 mM NH_4HCO_3 , pH 8 –
23	8.5 (assessed using pH indicator strips). Samples were reduced with 2.5 mM dithiothreitol for
24	30 min at 37°C in the dark, alkylated with 5 mM iodoacetamide for 30 min at room
25	temperature in the dark, trypsin digestion performed with 0.3 μ g trypsin (Sequencing Grade

Modified Trypsin, Promega, Madison, WI, USA) overnight at 37°C, and peptides stored at 80°C until MS analysis. Peptide solutions were diluted 1:2 in 1% formic acid, 0.05%
heptafluorobutyric acid and subjected to LC-MS/MS. LC-MS/MS was performed as
described previously (3), with the only modification being the use of 3 µ, 200 Å instead of 5
µ, 200 Å C18 media in the nano column (Magic, Michrom Bioresources, Auburn CA, USA).
At least two technical replicates were performed for each sample.

32 Peak lists from Orbitrap Velos mass spectra were generated using extract msn and peptides identified through automated database searches using Mascot Daemon and the 33 34 Mascot server (version 2.3; Matrix Science, Thermo, London, UK) with ThermoFinnigan LCQ/DECA RAW file as the import filter and the following settings: one accepted missed 35 cleavage for the tryptic digest, peptide mass tolerance of +/- 4 p.p.m., fragment mass 36 tolerance of +/- 0.4 Da and variable modifications of oxidation and carbamidomethylation. 37 Ions were matched against peptides using a composite databases consisting of: 1) Deep Lake 38 metagenome data, which comprised 5,837 contigs > 2 kb in length from the assembled 39 40 contigs previously generated and annotated using SHAP representing 38,071 predicted protein sequences (1, 4) available at 41 http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism=AntLakMetagen 42 ome (Antarctic Lakes Metagenome: whole lake.gbk); and 2) all 14,181 predicted protein 43 sequences from *Hht. litchfieldiae*, DL31, *Hrr. lacusprofundi* and DL1 sourced from the IMG 44 45 portal (http://img.jgi.doe.gov/) (5). To facilitate calculations of false discovery rates (FDRs), the database contained randomized decoy proteins equal in number to those present in the 46 reference database. The mass spectrometry proteomics data have been deposited to the 47 ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE 48 partner repository (6) with the dataset identifier PXD001436 and DOI 10.6019/PXD001436. 49

50	All technical replicates of a sample were combined and merged into a single sample file
51	during Mascot analysis, resulting in 15 sample files (5 depths x 3 filters). Peptide and protein
52	validation and further analysis was performed using Scaffold (version Scaffold_4.2.1,
53	Proteome Software Inc., Portland, OR, USA) with strict settings of 95% minimum peptide
54	identification probability and 99% minimum protein identification probability. The majority
55	of proteins were identified with at least two peptide matches. The number of confidently
56	identified proteins was maximized while minimizing false positives by including single
57	peptide matches but maintaining low FDRs, as has been recommended (7, 8) and successfully
58	applied in recent metaproteomic studies (9, 10, 11). The peptide and protein FDRs were
59	0.06% and 0.4%. For quantitative analyses the Normalized Total Spectrum Count
60	(Scaffold_4.2.1, Proteome Software Inc., Portland, OR, USA) for each identified protein was
61	combined across all 15 samples and used to quantify abundance.
62	All identified proteins were manually annotated using BLASTP searches against the
63	genome encoded proteins of Hht. litchfieldiae, DL31, Hrr. lacusprofundi, and Halobacterium
64	sp. DL1 on IMG, and against all entries in the ExPASy database (12), recording the best
65	overall match including percentage identity, and organism. Annotated proteins were
66	categorized into taxonomic and functional groups. Taxonomic categories were Hht.
67	litchfieldiae; DL31; Hrr. lacusprofundi; DL1; Other Halobacteriaceae (best match to a
68	member of the Halobacteriaceae other than the four Deep Lake isolates); Other Archaea
69	(best match to a member of the Archaea other than Halobacteriaceae); Bacteria; Viruses;
70	and Dunaliella. Proteins sharing the same set of detected peptides were grouped into protein
71	families (2).
72	Functional categories were: Transport; Carbohydrate Metabolism; Glycerol Metabolism;
73	Amino Acid Metabolism; Central Carbon Metabolism; Energy Conservation; Metabolism

74 (Other); Cell Division; DNA Replication, Repair, and CRISPR; Oxidative Stress;

75 Transduction; Transcriptional Regulators; Transcription; Ribosomes; Protein Chaperones; Translation (Other); Proteolysis; Cell Surface; Hypothetical; Viruses. Cell Surface proteins 76 were subdivided into subcategories based on proteins that comprise archaella (Archaella), 77 78 adhesion pili (Adhesion), and the archaeal surface layer including hypothetical proteins that possess Sec, TAT or PGF-TERM sequences (Cell Surface Proteins - Other). The 79 Hypothetical category included archaeal and bacterial proteins for which no function in the 80 cell envelope or in cellular metabolism could be inferred. Hypothetical proteins were further 81 subdivided into subcategories based on the presence of transmembrane helices (Hypothetical 82 - Membrane); or nucleic-acid-binding domains (Hypothetical - Nucleic Acid Binding); or 83 possessed domains which provided no indication as to function or possessed no identifiable 84 85 domains at all (Hypothetical - Other). Other categories were subdivided into subcategories to 86 provide increased resolution of cellular processes such as transport and metabolism. Transport: ABC Transporter - Amino Acids; ABC Transporter - Oligopeptides/Dipeptides; 87 ABC Transporter - Carbohydrates; ABC Transporter - Phosphate/Phosphonate; ABC 88 Transporter - Iron; ABC Transporter (Other); TRAP/TTT Transport; Cation Transport; 89 Secretion; Other Transporter. Carbohydrate Metabolism: Glycosylation/Capsular 90 Polysaccharide; Carbohydrate Metabolism (Other). Metabolism (Other): Nitrogen 91 Metabolism; Sulfur Metabolism; Isoprenoid Metabolism; Vitamin/Cofactor Biosynthesis; 92 Other (comprising those proteins inferred to be involved in metabolism, but no precise 93 function or substrate specificity could be inferred based on identified domains). DNA 94 Replication, Repair and CRISPR: DNA Replication and Repair; CRISPR. 95 Gene mapping. Genes in the tADL-II contigs were mapped onto the *Hht. litchfieldiae* 96 tADL genome using the CONTIGuator web server (13) and by manual assignment, and 97 circular plots were created using DNAPlotter (14) in Artemis (15). 98

99 Correlation analysis. Fractionation of the Deep Lake biomass according to depth and filter size allowed a comparison of the abundances (measured in spectrum counts) of single 100 proteins and proteins from functional categories across samples thereby enabling ecological 101 102 inferences to be made from observed co-expression. The analyses enabled statistically valid positive or negative correlations to be determined between spectrum counts for proteins 103 104 across the 15 filter samples. Pair-wise comparisons of spectrum counts were made between individual abundant proteins, functional categories of proteins (the sum of the spectrum count 105 for a functional group, such as tADL ABC transporter proteins) or taxonomic groups of 106 107 proteins (for example all *Hht. litchfieldiae* tADL proteins vs all *Dunaliella* proteins). Pearson correlation coefficient and p-values between single proteins or protein functional categories 108 109 across the 15 filter samples were calculated in R (16) with the Hmisc package (17) using 110 normalized total spectrum counts. Only correlations with a p-value < 0.01 were regarded as statistically significant. All results of correlation analyses can be found in Table S2, and 111 correlations mentioned in the manuscript are highlighted separately in Table S1. 112

Statistics using the PRIMER 6 software package. Statistical analyses were performed with PRIMER 6 (18) using the normalized total spectrum count for functional categories from each of the 15 samples. The data were standardized and square-root transformed prior to calculations using a Bray Curtis resemblance matrix. Non-metric multi-dimensional scaling (NMDS) plots were created using standard settings. Two-way crossed analysis of similarity (ANOSIM) without replicates were performed on the factors, filter size and sample depth, to test for statistically significant differences within these groups.

Epifluorescene microscopy. Deep Lake surface water samples were taken in the
Antarctic summer of 2008/2009 and preserved in 2% (v/v) formaldehyde, or in 2013/2014
and preserved in 0.5% (v/v) glutaraldehyde, and all samples were stored at -80 °C until
microscopy was performed. Deep Lake water (4 ml) was filtered through a 25 mm diameter,

124 0.02 µm pore size Whatman® Anodisc filter membrane (GE Healthcare Life Science, UK) with a 0.45 µm pore size backing filter (Type HA, Merck Millipore, MA, USA). Filters with 125 captured biomass were stained with 10 µl SYBR® Gold nucleic acid stain (Invitrogen, Life 126 127 Technologies, NY, USA) for 18 min in the dark and subsequently mounted on a glass slide with a drop of ProLong® Gold anti fade reagent (Invitrogen, Life Technologies, NY, USA). 128 Microscopic analysis of slides was performed using an Olympus BX51WI epifluorescence 129 microscope together with an Olympus DP71 camera and the cell Sense Standard imaging 130 software (all Olympus, Hamburg, Germany). Slides were visualized under excitation with 131 blue light (460 – 495 nm, emission 510 – 550 nm). 132

Growth studies. To assess growth characteristics based on inferences made from Deep 133 Lake metaproteomic data, *Hht. litchfieldiae* was grown in batch cultures based on DBCM2 134 media (19, 20) using specific carbon and nitrogen sources. The substrates tested were DHA 135 (10 mM) as a carbon source; starch (10 gL⁻¹) as a carbon source; acetamide (10 mM) as both 136 a carbon source (with ammonia) or as a nitrogen source (with pyruvate); 2-137 aminoethylphosphonic acid (AEP; 5 mM) as a phosphorus source replacing phosphate in 138 DBCM2 medium (tested both with and without peptone and yeast extract); *Hht. litchfieldiae* 139 genomic DNA (200µg ml⁻¹ final concentration) as a phosphorus source. 140

141

142 **RESULTS AND DISCUSSION**

Microscopy. To facilitate interpretation of the metaproteomic data, microscopy was
performed on water samples to assess cell state (aggregated vs non-aggregated) and presence
of particulate matter associated with 3.0, 0.8 and 0.1 µm filters. The samples preserved in

146 glutaraldehyde provided clearer images than those preserved in formaldehyde (see Materials

147 and Methods; data not shown). An increase in particulate matter was observed with increase

in pore size, and cells were often associated with the particulate matter (Fig. S2).

149 Hht. litchfieldiae. Carbohydrate metabolism: The Hht. litchfieldiae genome encodes two pathways for the conversion of glycerol into dihydroxyacetone phosphate (DHAP) (20). The 150 first catabolic pathway involves the ATP-dependent phosphorylation of glycerol to glycerol-151 152 3-phosphate by glycerol kinase, followed by the oxidation of glycerol-3-phosphate to DHAP by glycerol-3-phosphate dehydrogenase. The second catabolic pathway begins with the 153 oxidation of glycerol to DHA by glycerol dehydrogenase, followed by the phosphorylation of 154 DHA by DHA kinase to DHAP. DHAP is a versatile substrate that can enter into glycolysis 155 or gluconeogenesis; serve as a precursor for membrane phospholipids via glycerol-1-156 157 phosphate; or be converted to methylglyoxal as a precursor for aromatic acid biosynthesis (21) (see Nitrogen and amino acid metabolism). Evidence for the first glycerol catabolic 158 159 pathway included the detection of glycerol kinases and glycerol-3-phosphate dehydrogenase, 160 whereas for the second pathway DHA kinase subunits were detected, but no glycerol dehydrogenase. The enzymes for the first pathway were also more abundant than for the 161 second pathway (Table S5). The lack of detection of glycerol dehydrogenase for *Hht*. 162 163 *litchfieldiae* might be due to repression of gene expression, which has been observed in H. salinarum R1 as a possible mechanism to promote glycerol phosphorylation and decrease the 164 flow of glycerol to DHA (22). Thus, rather than being utilized for glycerol oxidation, it is 165 possible that DHA kinase is used solely to catabolize DHA directly obtained from the 166 environment. DHA is exuded as a byproduct of the breakdown of surplus glycerol in 167 168 Dunaliella (23, 24) and has been hypothesized to be an important growth substrate for haloarchaea in hypersaline lakes (24). 169

The iron-containing glycerol dehydrogenase characterized for haloarchaea (25) has a homolog in *Hht. litchfieldiae* (tADL_2148), but this was not detected in the metaproteome. It is possible that a novel (for archaea) glycerol dehydrogenase may be present in the Deep Lake metaproteome, including a glycerol dehydrogenase of the short-chain

dehydrogenase/reductase (SDH) family in bacteria (26), or a glycerol dehydrogenase of the
aldo/keto reductase family in eukaryotes (27); *Hht. litchfieldiae* homologs of both were
detected in the metaproteome, although their substrate specificity cannot be determined from
the sequences.

Initially, no growth was detected for *Hht. litchfieldiae* using DHA as the defined carbon and energy source; but when *Hht. litchfieldiae* was grown on medium containing both DHA and pyruvate and was then transferred to medium containing just DHA, growth was observed (Fig. S5B). A similar response was observed previously for *Hht. litchfieldiae* where it grew with glycerol as the defined carbon and energy source only after being transferred from media containing both pyruvate and glycerol (20).

Phosphorus metabolism: AEP (ciliatine) was tested as a phosphorus source; this 184 185 phosphonate and its N-alkylated derivatives are the most abundant and ubiquitous of naturally occurring phosphonates (28). Initially no growth of *Hht. litchfieldiae* was observed 186 when AEP was tested as a phosphorus source in place of phosphate in the DBCM2 medium 187 188 (lacking peptone and yeast extract). In addition to providing a phosphorus source, phosphate also serves to help buffer DBCM2 medium. The absence of phosphate buffer might therefore 189 have an adverse effect on cell growth or viability. Although Tris.Cl was used to bring the pH 190 of DBCM2 to 7.5 prior to the addition of AEP (5 mM), further Tris.Cl was added after the 191 addition of AEP to reach a final concentration of ~5 mM and buffer at pH 7.5. This addition 192 193 of Tris.Cl allowed *Hht. litchfieldiae* to grow on AEP as a source of phosphorus (Fig. S5A). A putative DNA-binding membrane protein (halTADL 0044; winged helix-turn-helix 194 DNA-binding domain) was detected for *Hht. litchfieldiae*. The encoding gene neighbors a 195 gene (halTADL 0045) that is homologous to H. volcanii Hvo 1477, which is involved in the 196 utilization of DNA as a phosphate source for growth (29). DNA concentrations can be 197 particularly high in hypersaline environments (30) and the very low temperatures in Deep 198

Lake should further help to preserve extracellular DNA. Laboratory assessments indicated *Hht. litchfieldiae* was unable to utilize DNA as a phosphorus source for growth; this requires
further evaluation in view of the metaproteome data.

Nitrogen and amino acid metabolism: An acetamidase homolog (amidohydrolase) was detected for *Hht. litchfieldiae* (halTADL_0419), but its function is unclear. *Hht. litchfieldiae* showed no growth in DBCM2 medium containing acetamide as a carbon source, which is consistent with the absence of genes that encode enzymes for acetate assimilation via either the methylaspartate cycle or glyoxylate cycle (20). However, *Hht. litchfieldiae* was also incapable of using acetamide as a nitrogen source in DBCM2 medium.

208 The detection of a putative copper-containing nitrite reductase (nitric oxide forming;

halTADL_2997) and halocyanin acceptor protein (halTADL_2996) provides possible

210 evidence of active denitrification by *Hht. litchfieldiae*. The use of nitrite as an electron

acceptor might indicate oxygen depleted conditions, at least in the micro-environment of the

212 *Hht. litchfieldiae* cells at the time of sampling.

The detection of S-adenosylmethionine (SAM) synthetase (halTADL 3028) indicates 213 that methionine is converted to SAM, an important methyl donor for processes including 214 DNA methylation and cofactor biosynthesis (heme, cobalamin (31)). The product of SAM 215 demethylation (S-adenosyl-homocysteine) can be hydrolyzed to homocysteine; the enzyme 216 responsible (S-adenosylhomocysteinase, halTADL 1723) was also detected. Further, in 217 218 archaea homocysteine is a precursor to cysteine via the path leading through cystathionine (25, 32), which might suggest that cysteine is synthesized from methionine by *Hht*. 219 *litchfieldiae* in Deep Lake. We also detected three proteins corresponding to enzymes 220 involved in the generation of chorismate from fructose-1,6-bisphosphate(halTADL 0575, 221 halTADL 0574, halTADL 2582), as well as enzymes specific to the synthesis of tryptophan 222

(halTADL_0576, halTADL_3066, halTADL_0889) and phenylalanine (halTADL_2073)
(33), indicating aromatic acid synthesis in Deep Lake.

Motility and taxis: The Hht. litchfieldiae MCPs included HtrII for sensory rhodopsin II 225 (SRII; phoborhodopsin), which is indicative of negative phototaxis as the repellent receptor 226 SRII is activated by blue light and is produced when respiratory activity is high and cells seek 227 darker conditions to minimize photo-oxidative damage (34) (Also see main text section 228 Haloarchaeal responses to Antarctic solar irradiation, and Table S7). One MCP belongs 229 to the HemAT family of heme-based transducers involved in aerotaxis (35), and another has 230 231 an N-terminal globin domain and may function in aerotaxis or oxidative stress. The MCP halTADL 1218 has similarity to MCPs involved in chemotaxis of organic nutrients (36), and 232 consistent with this, the gene is located within a cluster of genes which function to uptake and 233 234 catabolize lactate.

One-carbon (C1) metabolism: The major C1 carrier in haloarchaea is tetrahydrofolate 235 (H₄F), which is essential for the biosynthesis of methionine, glycine, purines, and thymidine 236 237 (37). Several proteins involved in the biosynthesis of this cofactor were detected in the metaproteome, as well as H₄F-dependent proteins (e.g., purine biosynthesis in *Hht*. 238 litchfieldiae). However, there was evidence of expression of a methanopterin-based C1 239 transfer system in *Hht. litchfieldiae* in Deep Lake, with tetrahydromethanopterin (H₄MPT) 240 used as the carrier. The H₄MPT-associated C1 transfer enzyme methenyl-H₄MPT 241 242 cyclohydrolase (Mch; halTADL 3392) was detected in the metaproteome, as well as a NADPH-dependent F_{420} reductase (halTADL 2320). Both H_4 MPT and cofactor F_{420} were 243 likely inherited from methanogenic archaea, given the posited origin of haloarchaea (38, 39). 244 The function of the H₄MPT system in *Hht. litchfieldiae* is unclear; there are no clear 245 homologs of genes for either methylotrophy or formaldehyde activation in the genome, and it 246 is not known this H₄MPT-dependent pathway proceeds in the oxidative or reductive 247

248 directions. For example, the sulfate-reducing archaeon Archaeoglobus fulgidus cleaves acetyl-CoA into a methyl group and CO₂, and subsequent oxidation of the H₄MPT-bound 249 methyl group serves as a source of energy (40); but this pathway is unlikely for *Hht*. 250 251 *litchfieldiae* in the absence of genes encoding a complete carbon monoxide dehydrogenase/acetyl-CoA complex required for acetyl-CoA cleavage. One possibility is that 252 methyl groups are generated internally via catabolism (such as methylphosphonate; see 253 **Phosphorus metabolism**), and either oxidized for energy or assimilated by *Hht. litchfieldiae*. 254 Genes for certain H₄MPT-associated C1 transfer proteins (including methylene-H₄MPT 255 256 reductase) are found adjacent to the gene cluster for phosphonate degradation in the *Hht*. litchfieldiae genome (20). If Hht. litchfieldiae utilizes phosphonates as a carbon source, then 257 C1 compounds might be transferred to H₄MPT and oxidized to the formyl level; this latter 258 259 step could be catalyzed by Mch for liberated methyl groups. It is possible that the Mch product (formyl-H₄MPT) serves a biosynthetic function; but (unlike formyl-H₄F) formyl-260 H₄MPT has been regarded as unsuited to formyl donations for biosynthesis (41). 261 Heavy metal efflux: The concentrations of lead $(3.7-5.2 \mu g/L)$ and copper (9.1 to 21 262 µg/L; copper concentrations showed a marked decrease with depth) in Deep Lake were found 263 to be much higher than seawater, although not at levels high enough to inhibit microbial 264 growth (42). This may account for a putative Cu^{2+} -exporting ATPase (halTADL 1767) 265 detected for Hht. litchfieldiae. 266 267 *Hht. litchfieldiae* variants. GC/read-depth profiling of the *de novo* assembly of

metagenome data revealed a cluster of 52 large contigs (>15 kb) totalling 1.89 Mb which had highest identity (~85%) to *Hht. litchfieldiae* tADL, and the genes on the contigs tended to be syntenic with tADL (1). The contig cluster was referred to as the 'tADL-related 5th genome' (1), and has now been designated *Hht. litchfieldiae* strain 'tADL-II'. A total of 107 proteins were identified from 38 of the contigs (Table S9). The proteins on the contigs that matched
tADL had ~70 - 99% sequence identity (lower for some cell surface proteins).

Thirty eight additional variants on 22 contigs were further assigned to tADL-II (Table 274 S9) even though the corresponding contigs were not part of the original GC/read-depth 275 binning. These variants are derived from contigs each containing multiple ORFs with $\sim 70 -$ 276 277 99% amino acid identity to tADL sequences (lower for some cell surface proteins) and exhibiting gene synteny with tADL; characteristics shared with the contigs previously 278 assigned to tADL-II. These included 11 ribosomal proteins that had 88 – 97% sequence 279 280 identity to tADL. A total of 18 of the 22 contigs were shorter than 15 kb and would have been excluded from the previous analyses (1). Scaffolding of the 52 original contigs with the 22 281 new contigs revealed that 10 of the new contigs overlapped (at their ends) with the original 282 283 contigs and were assembled into larger contigs. These 10 contigs encoded for 24 of the newly assigned tADL-II proteins. Mean read-depth/GC-content was also comparable with 38.8/63% 284 for the original set of 52 contigs and 35/61% for the additional 22 contigs. 285 High variation was observed between tADL and tADL-II sequences for cell surface 286 proteins (63% average amino acid identity) in contrast to substantially less variation for 287 typically conserved, transcription and cell division proteins (\geq 94%) (Fig. 4). The divergence 288 between tADL and tADL-II proteins is likely to result in phenotypic distinctions, as even 289 single amino acid changes can confer functional differences (e.g. in the active-site, substrate 290 291 binding site, site of interaction for effector molecules, protein-protein interactions). Other proteomic distinctions between tADL and tADL-II included proteins encoded by genes 292 present on tADL-II contigs that were absent in the tADL genome. The detection of a 293 nitrate/sulfonate/bicarbonate ABC transporter solute-binding lipoprotein (unique to tADL-II) 294 may confer the ability to target distinct nutrient sources (Table S9). 295

In contrast to the level of variation for contigs assigned to tADL-II, proteins were identified matching to contigs which had overall high identity to tADL. These contigs had ORFs with 100% identity to tADL plus some ORFs (typically one) with 97-99% identity, and were therefore assigned as variants of tADL. These comprised a total of 8 variants for which 6 had 99% identity (5 single SNPs plus 1 with a 3 nt deletion) and 2 had 97% identity, and all had neighbouring genes with 100% sequence identity and conserved gene synteny with tADL.

One of the variants was an ABC transporter phosphate-binding lipoprotein which arose 303 from a previously identified SNP (1). The SNPs characterized in the previous study 304 represented $\geq 90\%$ of the population (1), indicating it was the dominant form in the 305 306 population. In addition, two other variants of the same protein (88% and 93% sequence 307 identity) were identified in the metaproteome, both of which were encoded on contigs that could potentially be assigned to tADL-II. The amino acid changes for the transporter may 308 confer functional differences in *Hht. litchfieldiae* phosphate acquisition. Multiple cell surface 309 310 protein variants were previously identified which mapped to small regions of the tADL genome that had low fragment recruitment of metagenome data, with the high level of 311 variation thought to provide a mechanism for hosts to evade viral infection (2). 312 In another case, one α-amylase was detected with 94% sequence identity to tADL and 313 the only other ORF on the contig matched tADL with 96% sequence identity, and the two 314 315 ORFs were syntenic with tADL. For the same α -amylase, a protein with 100% match to tADL was also identified (therefore assigned to tADL), and one that matched to tADL-II 316 (84% identity to tADL). The data suggest that the 94% match could therefore derive from a 317 variant of Hht. litchfieldiae. However, intergenera gene exchange has also been documented 318 for the Deep Lake community, and it is possible that the contig derives from one of the other 319 haloarchaeal species in the lake. From a functional standpoint, similar to the ABC transporter 320

phosphate-binding lipoprotein (above), the extent of variation of the α-amylase proteins may
 increase the capacity of the lake population to utilize starch-related substrates.

For a total of 15 proteins, the best match was to *Hht. litchfieldiae*, but other ORFs on the contigs matched to other haloarchaea or viruses. These included three distinct proteins, all matching to the same *Hht. litchfieldiae* glycerol kinase with 98% sequence identity. These findings are consistent with the dissemination of genes within the lake population and selection for a collective genetic capacity to effectively exploit available nutrients throughout the lake.

329 DL31 and Hrr. lacusprofundi variants. Only four respectively three variants were detected for DL31 and Hrr. lacusprofundi, with five of them associated with the haloarchaeal 330 cell surface (Table S10). One of the Hrr. lacusprofundi variants represents an archellin 331 protein with a particularly high level of variation (38%). An additional archaellin protein with 332 less variation to Hrr. lacusprofundi (77%) mapped to a contig where the neighboring genes 333 matched best to Halorubrum spp., but not specifically Hrr. lacusprofundi (Table S11). These 334 335 findings provide further support for the importance of archaellin variation within the Hrr. lacusprofundi population (2). In addition, two variants matched to DL31 but neighboring 336 genes matched to other haloarchaea (Table S11). Four variants, including a carbohydrate 337 ABC transporter protein matched to Hrr. lacusprofundi but with neighboring contig genes 338 matching to other haloarchaea (Table S11). The contigs matching other haloarchaea may 339 represent islands of genomic DNA present within strains of Hrr. lacusprofundi, or derive 340 from other low abundance haloarchaeal species in the lake. 341

342 DL31 metabolism and cell function. DL31 oligopeptide and iron ABC transporters
343 were positively correlated with the highly abundant DL31 protein Halar_1791 of unknown
344 function (Table S1). DL31 protein Halar_1791 was the 5th most abundant protein for DL31
345 (29th overall in the metaproteome). It belongs to the MmpL (mycobacterial membrane protein

346 large) transporter family of the extended RND (Resistance-Nodulation-Cell Division) permease superfamily (43, 44). Thus, we infer that Halar 1791 is a transporter. Homologs of 347 Halar 1791 are found across Halobacteriales genomes, although their function has not been 348 349 experimentally determined. In mycobacteria, MmpL transporters are involved in lipid export and antibiotic efflux (43, 45, 46). The distribution of Halar 1791 protein was positively 350 correlated with the two most abundant proteins for DL31, oligopeptide- and iron-binding 351 lipoproteins of ABC transporters, and we therefore speculate that the three transporters may 352 be functionally associated. Halar 1791 also showed a positive correlation with most *Hht*. 353 354 litchfieldiae archaellin proteins (Tables S1 and S2). It also showed a positive correlation with the most abundant Hrr. lacusprofundi TRAP transporter (Hlac 2586) and oligopeptide ABC 355 transporter (Hlac 0069), and bacterial porin and TonB transporter receptor. Overall, these 356 357 correlations underscore the potential importance of Halar 1791 to the acquisition of nutrients by DL31. Another MmpL/RND permease transporter was detected in the Deep Lake 358 metaproteome for *Hht. litchfieldiae* (halTADL 0082), but at very low abundance. 359 360 General features of *Hht. litchfieldiae*, DL31 and *Hrr. lacusprofundi* in Deep Lake. Cell surface and glycosylation: The surface layer (S-layer) glycoprotein forms a 361 paracrystalline lattice that functions as the haloarchaeal cell envelope (2, 47). Detected 362 putative cell surface glycoproteins of the three dominant haloarchaea (halTADL 1043, 363 Halar 0829, Hlac 2976, Hlac 0412) are likely to be the major S-layer proteins, which 364 365 accounts for their high abundance in the samples. These form a porous, two-dimensional lattice that encases the cell, with the S-layer proteins anchored in the cell membrane, and the 366 S-layer envelope separated from the cell membrane by a 'quasi-periplasmic space' (47). In 367 addition, S-layer proteins and other surface-exposed proteins (archaella, pilins) are post-368 translationally modified by glycosylation (48, 49, 50, 51). N-glycosylation of S-layer proteins 369 proceeds via a process involving multiple archaeal glycosylation (Agl) proteins, of which the 370

371 most conserved is oligosaccharyltransferase AglB, a membrane-bound protein that transfers the glycan moiety to the protein (50). Aside from AglB, little if any sequence identity is 372 shared among other glycosylation enzymes across haloarchaeal species (50). AglB was 373 374 detected for *Hht. litchfeldiae* (halTADL 2411). Other proteins in the metaproteome were implicated in glycosylation of surface proteins, based on homologs involved in N-375 glycosylation of proteins in other haloarchaea (49, 50, 52); these include a sugar 376 nucleotidyltransferase (halTADL 3353), a glycosyltransferases (halTADL 2565), NUDIX 377 hydrolases (halTADL 3253, halTADL 2550), and a nucleoside-diphosphate-sugar 378 379 epimerase/hydratase (halTADL 3057). Isoprenoid metabolism: The cell membrane lipids of haloarchaea consist of glycerol 380 diether lipids with prenyl side chains. The glycerophosphate backbone of these membrane 381 382 lipids is formed from glycerol 1-phosphate (see Carbohydrate metabolism), and the prenyl side chains and other isoprenoids are derived via the mevalonate pathway (25, 53). The 383 isoprene-based lipids used for lipid modification of S-layer glycoproteins in haloarchaea are 384 385 also synthesized via the mevalonate pathway (54). Isoprenoid biosynthesis proteins were detected in the metaproteome, including an enzyme (phytoene synthase; halTADL 0465) 386 involved in retinal production for rhodopsins in *Hht. litchfieldiae*. 387 Sulfur metabolism: The mechanism for reductive sulfate assimilation in haloarchaea has 388 yet to be resolved (25, 55). Several hypothetical rhodanese domain proteins have been 389 390 proposed as thiosulfate sulfurtransferase or sulfite reductase in haloarchaea (55); homologs of these proteins were detected for the three dominant Deep Lake haloarchaea (halTADL 2750, 391

Halar_2935, Hlac_1687). *Hht. litchfieldiae* has been reported to produce H₂S from thiosulfate

- 393 (56). A detected sulfotransferase (halTADL_1176) showed closest sequence identity to
- 394 phosphoadenylylsulfate (PAPS) reductase; PAPS is the universal sulfate donor for the

sulfation of lipids and sugars (57), so this enzyme may function in sulfate transfers requiredfor the biosynthesis of sulfated lipids and/or sugars.

397 <u>Osmotic adaptation:</u> A PspA homolog was detected for *Hht. litchfieldiae*

398 (halTADL_2278). In bacteria, the transcriptional activator PspA plays a role in sensing a

variety of membrane stressors, including phage infection, heat shock, and osmotic shock (58).

400 Proteomic analysis of *H. volcanii* showed that the PspA homolog was more abundant in high-

salt conditions, suggesting that it may play an important role in hypersaline adaptation,

402 although the mechanism is not known (59). In light of virus infection of *Hht. litchfieldiae* in

403 Deep Lake (2), it is also possible that the PspA homolog in *Hht. litchfieldiae* is also

404 responsive to membrane perturbation resulting from infection.

Homologs of osmotic inducible protein C (OsmC) were detected for DL31 (Halar_1442)

406 and *Hrr. lacusprofundi* (Hlac_1348). OsmC was originally identified in *E. coli* in response to

407 osmotic shock (60), and accumulates in cells exposed to high external osmolality (61).

408 Because OsmC displays peroxiredoxin-like activity against organic hydroperoxides, it has

409 been inferred to have cross-protectivity against elevated osmolality and oxidative stress (61).

410 However, in a proteomic study of the archaeon *Thermococcus kodakaraensis*, OsmC was

411 found to have increased abundance in response to osmotic stress, but not oxidative stress

412 (62).

413 <u>Adhesion:</u> Distinct from archaella, type IV pilus proteins (PilA) were detected for *Hht*.

414 litchfieldiae (halTADL 1387, halTADL 0751, halTADL 1387), DL31 (Halar 2365,

415 Halar 3709), and Hrr. lacusprofundi (Hlac 1363, Hlac 3311) (Table S3). These pili are

416 essential for some haloarchaea to adhere to surfaces (48, 63, 64), and a large DL31 pilus

protein (653 aa) contained a PKD domain which may promote intercellular interactions inarchaea (65).

419 Cell division and growth: Haloarchaea typically have a FtsZ-based system for cytokinesis (66). FtsZ proteins were detected in the Deep lake metaproteome, matching *Hht*. 420 litchfieldiae (halTADL 0937, halTADL 3056) and DL31 (Halar 2224). A possible 421 422 MreB/FtsA cell division protein was also detected for *Hht. litchfieldiae* (halTADL 0130). Another protein implicated in cell division is an ATPase containing dual CDC48 (Cell 423 division control protein 48) domains, which belongs to a class of VCP (Valosin Containing 424 Protein)-like archaeal proteins that are implicated in the regulation of the cell cycle (67); 425 these were detected for *Hht. litchfieldiae* (halTADL 2740) and DL31 (Halar 1865, 426 427 Halar 2098). Energy metabolism: ATP synthase and/or respiratory chain proteins were detected for 428 429 Hht. litchfieldiae, DL31, and Hrr. lacusprofundi consistent with the generation of metabolic energy. The detection of a cytoplasmic inorganic pyrophosphatase for *Hht. litchfieldiae* 430

431 (halTADL_1644) is undoubtedly important to energy metabolism, given that pyrophosphate

432 is generated as a byproduct of numerous metabolic processes (including phosphonate

433 degradation; see **Phosphorus metabolism**), and pyrophosphate hydrolysis is a highly

434 exergonic reaction that can be used to facilitate less energetically favourable processes (68).

Other microorganisms in Deep Lake. *Dunaliella*: It is likely that the lake's primary 435 producer *Dunaliella* is underrepresented in the Deep Lake metaproteome data as metagenome 436 analyses identified few matches to available *Dunaliella* sequence data (1). In the 437 438 metaproteome, a total of six chloroplast proteins were detected: a translation initiation factor, ribulose bisphosphate carboxylase/oxygenase (large chain), and chloroplast ATP synthase 439 subunits. These provide evidence for photosynthesis and carbon fixation by Dunaliella. 440 Halobacterium sp. DL1: Proteins were detected for Halobacterium sp. DL1, a low 441 abundance (~0.3% of the community (20)) haloarchaeaon in Deep Lake, including S-layer 442 glycoprotein, ATP synthase subunit, an archaellin, and a BCAA ABC transporter lipoprotein. 443

444	Th	e expression of this last protein is consistent with genomic evidence, by which DL1 was
445	inf	Ferred to have a metabolic preference for amino acids, especially BCAA (20).
446		Bacteria: Thirty six proteins showed the best matches to bacterial proteins, although
447	the	ese were typically low matches, with half showing less than 50% sequence identity to
448	kn	own bacterial proteins. Most of the proteins showed the best matches to
449	Ga	ammaproteobacteria, including Alteromonadales (especially Marinobacter spp.) and
450	00	ceanospirillales; based on SSU 16S rRNA pyrotag data, these groups have been detected in
451	De	ep Lake (20). Putative bacterial proteins include cell surface proteins involved in
452	int	ercellular interactions; an outer membrane conjugative transfer protein (Marinobacter sp.
453	Tra	aF (69)); and a TonB-dependent receptor and a periplasmic component of a TRAP
454	tra	nsporter, which indicate targeting of complex substrates and carboxylates, respectively.
455		
456	RI	EFERENCES
457	1.	DeMaere MZ, Williams TJ, Allen MA, Brown MV, Gibson JA, Rich J, Lauro FM,
458		Dyall-Smith M, Davenport KW, Woyke T, Kyrpides NC, Tringe SG, Cavicchioli R.
459		2013. High level of intergenera gene exchange shapes the evolution of haloarchaea in an
460		isolated Antarctic lake. Proc Natl Acad Sci USA 110: 16939–16944.
461	2.	Tschitschko B, Williams TJ, Allen MA, Páez-Espino D, Kyrpides N, Zhong L,
462		Raftery MJ, Cavicchioli R. 2015. Antarctic archaea-virus interactions: metaproteome-
463		led analysis of invasion, evasion and adaptation. ISME J 9: 2094–2107.
464	3.	Williams TJ, Long E, Evans F, DeMaere MZ, Lauro FM, Raftery MJ, Ducklow H,
465		Grzymski JJ, Murray AE, Cavicchioli R. 2012. A metaproteomic assessment of winter
466		and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J 6:
467		1883-1900.

468	4.	DeMaere MZ, Lauro FM, Thomas T, Yau S, Cavicchioli R. 2011. Simple high-
469		throughput annotation pipeline (SHAP). Bioinformatics 27: 2431-2432.
470	5.	Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A,
471		Anderson I, Lykidis A, Mavromatis K, Ivanova NN, Kyrpides NC. 2010. The
472		integrated microbial genomes system: an expanding comparative analysis resource.
473		Nucleic Acids Res 38: D382-390.
474	6.	Vizcaino JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Rios D, Dianes JA, Sun
475		Z, Farrah T, Bandeira N, Binz PA, Xenarios I, Eisenacher M, Mayer G, Gatto L,
476		Campos A, Chalkley RJ, Kraus HJ, Albar JP, Martinez-Bartolomé S, Apweiler R,
477		Omenn GS, Martens L, Jones AR, Hermjakob H. 2014. ProteomeXchange provides
478		globally coordinated proteomics data submission and dissemination. Nat Biotech 32: 223-
479		226.
480	7.	Gupta N, Pevzner PA. 2009. False discovery rates of protein identifications: a strike
481		against the two-peptide rule. J Proteome Res 8: 4173-4181.
482	8.	Claassen M. 2012. Inference and validation of protein identifications. Mol Cell Prot 11:
483		1097-1104.
484	9.	Morris RM, Nunn BL, Frazar C, Goodlett DR, Ting YS, Rocap G. 2010.
485		Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization
486		and energy transduction. ISME J 4: 673-685.
487	10	. Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G,
488		Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K. 2012. Who is
489		who in litter decomposition? Metaproteomics reveals major microbial players and their
490		biogeochemical functions. ISME J 6: 1749-1762.

491 11. HEIDSUTA, Dani A, Duaite Wi, Heper Dii, Kichnow IIII, von Deigen Wi, Sel	hr A, Duarte M, Pieper DH, Richnow HH, von Bergen	H, Richnow HH, von Ber	per DH,	M, Pie	Duarte I	, Bahr A.	Herbst FA.	1 11.	491
--	---	------------------------	---------	--------	----------	-----------	------------	-------	-----

- 492 Bombach P. 2013. Elucidation of in situ polycyclic aromatic hydrocarbon degradation by
 493 functional metaproteomics (protein-SIP). Proteomics 13: 2910-2920.
- 494 12. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S,
- 495 Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V,
- 496 Kuznetsov D, Liechti R, Morreti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I,
- 497 Stockinger H. 2012. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:
 498 W597-603.
- 499 13. Galardini M, Biondi EG, Bazzicalupo M, Mengoni A. 2011. CONTIGuator: a bacterial
 500 genomes finishing tool for structural insights on draft genomes. Source Code Biol Med 6:
 501 11.
- 502 14. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. 2009. DNAPlotter:
- circular and linear interactive genome visualization. Bioinformatics **25:** 119-120.
- 15. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. 2012. Artemis: an
- 505 integrated platform for visualization and analysis of high-throughput sequence-based
- 506 experimental data. Bioinformatics **28:** 464-469.
- 507 16. R Core Team. 2014. R: A Language and Environment for Statistical Computing. R
 508 Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
- 509 17. Frank E Harrell Jr, with contributions from Charles Dupont and many others.
- 510 2014. Hmisc: Harrell Miscellaneous. R package version 3.14-6. http://CRAN.R-
- 511 project.org/package=Hmisc
- 512 18. Clarke KR, Gorley RN. 2006.PRIMER v6: User Manual/Tutorial. Primer-E, Plymouth,
 513 192pp.
- **19. Burns DG, Dyall Smith M.** 2006. Cultivation of haloarchaea. Methods Microbiol **35**:
- 515 535–552.

516	20. Wi	liams [ГJ,	Allen	MA.	DeM	aere	MZ,	Kyr	pides	NC.	Tring	e SG,	, Wo	yke	T.

- 517 Cavicchioli R. 2014. Microbial ecology of an Antarctic hypersaline lake: genomic
- assessment of ecophysiology among dominant haloarchaea. ISME J 8: 1645–1658.
- 519 21. Oren A, Gurevich P. 1995. Diversity of lactate metabolism in halophilic archaea. Can J
- 520 Microbiol **41**: 302-307.
- 521 22. Schwaiger R, Schwarz C, Furtwängler K, Tarasov V, Wende A, Oesterhelt D. 2010.
- 522 Transcriptional control by two leucine-responsive regulatory proteins in *Halobacterium*

salinarum R1. BMC Mol Biol **11:** 40.

- 524 23. Elevi Bardavid R, Oren A. 2008. Dihydroxyacetone metabolism in Salinibacter ruber
- and in *Haloquadratum walsbyi*. Extremophiles **12**: 125–131.
- 526 24. Ouellette M, Makkay AM, Papke RT. 2013. Dihydroxyacetone metabolism in
- 527 *Haloferax volcanii*. Front Microbiol 4: 376.
- 528 25. Falb M, Müller K, Königsmaier L, Oberwinkler T, Horn P, von Gronau S, Gonzales
- 529 **O, Pfeiffer F, Bornberg-Bauer E, Oesterhelt D.** 2008. Metabolism of halophilic
- 530 archaea. Extremophiles **12:** 177-196.
- 531 26. Monniot C, Zébré AC, Aké FM, Deutscher J, Milohanic E. 2012. Novel listerial
- 532 glycerol dehydrogenase- and phosphoenolpyruvate-dependent dihydroxyacetone kinase
- 533 system connected to the pentose phosphate pathway. J Bacteriol **194**: 4972-4982.
- 534 27. Jung JY, Kim TY, Ng CY, Oh MK. 2012. Characterization of GCY1 in *Saccharomyces*
- *cerevisiae* by metabolic profiling. J Appl Microbiol **113**: 1468-1478.
- 536 28. Hildebrand RL. 1983. The effects of synthetic phosphonates on living systems. In:
- Hildebrand RL (ed). The Role of Phosphonates in Living Systems. CRC Press, Inc., Boca
 Raton, pp 139–169
- 539 29. Chimileski S, Dolas K, Naor A, Gophna U, Papke RT. 2014. Extracellular DNA
- 540 metabolism in *Haloferax volcanii*. Front Microbiol **5:** 57.

- 541 30. Danovaro R, Corinaldesi C, Dell'Anno A, Fabiano M, Corselli C. 2005. Viruses,
- 542 prokaryotes and DNA in the sediments of a deep-hypersaline anoxic basin (DHAB) of the

543 Mediterranean Sea. Environ Microbiol **7:**586-592.

- 544 31. Buchenau B, Kahnt J, Heinemann IU, Jahn D, Thauer RK. 2006. Heme biosynthesis
- 545 in *Methanosarcina barkeri* via a pathway involving two methylation reactions. J Bacteriol

188: 8666-8668.

547 32. White RH. 2003. The biosynthesis of cysteine and homocysteine in *Methanococcus*548 *jannaschii*. Biochim Biophys Acta 1624: 46–53.

549 33. Gulko MK, Dyall-Smith M, Gonzalez O, Oesterhelt D. 2014. How do haloarchaea

- synthesize aromatic amino acids? PLoS One **9**:e107475.
- 34. Spudich JL. 2006. The multitalented microbial sensory rhodopsins. Trends Microbiol
 14: 480-487.

553 35. Hou S, Larsen RW, Boudko D, Riley CW, Karatan E, Zimmer M, Ordal GW, Alam

554 M. 2000. Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature 403:
555 540-544.

- 36. Storch KF, Rudolph J, Oesterhelt D. 1999. Car: a cytoplasmic sensor responsible for
- arginine chemotaxis in the archaeon *Halobacterium salinarum*. EMBO J **18**: 1146-1158.

558 37. Levin I, Giladi M, Altman-Price N, Ortenberg R, Mevarech M. 2004. An alternative

- pathway for reduced folate biosynthesis in bacteria and halophilic archaea. Mol Microbiol560 54:1307-1318.
- 38. Nelson-Sathi S, Dagan T, Landan G, Janssen A, Steel M, McInerney JO,
- 562 **Deppenmeier U, Martin WF.** 2012. Acquisition of 1,000 eubacterial genes
- 563 physiologically transformed a methanogen at the origin of Haloarchaea. Proc Natl Acad
- 564 Sci USA **109**: 20537-20542.

565	39. Nelson-Sathi S, Sousa FL, Roettger M, Lozada-Chávez N, Thiergart T, Janssen A,
566	Bryant D, Landan G, Schönheit P, Siebers B, McInerney JO, Martin WF. 2015.
567	Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature
568	517: 77-80.
569	40. Möller-Zinkhan D, Börner G, Thauer RK. 1989. Function of methanofuran,
570	tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Arch Microbiol
571	152: 362-368.
572	41. Maden BEH. 2000. Tetrahydrofolate and tetrahydromethanopterin compared:
573	functionally distinct carriers in C_1 metabolism. Biochem J 350 : 609-629.
574	42. Barker RJ. 1981. Physical and chemical parameters of Deep Lake, Vestfold Hills,
575	Antarctica. Publ. No. 130. Australian National Antarctic Research Expeditions Series
576	B(V) Limnology, 73 pp.
577	43. Tekaia F, Gordon SV, Garnier T, Brosch R, Barrell BG, Cole ST. 1999. Analysis of
578	the proteome of Mycobacterium tuberculosis in silico. Tuber Lung Dis 79: 329–342
579	44. Sandhu P, Akhter Y. 2015. The internal gene duplication and interrupted coding
580	sequences in the MmpL genes of Mycobacterium tuberculosis: Towards understanding
581	the multidrug transport in an evolutionary perspective. Int J Med Microbiol 305: 413-
582	423.
583	45. Converse SE, Mougous JD, Leavell MD, Leary JA, Bertozzi CR, Cox JS. 2003.
584	MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis
585	virulence. Proc Natl Acad Sci USA 100: 6121–6126.
586	46. Pacheco SA, Hsu FF, Powers KM, Purdy GE. 2013. MmpL11 protein transports
587	mycolic acid-containing lipids to the mycobacterial cell wall and contributes to biofilm
588	formation in Mycobacterium smegmatis. J Biol Chem 288: 24213–24222.
589	47. Albers S-J, Meyer BH. 2011. The archaeal cell envelope. Nat Rev Microbiol 9: 414-426.

48. Tripepi M, Imam S, Pohlschroder M. 2010. *Haloferax volcanii* flagella are required for
motility but are not involved in PibD-dependent surface adhesion. J Bacteriol 192: 3093-

592 3102.

- 49. Kaminski L, Guan Z, Yurist-Doutsch S, Eichler J. 2013a. Two distinct N-
- glycosylation pathways process the *Haloferax volcanii* S-layer glycoprotein upon changes
- in environmental salinity. MBio 4: e00716–13.
- 596 50. Kaminski L, Lurie-Weinberger MN, Allers T, Gophna U, Eichler J. 2013b.
- 597 Phylogenetic- and genome-derived insight into the evolutionary history of N-
- 598 glycosylation in Archaea. Mol Phylogenet Evol **68**: 327–339.
- 599 51. Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J. 2014. N-linked
- glycosylation in Archaea: a structural, functional, and genetic analysis. Microbiol Mol
 Biol Rev 78: 304-341.
- 52. Kaminski L, Eichler J. 2014. *Haloferax volcanii* N-glycosylation: delineating the
 pathway of dTDP-rhamnose biosynthesis. PLoS One 9 :e97441.
- 53. VanNice JC, Skaff DA, Wyckoff GJ, Miziorko HM. 2013. Expression in *Haloferax*
- 605 *volcanii* of 3-hydroxy-3-methylglutaryl coenzyme A synthase facilitates isolation and
- 606 characterization of the active form of a key enzyme required for polyisoprenoid cell
- 607 membrane biosynthesis in halophilic archaea. J Bacteriol **195**: 3854-3862.
- 54. Konrad Z, Eichler J. 2002. Lipid modification of proteins in Archaea: attachment of a
- 609 mevalonic acid-based lipid moiety to the surface-layer glycoprotein of *Haloferax volcanii*
- follows protein translocation. Biochem J **366**: 959-964.
- 55. Feng J, Liu B, Zhang Z, Ren Y, Li Y, Gan F, Huang Y, Chen X, Shen P, Wang L,
- **Tang B, Tang XF.** 2012. The complete genome sequence of *Natrinema* sp. J7-2, a
- haloarchaeon capable of growth on synthetic media without amino acid supplements.
- 614 PLoS One 7: e41621.

615 56. Mou YZ, Qiu XX, Zhao ML, Cui HL, Oh D, Dyall-Smith ML. 2012. Halohasta

- 616 *litorea* gen. nov. sp. nov., and *Halohasta litchfieldiae* sp. nov., isolated from the Daliang
- aquaculture farm, China and from Deep Lake, Antarctica, respectively. Extremophiles 16:
 895–901.
- 57. Honke K, Taniguchi N. 2002. Sulfotransferases and sulfated oligosaccharides. Med Res
 Rev 22: 637-654.
- 58. Brissette JL, Weiner L, Ripmaster TL, Model P. 1991. Characterization and sequence
 of the *Escherichia coli* stress-induced *psp* operon. J Mol Biol 220: 35-48.
- 59. Bidle KA, Kirkland PA, Nannen JL, Maupin-Furlow JA. 2008. Proteomic analysis of
- 624 *Haloferax volcanii* reveals salinity-mediated regulation of the stress response protein
- 625 PspA. Microbiol **154**: 1436-1443.
- 626 60. Gutierrez C, Devedjian JC. 1991. Osmotic induction of gene *osmC* expression in
 627 *Escherichia coli* K12. J Mol Biol 220: 959-973.
- 628 61. Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R. 2005. Genome-wide
- 629 analysis of the general stress response network in *Escherichia coli*: sigma S-dependent
- genes, promoters, and sigma factor selectivity. J Bacteriol **187:**1591-1603.
- 631 62. Park SC, Pham BP, Van Duyet L, Jia B, Lee S, Yu R, Han SW, Yang JK, Hahm KS,
- 632 Cheong GW. 2008. Structural and functional characterization of osmotically inducible
- 633 protein C (OsmC) from *Thermococcus kodakaraensis* KOD1. Biochim Biophys Acta
- **1784**: 783-788.
- 635 63. Esquivel RN, Xu R, Pohlschroder M. 2013. Novel archaeal adhesion pilins with a
 636 conserved N terminus. J Bacteriol 195: 3808–3818.
- 637 64. Losensky G, Vidakovic L, Klingl A, Pfeifer F, Fröls S. 2015. Novel pili-like surface
- 638 structures of *Halobacterium salinarum* strain R1 are crucial for surface adhesion. Front
- 639 Microbiol **5**: 755.

640	65. Jing H, Takagi J, Liu JH, Lindgren S, Zhang RG, Joachimiak A, Wang JH,
641	Springer TA. 2002. Archaeal surface layer proteins contain beta propeller, PKD, and
642	beta helix domains and are related to metazoan cell surface proteins. Structure 10:1453-
643	1464.
644	66. Makarova KS, Yutin N, Bell SD, Koonin EV. 2010. Evolution of diverse cell division
645	and vesicle formation systems in Archaea. Nat Rev Microbiol 8: 731-741.
646	67. Confalonieri F, Marsault J, Duguet M. 1994. SAV, an archaebacterial gene with
647	extensive homology to a family of highly conserved eukaryotic ATPases. J Mol Biol 235:
648	396-401.
649	68. Maeshima M. 2000. Vacuolar H ⁺ -pyrophosphatase. Biochim Biophys Acta 1465: 37–51
650	69. Arutyunov D, Arenson B, Manchak J, Frost LS. 2010. F plasmid TraF and TraH are
651	components of an outer membrane complex involved in conjugation. J Bacteriol 192:
652	1730-1734.
653	
654	Supplementary material figure legends and list of tables
655	
656	Fig. S1 Number of proteins detected for single filter samples. Metaproteomics were
657	performed on a total of 15 filter samples, representing three distinct size fractions $(0.1 - 0.8)$
658	μ m on 0.1 μ m filters; 0.8 – 3 μ m on 0.8 μ m filters; 3 – 20 μ m on 3 μ m filters) from 5 distinct
659	depths (0 m, 5 m, 13 m, 24 m, 36 m). Fewer proteins were detected from 0.1 μ m filter
660	samples compared to the larger size fraction due to a decrease in the amount of biomass.
661	
662	Fig. S2 Microscopy of Deep Lake water. The image depicts cells attached to particulate
663	matter from surface water filtered through a 20 μm pre-filter prior to capture on a 3 μm filter.
664	Magnification, 100 x; scale bar, 10 μm.

667	based on number of identified proteins (blue bars); normalized total spectrum counts (red
668	bars); total number of proteins detected for each taxonomic category (numbers above blue
669	bars).
670	
671	Fig. S4 Relative abundance of proteins within functional categories. (A) <i>Hht. litchfieldiae</i> ;
672	(B) DL31; (C) Hrr. lacusprofundi. Abundance calculated relative to the number of proteins
673	for the respective organism (blue bars) or relative to the sum of the normalized total spectrum
674	counts (red bars).
675	
676	Fig. S5 Growth response of <i>Hht. litchfieldiae</i> to defined substrates. (A)
677	aminoethylphosphonate (AEP); (B) dihydroxyacetone (DHA); (C) starch.
678	
679	Table S1 Correlations mentioned in the main text.
680	
681	Table S2 Pearson correlation analyses performed in R using the normalized total spectrum
682	count across the 15 Deep Lake samples.
683	
684	Table S3 Complete list of proteins identified in the Deep Lake metaproteome
685	
686	Table S4 Proteins involved in transport functions from the Deep Lake metaproteome with the
687	best matches to Hht. litchfieldiae, DL31 and Hrr. lacusprofundi.
688	

Fig. S3 Taxonomic composition of the Deep Lake metaproteome. Relative abundance of taxa

689	Table S5 Proteins involved in carbohydrate uptake and metabolism from the Deep Lake
690	metaproteome with the best matches to Hht. litchfieldiae.
691	
692	Table S6 Proteins involved in the uptake and metabolism of nitrogen sources from the Deep
693	Lake metaproteome with the best matches to <i>Hht. litchfieldiae</i> , DL31 and <i>Hrr. lacusprofundi</i> .
694	
695	Table S7 Proteins involved in motility and taxis from the Deep Lake metaproteome with the
696	best matches to <i>Hht. litchfieldiae</i> .
697	
698	Table S8 Proteins implicated in protection against and responses to oxidative stress,
699	photolysis and UV irradiation detected in the Deep Lake metaproteome with the best matches
700	to Hht. litchfieldiae, DL31 or Hrr. lacusprofundi.
701	
702	Table S9 Proteins assigned to <i>Hht. litchfieldiae</i> tADL-II.
703	
704	Table S10 Variant proteins detected for <i>Hht. litchfieldiae</i> , tADL, DL31 or <i>Hrr</i> .
705	lacusprofundi.
706	
707	Table S11 Detected proteins with best matches to <i>Hht. litchfieldiae</i> , DL31 or <i>Hrr</i> .
708	lacusprofundi encoded on contigs with neighbouring genes that best matched to other
709	haloarchaeal species.

Fig. S1

Fig. S1 Number of proteins detected for single filter samples. Metaproteomics were performed on a total of 15 filter samples, representing three distinct size fractions $(0.1 - 0.8 \ \mu\text{m} \text{ on } 0.1 \ \mu\text{m}$ filters; $0.8 - 3 \ \mu\text{m}$ on $0.8 \ \mu\text{m}$ filters; $3 - 20 \ \mu\text{m}$ on $3 \ \mu\text{m}$ filters) from 5 distinct depths (0 m, 5 m, 13 m, 24 m, 36 m). Fewer proteins were detected from $0.1 \ \mu\text{m}$ filter samples compared to the larger size fraction due to a decrease in the amount of biomass.

Fig. S2 Microscopy of Deep Lake water. The image depicts cells attached to particulate matter from surface water filtered through a 20 μ m pre-filter prior to capture on a 3 μ m filter. Magnification, 100 x; scale bar, 10 μ m.

Fig. S3 Taxonomic composition of the Deep Lake metaproteome. Relative abundance of taxa based on number of identified proteins (blue bars); normalized total spectrum counts (red bars); total number of proteins detected for each taxonomic category (numbers above blue bars).

Fig. S4

Fig. S4 Relative abundance of proteins within functional categories. **(A)** *Hht. litchfieldiae*; **(B)** DL31; **(C)** *Hrr. lacusprofundi*. Abundance calculated relative to the number of proteins for the respective organism (blue bars) or relative to the sum of the normalized total spectrum counts (red bars).

Fig. S5 Growth response of *Hht. litchfieldiae* to defined substrates. **(A)** aminoethylphosphonate (AEP); **(B)** dihydroxyacetone (DHA); **(C)** starch.

Table S1 Correlations mentioned in the current study. Fractionation of the Deep Lake biomass according to depth and filter size, comparing the abundances (measured in spectrum counts) of single proteins and proteins from functional categories. Statistically valid positive or negative correlations were determined between spectrum counts for proteins across the 15 filter samples. Pair-wise comparisons of spectrum counts were between individual abundant proteins, functional categories of proteins (the sum of the spectrum count for a functional group, such as tADL ABC transporter proteins) or taxonomic groups of proteins (for example all *Hht. litchfieldiae* tADL proteins vs all *Dunaliella* proteins). Only correlations with a p-value < 0.01 were regarded as statistically significant.. Positive correlations are shown in blue, negative correlations in red.

Correlation	r
Species/functional categories	
DL31 transport vs	0.96
Hrr. lacusprofundi transport	0.70
<i>Hht. litchfieldiae</i> transport <i>vs</i>	-0.91
DL31 transport	-0.71
<i>Hht. litchfieldiae</i> transport <i>vs</i>	-0.89
Hrr. lacusprofundi transport	0.07
Species/functional subcategories	
<i>Hht. litchfieldiae</i> archaellins <i>vs</i>	-0.95
Hht. litchfieldiae central carbon metabolism	0.75
<i>Hht. litchfieldiae</i> archaellins <i>vs</i>	-0.87
Hht. litchfieldiae ribosomes	0.07
DL31 ABC transporter – oligopeptides vs	0.94
DL31 ABC transporter – amino acids	0.91
DL31 ABC transporter – oligopeptides vs	0.89
DL31 ABC transporter – iron	0.07
DL31 ABC transporter – amino acids vs	0.92
DL31 ABC transporter – iron	0.72
DL31 ABC transporters – oligopeptides vs	0.76
Hrr. lacusprofundi TRAP transporters	0.70
DL31 ABC transporters – amino acids vs	0.80
Hrr. lacusprofundi TRAP transporters	0.00
DL31 ABC transporters – oligopeptides vs	0.91
Hrr. lacusprofundi ABC transporters - oligopeptides	0.71
DL31 ABC transporters – oligopeptides vs	0.72
Hrr. lacusprofundi ABC transporters – amino acids	0.72

DL31 ABC transporters – amino acids vs	0.72
Hrr. lacusprofundi ABC transporters – amino acids	0.72
DL31 ABC transporters – iron vs	0.95
Hrr. lacusprofundi ABC transporters – oligopeptides	0.75
DL31 ABC transporters – amino acids vs	0.92
Hrr. lacusprofundi ABC transporters – oligopeptides	0.72
DL31 ABC transporters – iron vs	0.84
Hrr. lacusprofundi TRAP transporters	0.04
Hrr. lacusprofundi TRAP transporters vs	0.90
Hrr. lacusprofundi ABC transporters – oligopeptides	0.90
Individual proteins	
<i>Hht. litchfieldiae</i> archaellin halTADL_1544 (protein #1) vs	0.88
<i>Hht. litchfieldiae</i> archaellin halTADL_1812 (protein #3)	
<i>Hht. litchfieldiae</i> archaellin halTADL 1544 (protein #1) vs	0.85
<i>Hht. litchfieldiae</i> archaellin halTADL_1813 (protein #7)	
<i>Hht. litchfieldiae</i> archaellin halTADL 1544 (protein #1) vs	0.74
<i>Hht. litchfieldiae</i> archaellin halTADL_1810 (protein #21)	
<i>Hht. litchfieldiae</i> archaellin halTADL_1544 (protein #1) vs	0.95
<i>Hht. litchfieldiae</i> archaellin halTADL_1811 (protein #80)	
<i>Hht. litchfieldiae</i> archaellin halTADL_1544 (protein #1) vs	0.96
<i>Hht. litchfieldiae</i> archaellin halTADL_0078 (protein #95)	
<i>Hht. litchfieldiae</i> archaellin halTADL_1812 (protein #3) vs	0.97
<i>Hht. litchfieldiae</i> archaellin halTADL 1813 (protein #7)	
<i>Hht. litchfieldiae</i> archaellin halTADL 1812 (protein #3) vs	0.90
<i>Hht. litchfieldiae</i> archaellin halTADL 1813 (protein #12)	
<i>Hht. litchfieldiae</i> archaellin halTADL_1812 (protein #3) vs	0.85
<i>Hht. litchfieldiae</i> archaellin halTADL 1810 (protein #21)	
<i>Hht. litchfieldiae</i> archaellin halTADL 1812 (protein #3) vs	0.89
<i>Hht. litchfieldiae</i> archaellin halTADL 1811 (protein #80)	
<i>Hht. litchfieldiae</i> archaellin halTADL 1812 (protein #3) vs	0.89
<i>Hht. litchfieldiae</i> archaellin halTADL_0078 (protein #95)	
<i>Hht. litchfieldiae</i> archaellin halTADL 1812 (protein #3) vs	0.78
<i>Hht. litchfieldiae</i> archaellin halTADL 0078 (protein #118)	
<i>Hht. litchfieldiae</i> archaellin halTADL 1812 (protein #59) vs	0.82
<i>Hht. litchfieldiae</i> archaellin halTADL 1810 (protein #21)	

Hht. litchfieldiae archaellin halTADL 1813 (protein #7) vs	0.91
<i>Hht. litchfieldiae</i> archaellin halTADL_1813 (protein #12)	
<i>Hht. litchfieldiae</i> archaellin halTADL_1813 (protein #7) vs	0.92
<i>Hht. litchfieldiae</i> archaellin halTADL_1810 (protein #21)	
<i>Hht. litchfieldiae</i> archaellin halTADL_1813 (protein #7) vs	0.82
<i>Hht. litchfieldiae</i> archaellin halTADL_1811 (protein #80)	
<i>Hht. litchfieldiae</i> archaellin halTADL_1813 (protein #7) vs	0.84
<i>Hht. litchfieldiae</i> archaellin halTADL_0078 (protein #95)	
<i>Hht. litchfieldiae</i> archaellin halTADL_1813 (protein #7) vs	0.77
<i>Hht. litchfieldiae</i> archaellin halTADL_0078 (protein #118)	
Hht. litchfieldiae archaellin halTADL_1813 (protein #12) vs	0.92
<i>Hht. litchfieldiae</i> archaellin halTADL_1810 (protein #21)	
<i>Hht. litchfieldiae</i> archaellin halTADL_1813 (protein #12) vs	0.94
<i>Hht. litchfieldiae</i> archaellin halTADL_0078 (protein #118)	
<i>Hht. litchfieldiae</i> archaellin halTADL_1810 (protein #21) vs	0.85
<i>Hht. litchfieldiae</i> archaellin halTADL_0078 (protein #118)	
DL31 ABC transporter lipoprotein – oligopeptides Halar_2016 (Protein #9) vs	0.76
DL31 MmpL family membrane transporter Halar_1791 (Protein #29)	
DL31 ABC transporter lipoprotein – iron Halar_0820 (Protein #33) vs	0.74
DL31 MmpL family membrane transporter Halar_1791 (Protein #29)	
<i>Hht. litchfieldiae</i> archaellin halTADL_1544 (protein #1) vs	0.86
<i>Hht. litchfieldiae</i> α-amylase halTADL_0142 (Protein #65)	0.80
<i>Hht. litchfieldiae</i> archaellin halTADL_1812 (protein #3) vs	0.75
<i>Hht. litchfieldiae</i> α-amylase halTADL_0142 (Protein #65)	0.75
<i>Hht. litchfieldiae</i> archaellin halTADL_1813 (protein #7) vs	0.69
<i>Hht. litchfieldiae</i> α-amylase halTADL_0142 (Protein #65)	0.09
<i>Hht. litchfieldiae</i> archaellin halTADL_1811 (protein #80) vs	0.86
<i>Hht. litchfieldiae</i> α-amylase halTADL_0142 (Protein #65)	0.00
Hht. litchfieldiae archaellin halTADL_0078 (protein #95) vs	0.90
<i>Hht. litchfieldiae</i> α-amylase halTADL_0142 (Protein #65)	0.20
Species	
Hht. litchfieldiae vs Dunaliella	0.68

Table S4 Proteins with transport functions from the Deep Lake metaproteome with the best matches to *Hht. litchfieldiae*, DL31 and *Hrr. lacusprofundi*. Protein numbers are given according to Table S3 (ranked by the sum of the normalized total spectrum count). Sequence identity refers to the amino acid sequence identity of the detected protein to its best match (column denoted "Locus tag") in a BLASTP search. Spectrum count shows the sum of the normalized total spectrum count across all 15 samples. 'nd' denotes 'not determined' due to peptides matching to a protein family (i.e. more than one possible source protein; see Supplementary Information, Materials and Methods). * Denotes a truncated protein.

Protein annotation	Protein #	Locus tag	Sequence identity (%)	Spectrum count
Hht. litchfieldiae				
Phosphate uptake	1	Γ	1	
phosphate ABC transporter solute-binding protein (PstS)	13	halTADL_2155	99	235
phosphate ABC transporter solute-binding protein (PstS)	61	halTADL_2155	88	92
phosphate ABC transporter solute-binding protein (PstS)	75	halTADL_2155	93	82
phosphate ABC transporter ATPase (PstB)	517	halTADL_2152	100	7.6
phosphate ABC transporter solute-binding protein (PstS)	85	halTADL_1182	51	71
Phosphonate uptake				
phosphonate ABC transporter solute-binding protein (PhnD)	347	halTADL_1334	100	16
Carbohydrate uptak	e			
carbohydrate ABC transporter solute-binding lipoprotein	265	halTADL_2357	100	25
carbohydrate ABC transporter solute-binding lipoprotein	269	halTADL_2761	100	24
carbohydrate ABC transporter solute-binding lipoprotein	702	halTADL_1911	100	3.2
carbohydrate ABC transporter solute-binding lipoprotein	247	halTADL_2761	84	26
carbohydrate ABC transporter ATPase	1099	halTADL_2764	88	0.4
Amino acid uptake				
branched-chain amino acid ABC transporter solute-binding protein	373	halTADL_2916	100	14
branched-chain amino acid ABC transporter solute-binding protein	202	halTADL_2916	88	33
polar amino acid ABC transporter solute-binding protein	486	halTADL_0024	100	8.5
Ammonium uptake				
ammonium permease (ammonium transporter) (Amt)	220	halTADL_1826	100	30
Urea uptake				
urea ABC transporter solute-binding protein	617	halTADL_0628	100	4.8
Iron uptake		Γ	Γ	
iron ABC transporter solute-binding protein	159	halTADL_1788	100	40.9
iron ABC transporter solute-binding protein	856	halTADL_1788	83	1.6

Cation transport				
K+ uptake system, TrkA subunit	806	halTADL_3061	100	2.0
K+ uptake system, TrkA subunit	1048	halTADL_3061	89	0.6
K+ uptake system, TrkA subunit	287	halTADL_3258	100	21.2
K+ uptake system, TrkA subunit	854	halTADL_2713	100	1.6
mechanosensitive ion channel (MscS)	436	halTADL_2994	100	10.5
Secretion				-
signal peptide peptidase SppA	282	halTADL_2673	100	22.0
PilT protein: Type II/IV secretion system domain + KH domain protein	558	halTADL_0825	100	6.3
SecD/SecF/SecDF export membrane protein	213	halTADL_0787	100	31.4
signal recognition particle Srp54, secretory pathway	500	halTADL_2202	100	7.9
SecD/SecF/SecDF export membrane protein	722	halTADL_0788	100	3.0
TRAP/TTT transport				
Tripartite Tricarboxylate transporter (TTT), solute receptor	138	halTADL_0690	100	45.2
TRAP transporter solute receptor, TAXI family	299	halTADL_0243	100	19.8
Other transport				
thiamine ABC transporter, substrate-binding protein (ThiB)	961	halTADL_2794	100	0.9
nucleoside ABC transporter substrate-binding protein	881	halTADL_2623	nd	1.5
nitrate/sulfonate/bicarbonate ABC transporter solute-binding protein	697	No match (encoded on tADL-II contig)	-	3.3
ABC-type antimicrobial peptide transport system, permease component	492	halTADL_1613	100	8.1
ABC-type antimicrobial peptide transport system, permease component	693	halTADL_1613	88	3.4
heavy metal-exporting ATPase (copper?)	782	halTADL_1767	100	2.3
formate/nitrite transporter	868	halTADL_2501	100	1.5
phosphate/sulfate permease (PiT family)	837	halTADL_3083	100	1.7
RND superfamily family / MMPL (mycobacterial membrane protein large) family protein	957	halTADL_0082	100	0.9
DL31				
Phosphate uptake				
phosphate ABC transporter solute-binding protein (PstS)	533	Halar_1873	100	7.0
Oligopeptide uptake				
oligopeptide/dipeptide ABC transporter solute-binding protein	9	Halar_2016	100	277

oligopeptide/dipeptide ABC transporter solute-binding protein	76	Halar_1439	100	82
oligopeptide/dipeptide ABC transporter solute-binding protein	189	Halar_0722	100	35
oligopeptide/dipeptide ABC transporter solute-binding protein	255	Halar_1146	100	26
oligopeptide/dipeptide ABC transporter solute-binding protein	582	Halar_1285	100	5.5
oligopeptide/dipeptide ABC transporter solute-binding protein	654	Halar_3436	100	4.1
oligopeptide/dipeptide ABC transporter solute-binding protein	818	Halar_2651	100	1.8
oligopeptide/dipeptide ABC transporter solute-binding protein	879	Halar_2024	100	1.5
Amino acid uptake				
branched-chain amino acid ABC transporter solute-binding protein	158	Halar_1569	100	41
branched-chain amino acid ABC transporter solute-binding protein	187	Halar_2890	100	36
branched-chain amino acid ABC transporter solute-binding protein	192	Halar_3433	100	35
Iron uptake				
iron ABC transporter solute-binding protein	33	Halar_0820	100	124
iron ABC transporter solute-binding protein	599	Halar_1080	100	5.1
Other transport				
membrane transporter: MMPL (mycobacterial membrane protein large) family	29	Halar_1791	99	134
protein / RND superfamily		_		
uncharacterized transporter (export?), ATPase component	919	Halar_1798	100	1.2
Hrr. lacusprofundi				
Phosphate uptake	1	1		
phosphate ABC transporter solute-binding protein (PstS)	326	Hlac_3551	100	17
Oligopeptide uptake		TT		
oligopeptide/dipeptide ABC transporter solute-binding protein	1058	Hlac_0069	100	87
oligopeptide/dipeptide ABC transporter solute-binding protein	630	Hlac_0244	100	4.5
Amino acid uptake				
branched-chain amino acid ABC transporter solute-binding protein*	160	Hlac_2093	100	41
polar amino acid ABC transporter solute-binding protein	891	Hlac_1804	100	1.4
Iron uptake				
iron ABC transporter solute-binding protein	663	Hlac_0162	100	3.9
TRAP/TTT transport				
TRAP transporter solute receptor, TAXI family	56	Hlac_2586	100	97
TRAP transporter solute receptor, TAXI family	144	Hlac_2329	100	44

Other transport				
nucleoside ABC transporter solute-binding protein	496	Hlac_1417	100	8.0

Table S5 Proteins involved in carbohydrate uptake and metabolism from the Deep Lake metaproteome with the best matches to *Hht. litchfieldiae*. Protein numbers are given according to Table S3 (ranked by the sum of the normalized total spectrum count). Sequence identity refers to the amino acid sequence identity of the detected protein to its best match (column denoted "Locus tag") in a BLASTP search. Spectrum count shows the sum of the normalized total spectrum count across all 15 samples. *Denotes a match to a protein that is represented by an incomplete (truncated) gene on contig.

Protein annotation	Protein #	Locus tag	Sequence identity (%)	Spectrum count			
Carbohydrate uptak	Carbohydrate uptake						
carbohydrate ABC transporter solute-binding lipoprotein	265	halTADL_2357	100	25			
carbohydrate ABC transporter solute-binding lipoprotein	269	halTADL_2761	100	24			
carbohydrate ABC transporter solute-binding lipoprotein	702	halTADL_1911	100	3.2			
carbohydrate ABC transporter solute-binding lipoprotein	247	halTADL_2761	84	26			
carbohydrate ABC transporter ATPase	1099	halTADL_2764	88	0.4			
Polysaccharide/starch degr	adation	1	1				
α-amylase (glycosyl hydrolase, family 13)	65	halTADL_0142	100	90			
α-amylase (glycosyl hydrolase, family 13)	193	halTADL_0142	84	35			
α-amylase (glycosyl hydrolase, family 13)	543	halTADL_0142	94	6.8			
glucan 1,4-α-glucosidase (glucoamylase) (glycosyl hydrolase, family 15)	557	halTADL_0141	100	6.4			
4-α-glucanotransferase (amylomaltase) (glycosyl hydrolase, family 77)	710	halTADL_2529	100	3.1			
Glycerol catabolism							
glycerol kinase (GlpK)	17	halTADL_2249	100	206			
glycerol kinase (GlpK)	28	halTADL_2249	96	13			
glycerol kinase (GlpK)	459	halTADL_0681	100	135			
glycerol kinase (GlpK)*	381	halTADL_0681	100	9.5			
glycerol-3-phosphate dehydrogenase (GlpA)	195	halTADL_2244	100	34			
glycerol-3-phosphate dehydrogenase (GlpA)	327	halTADL_2244	87	17			
dihydroxyacetone (DHA) kinase, L subunit (DhaL)	266	halTADL_2259	100	25			
dihydroxyacetone (DHA) kinase, L subunit (DhaL)	982	halTADL_2259	92	0.9			
dihydroxyacetone (DHA) kinase, K subunit (DhaK)	140	halTADL_2260	94	45			
Glycosylation / Capsular polys	accharide	·					
glucose-1-phosphate thymidylyltransferase (RfbA, RffH)	37	halTADL_3353	100	118			
glucose-1-phosphate thymidylyltransferase (RfbA, RffH)	421	halTADL_3353	93	11			

glycosyl transferase group 1 (possible α D-glucan synthase)	780	halTADL_2565	100	2.3
nucleoside-diphosphate-sugar epimerase	497	halTADL_3057	100	8.0
NUDIX hydrolase (NUDIX = NUcleoside DIphosphate linked to some other	1097	halTADL 2550	100	0.4
moiety X)	1077		100	0.4
NUDIX hydrolase (NUDIX = NUcleoside DIphosphate linked to some other	1053	halTADL_3253	100	0.6
moiety X)				
oligosaccharyltransferase AglB	540	halTADL_2411	100	6.8
Carbohydrate metabolism (/		100	0.0
carbohydrate kinase, FGGY (possible xylulokinase [XylB])	1041	halTADL_2660	<u>100</u> 100	0.6
phosphoglucomutase/phosphomannomutase	181 1012	halTADL_1712 halTADL_1707	100	36 0.6
ribose 5-phosphate isomerase A (RpiA) Emden-Meyerhof (EM) pat		nallADL_1/0/	100	0.0
v / 1	528	halTADL 0801	100	7.2
phosphoglucose isomerase 2-dehydro-3-deoxy-D-gluconate (KDG) kinase (ribokinase family) (KdgK)	1038	halTADL_0801	100	0.6
		—		
fructose-1,6-bisphosphate aldolase, class I (FbaB)	171	halTADL_0575	100	39
fructose-1,6-bisphosphate aldolase, class I (FbaB)	733	halTADL_0575	92	2.8
fructose 1,6-bisphosphate aldolase (multifunctional)	225	halTADL_3234	100	29
fructose 1,6-bisphosphate aldolase (multifunctional)	420	halTADL_3234	96	11
fructose-1,6-bisphosphate aldolase, class II (FbaA)	845	halTADL_3223	100	1.6
triosephosphate isomerase (TpiA)	175	halTADL_2532	100	37
triosephosphate isomerase (TpiA)	249	halTADL_2532	89	26
Entner-Doudoroff (ED) Pathway (semi				1
gluconate dehydratase (GnaD)	216	halTADL_0374	100	31
2-dehydro-3-deoxy-D-gluconate (KDG) kinase (ribokinase family) (KdgK)	1038	halTADL_2089	100	0.6
2-dehydro-3-deoxyphosphogluconate (KDPG) aldolase (Eda)	355	halTADL_0882	100	15
ED/EM common pathw	·	1		
glyceraldehyde-3-phosphate dehydrogenase (NAD(P)+-dependent), type I (Gap)	110	halTADL_0817	100	54
glyceraldehyde-3-phosphate dehydrogenase (NAD(P)+-dependent), type I (Gap)	591	halTADL_0817	90	5.2
phosphoglycerate kinase (Pgk)	272	halTADL_0816	100	24
phosphoglycerate kinase (Pgk)	833	halTADL_0816	94	1.7
enolase (phosphopyruvate hydratase) (Eno)	25	halTADL_2780	100	142
enolase (phosphopyruvate hydratase) (Eno)	391	halTADL_2780	90	12
pyruvate kinase (Pyk)	334	halTADL_3014	100	17

pyruvate kinase (Pyk)	695	halTADL_3014	91	3.4
Gluconeogenesis				
phosphoenolpyruvate (PEP) synthase (Pps)	451	halTADL_1011	79	9.8

Table S6 Proteins involved in involved in the uptake and metabolism of nitrogen sources from the Deep Lake metaproteome with the best matches to *Hht. litchfieldiae*, DL31, and *Hrr. lacusprofundi*. Protein numbers are given according to Table S3 (ranked by the sum of the normalized total spectrum count). Sequence identity refers to the amino acid sequence identity of the detected protein to its best match (column denoted "Locus tag") in a BLASTP search. Spectrum count shows the sum of the normalized total spectrum count across all 15 samples. 'nd' denotes 'not determined' due to peptides matching to a protein family (i.e. more than one possible source protein; see Supplementary Information, Materials and Methods).

Protein annotation	Protein #	Locus tag	Sequence identity (%)	Spectrum count	
Hht. litchfieldiae					
Protein/peptide digestion (extrac	ytoplasmic)				
halolysin (peptidase S8 and S53 subtilisin kexin sedolisin)	477	halTADL_1514	100	8.7	
aminopeptidase (peptidase family M42)	723	halTADL_0101	nd	3.0	
Amino acid uptake					
branched-chain amino acid ABC transporter solute-binding protein	373	halTADL_2916	100	14	
branched-chain amino acid ABC transporter solute-binding protein	202	halTADL_2916	88	33	
polar amino acid ABC transporter solute-binding protein	486	halTADL_0024	100	8.5	
Ammonium uptake & assim	ilation				
ammonium permease (ammonium transporter) (Amt)	220	halTADL_1826	100	30	
glutamine synthetase (GlnA) \rightarrow Gln	88	halTADL_3423	100	67	
glutamate synthase (GltB) \rightarrow Glu	760	halTADL_0125	100	2.5	
Amino acid biosynthes	is				
aspartate aminotransferase (AspB) \rightarrow Asp, Phe	1086	halTADL_0403	100	0.4	
aspartate aminotransferase (AspB) \rightarrow Asp, Phe	173	halTADL_3081	100	38	
aspartate aminotransferase (AspB) \rightarrow Asp, Phe	619	halTADL_3081	97	4.8	
carbamoyl-phosphate synthase, large subunit (CarB) \rightarrow Arg	469	halTADL_0988	100	9.1	
aspartate kinase (LysC) \rightarrow Lys, Thr, Met	527	halTADL_1916	100	7.3	
aspartate kinase (LysC) \rightarrow Lys, Thr, Met	905	halTADL_1916	90	1.3	
aspartate-semialdehyde dehydrogenase (Asd) \rightarrow Lys, Thr, Met	642	halTADL 0714	100	4.3	
homoserine dehydrogenase (MetL) \rightarrow Lys, Thr, Met	430	halTADL_0649	100	11	
threonine synthase (ThrC) \rightarrow Thr	655	halTADL_2266	97	4.0	
cystathionine gamma-synthase (MetB) or O-acetylhomoserine (thiol)-lyase (MetY) \rightarrow Met	553	halTADL_1890	100	6.5	

5-methyltetrahydropteroyltriglutamate -homocysteine methyltransferase (MetE) → Met	487	halTADL_0179	100	8.4
2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase (DapD) → Lys	402	halTADL_0281	nd	12
glutamate-5-semialdehyde dehydrogenase (ProA) \rightarrow Pro	600	halTADL_2358	nd	5.1
pyrroline-5-carboxylate reductase (ProC) \rightarrow Pro	588	halTADL_2360	100	5.3
ATP phosphoribosyltransferase (HisG) \rightarrow His	602	halTADL_1729	100	5.1
phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase (HisA) \rightarrow His	787	halTADL_1799	100	2.2
imidazoleglycerol-phosphate dehydratase (HisB) \rightarrow His	442	halTADL_1797	100	10
phosphoserine phosphatase (SerB) \rightarrow Ser	590	halTADL_1053	100	5.3
phosphoserine phosphatase (SerB) \rightarrow Ser	309	halTADL_2046	96	19
D-3-phosphoglycerate dehydrogenase (Ser A) \rightarrow Ser	131	halTADL_2045	100	47
D-3-phosphoglycerate dehydrogenase (Ser A) \rightarrow Ser	236	halTADL_2045	93	28
D-3-phosphoglycerate dehydrogenase (Ser A) \rightarrow Ser	626	halTADL_0712	100	4.6
glycine hydroxymethyltransferase (GlyA) \rightarrow Gly	501	halTADL_3114	nd	7.9
rhodanese-like protein / thiosulfate sulfurtransferase \rightarrow Cys?	83	halTADL_2750	100	74
rhodanese-like protein / thiosulfate sulfurtransferase \rightarrow Cys?	258	halTADL_2750	92	25
fructose 1,6-bisphosphate aldolase (multifunctional) \rightarrow Trp, Phe, Tyr	225	halTADL_3234	100	29
fructose 1,6-bisphosphate aldolase (multifunctional) \rightarrow Trp, Phe, Tyr	420	halTADL_3234	96	11
2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate synthase \rightarrow Trp, Phe, Tyr	171	halTADL_0575	100	39
2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate synthase \rightarrow Trp, Phe, Tyr	733	halTADL_0575	92	2.8
dehydroquinate synthase II \rightarrow Trp, Phe, Tyr	408	halTADL_0574	100	12
shikimate kinase (AroB) \rightarrow Trp, Phe, Tyr	984	halTADL_2582	100	0.9
tryptophan synthase, alpha subunit (TrpA) \rightarrow Trp	888	halTADL_0576	nd	1.5
anthranilate phosphoribosyltransferase (TrpD) → Trp	390	halTADL_0889	100	13
anthranilate phosphoribosyltransferase (TrpD) \rightarrow Trp	290	halTADL_3066	100	21
anthranilate phosphoribosyltransferase (TrpD) \rightarrow Trp	1049	halTADL_3066	92	0.6
prephenate dehydratase (PheA2) \rightarrow Phe	701	halTADL_2073	100	3.3
branched-chain amino acid aminotransferase (IlvE) → Leu, Val, Ile	841	halTADL_1961	nd	1.6
3-isopropylmalate dehydrogenase (LeuB) \rightarrow Leu	385	halTADL_0366	100	13
3-isopropylmalate dehydrogenase (LeuB) \rightarrow Leu	1084	halTADL_0366	93	0.4

3-isopropylmalate/(R)-2-methylmalate dehydratase, large subunit (LeuC) \rightarrow Leu, Ile	890	halTADL_0364	nd	1.4
3-isopropylmalate/(R)-2-methylmalate dehydratase, small subunit (LeuD) \rightarrow Leu, Ile	894	halTADL_0365	nd	1.4
acetolactate synthase, small subunit (IlvH) \rightarrow Ile, Val	560	halTADL_0361	100	6.3
ketol-acid reductoisomerase (IlvC) →Ile, Val	251	halTADL_0362	100	26
dihydroxy-acid dehydratase (IlvD) → Ile, Val	323	halTADL_2417	nd	18
2-isopropylmalate synthase (LeuA) \rightarrow Leu	729	halTADL_0359	100	2.9
citramalate synthase (CimA) \rightarrow Ile	605	halTADL_1156	100	5.0
Amino acid degradatio	n			
glutamate dehydrogenase (GdhA) ← Glu	1013	halTADL_1757	81	0.6
S-adenosylmethionine synthetase (Mat)	458	halTADL_3028	100	9.5
S-adenosylhomocysteine hydrolase (AchY)	826	halTADL_1723	100	1.8
2-oxoacid dehydrogenase complex, E2 component \leftarrow Leu, Val, Ile	631	halTADL_2147	100	4.5
2-oxoacid dehydrogenase complex, dihydrolipoamide dehydrogenase ← Leu, Val, Ile	679	halTADL_2144	100	3.6
Urea uptake & degradat	ion	-		
urea ABC transporter solute-binding protein	617	halTADL_0628	100	4.8
urease, beta subunit (UreB)	1089	halTADL_0634	nd	0.4
DL31				
Protein/peptide digestion (extracy	ytoplasmic)			-
halolysin (peptidase S8 and S53 subtilisin kexin sedolisin)	1080	Halar_3678	100	0.4
aminopeptidase (peptidase family M42)	745	Halar_3640	100	2.7
Amino acid uptake		1		
branched-chain amino acid ABC transporter solute-binding protein	158	Halar_1569	100	41.1
branched-chain amino acid ABC transporter solute-binding protein	187	Halar_2890	100	35.5
branched-chain amino acid ABC transporter solute-binding protein	192	Halar_3433	100	35.2
Oligopeptide/dipeptide up				1
oligopeptide/dipeptide ABC transporter solute-binding protein	9	Halar_2016	100	277.4
oligopeptide/dipeptide ABC transporter solute-binding protein	76	Halar_1439	100	81.8
oligopeptide/dipeptide ABC transporter solute-binding protein	189	Halar_0722	100	35.4
oligopeptide/dipeptide ABC transporter solute-binding protein	255	Halar_1146	100	25.7

oligopeptide/dipeptide ABC transporter solute-binding protein	582	Halar_1285	100	5.5
oligopeptide/dipeptide ABC transporter solute-binding protein	654	Halar_3436	100	4.1
oligopeptide/dipeptide ABC transporter solute-binding protein	818	Halar_2651	100	1.8
oligopeptide/dipeptide ABC transporter solute-binding protein	879	Halar_2024	100	1.5
Amino acid biosynthesis & deg	radation			
branched chain amino acid aminotransferase (IlvE) \rightarrow Leu, Val, Ile	371	Halar_2889	100	13.7
pyrroline-5-carboxylate dehydrogenase (RocA) \rightarrow Pro	743	Halar_1051	100	2.7
3-isopropylmalate dehydrogenase (LeuB) \rightarrow Leu	1026	Halar_2164	100	0.6
glutamate dehydrogenase (GdhA) ← Glu	378	Halar_0758	100	13.3
Hrr. lacusprofundi				
Amino acid uptake				
branched-chain amino acid ABC transporter solute-binding protein (gene appears to be interrupted by a transposase)	160	Hlac_2093	100	40.5
polar amino acid ABC transporter solute-binding protein	891	Hlac_1804	100	1.4
Oligopeptide/dipeptide up	take			
oligopeptide/dipeptide ABC transporter solute-binding protein	71	Hlac_0069	100	86.5
oligopeptide/dipeptide ABC transporter solute-binding protein	630	Hlac_0244	100	4.5
Ammonium uptake & assim	ilation	·		
glutamine synthetase (GS) (GlnA) \rightarrow Gln	375	Hlac_2374	100	13.5
Amino acid biosynthes	is			
histidinol-phosphate aminotransferase (HisC) \rightarrow His	1017	Hlac_0235	100	0.6

Table S7 Proteins involved in involved in motility, taxis and adhesion from the Deep Lake metaproteome with the best matches to *Hht. litchfieldiae.* Protein numbers are given according to Table S3 (ranked by the sum of the normalized total spectrum count). Sequence identity refers to the amino acid sequence identity of the detected protein to its best match (column denoted "Locus tag") in a BLASTP search. Spectrum count shows the sum of the normalized total spectrum count across all 15 samples.

Protein annotation	Protein #	Locus tag	Sequence identity (%)	Spectrum count
Archaella				
archaellin (FlaA or FlaB)	1	halTADL_1544	100	695
archaellin (FlaA or FlaB)	786	halTADL_1544	75	2.3
archaellin (FlaA or FlaB)	3	halTADL_1812	100	497
archaellin (FlaA or FlaB)	59	halTADL_1812	77	94
archaellin (FlaA or FlaB)	7	halTADL_1813	100	351
archaellin (FlaA or FlaB)	12	halTADL_1813	76	239
archaellin (FlaA or FlaB)	21	halTADL_1810	100	169
archaellin (FlaA or FlaB)	80	halTADL_1811	100	79
archaellin (FlaA or FlaB)	118	halTADL_0078	100	52
archaellin (FlaA or FlaB)	95	halTADL_0078	75	59
archaellar protein FlaG	429	halTADL_1803	100	12
archaellar protein FlaC or FlacD or FlacE	761	halTADL_1805	100	2.5
Taxis				
bacteriorhodopsin	752	halTADL_1952	100	2.6
methyl-accepting chemotaxis sensory transducer (HtrII) (for sensory rhodopsin II)	245	halTADL_3325	100	26
globin domain + methyl-accepting chemotaxis sensory transducer	235	halTADL_0074	100	28
heme-based aerotactic transducer HemAT	351	halTADL_1627	100	15
PBS_HEAT protein; taxis signaling	684	halTADL_1768	100	3.4
methyl-accepting chemotaxis sensory transducer with Pas/Pac sensor	1093	halTADL_1218	100	0.4
signal transduction protein with CBS domains	292	halTADL_1865	100	21
chemotaxis signal transduction protein CheW	473	halTADL_1838	100	8.9
chemotaxis signal transduction protein CheW	925	halTADL_1838	91	1.2
chemotaxis response regulator CheY	300	halTADL_1808	100	20

chemotaxis response regulator CheY	566	halTADL_1808	94	6.0
response regulator receiver protein	538	halTADL_2200	100	6.9
response regulator receiver protein	1036	halTADL_1816	100	0.6
response regulator receiver domain + HalX domain	102	halTADL_0055	96	29
KaiC domain	278	halTADL_1815	100	23
KaiC domain	924	halTADL_1815	94	1.2

Table S8 Proteins implicated in protection against and responses to oxidative stress, photolysis and UV irradiation detected in the Deep Lake

 metaproteome for the haloarchaeal species *Hht. litchfieldiae*, DL31 or *Hrr. lacusprofundi*.

Proteins	Locus tags	Specific function
		Oxidative stress
manganese superoxide	halTADL_2687, Halar_1640,	Degradation of harmful oxygen radicals.
dismutase (SOD)	Hlac_2515	
methionine sulfoxide	halTADL_1172	Reduction of methionine sulfoxide (the oxidized form of methionine, caused by
reductase		ROS) back to methionine, to reactivate damaged proteins.
thioredoxin	halTADL_1187/1756/2077/2563,	Protection of sulfhydryl groups of cysteine residues from forming disulfide
	Halar_3305, Hlac_0372	linkages under conditions of oxidative stress. Thioredoxin also acts as an electron
glutaredoxin	halTADL_0399/2104	donor for enzymes such as methionine sulfoxide reductase and peroxiredoxin (Meyer <i>et al.</i> , 2009).
peroxiredoxin	halTADL_0067; Halar_1849	Protective antioxidant role via their peroxidase activity against hydrogen peroxide and organic hydroperoxides (Wood <i>et al.</i> , 2003).
Dps ferritins	halTADL_1068,	Sequester intracellular iron; these are particularly important when protein
(miniferritins)	Halar_0843/0845, Hlac_0536	turnover releases iron from degraded proteins (Theil <i>et al.</i> , 2007). Fe ²⁺ reacts with
		hydrogen peroxide to generate hydroxyl radicals that can damage cellular
		components, and with O_2 to generate Fe^{3+} which precipitates ('rusts') at
		physiological pH.
universal stress protein	halTADL_0697/1044/1904/2110/	Inferred to protect cells against oxidative damage to DNA (Kvint <i>et al.</i> , 2003;
(UspA)	2112/2276/2351	Nachin <i>et al.</i> , 2005).
RosR transcriptional	halTADL_0352/1645;	Regulates gene expression in response to oxidative stress in, including
regulator	Halar_0879	upregulation of SOD (Sharma et al., 2012).
PitA (haloarchaeal	halTADL 1349	PitA proteins are so far unique to haloarchaea; although of unknown function,
hypothetical protein)	_	they are inferred to have a function associated with life in hypersaline
		environments, particularly exposure to limited oxygen availability and ROS
		neutralization (Bab-Dinitz et al., 2006; Martinez-Espinosa et al., 2015).
		Photolysis
dodecin	halTADL_3198, Halar_2184	Small dodecameric flavoprotein that binds riboflavin and protects it from light-
		induced degradation (Grininger et al., 2009). Photolytic degradation of riboflavin
		also leads to toxic derivatives such as lumichrome, which is involved in the
		generation of cytotoxic singlet oxygen (O_2^*) via transfer of light energy to O_2
		(Sikorski et al., 2001; Grininger et al., 2009).

		UV irradiation
RadA (Rad51/RecA recombinase homolog)	halTADL_1827/2135, Halar_3361, Hlac_2624	Catalyzes strand invasion and exchange during homologous recombination, and appears to be critical to the haloarchaeal UV response by permitting rescue of stalled replication forks and/or facilitate recombinational repair (Woods and Dyall-Smith, 1997; McCready <i>et al.</i> , 2005; Boubriak <i>et al.</i> , 2008).
RecJ-like exonuclease	halTADL_1000	Involved in processing stalled forks in UV-damaged DNA, possibly by making DNA lesions at stalled forks accessible for repair (Boubriak <i>et al.</i> , 2008).
topoisomerase VI	halTADL_3021 (subunit B [Top6B])	Involved in processing stalled forks in UV-damaged DNA, possibly by ATP- dependent nicking-closing activity as well as ability to generate double-strand breaks (Boubriak <i>et al.</i> , 2008).
ribonucleotide reductase (RNR; adenosylcobalamin- dependent)	halTADL0884	Catalyzes the rate-limiting step in DNA synthesis from RNA; inferred to have a function in excision repair (McCready <i>et al.</i> , 2005).
UvrD helicase domain protein	halTADL_2299	Possibly involved in post-incision events of nucleotide excision repair, as for bacterial UvrD helicase.
replication protein A (RPA) ssDNA-binding complex components	halTADL_3434/_2569 (RPA32), halTADL_3433 (RPA41), Halar_3463 (RPA32)	RPA-ssDNA complexes are proposed to form during DNA-damage repair pathways in haloarchaea, as for eukaryotic RPA-ssDNA complexes (McCready <i>et al.</i> , 2005).

Table S9 Proteins assigned to *Hht. litchfieldiae* tADL-II. Protein numbers are given according to Table S3 (ranked by the sum of the normalized total spectrum count). Sequence identity refers to the amino acid sequence identity of the detected protein to its best match (column denoted "Locus tag") in a BLASTP search. Spectrum count shows the sum of the normalized total spectrum count across all 15 samples. Highlighted in purple are tADL-II proteins with a higher spectrum count than the respective tADL protein.

Protein annotation	Protein #	Matching tADL locus tag	Sequence identity (%)	Spectrum count
Amino acid	metabolism	· · · · ·		
3-isopropylmalate dehydrogenase (LeuB)	1084	halTADL_0366	93	0.4
agmatinase (SpeB)	374	halTADL_1131	95	13
glutamate dehydrogenase (GdhA)	1013	halTADL_1757	81	0.6
aspartate kinase (LysC)	905	halTADL_1916	90	1.3
D-3-phosphoglycerate dehydrogenase (Ser A)	236	halTADL_2045	93	28
phosphoserine phosphatase (SerB)	309	halTADL_2046	96	19
anthranilate phosphoribosyltransferase (TrpD)	1049	halTADL_3066	92	0.6
aspartate aminotransferase (AspB)	619	halTADL_3081	97	4.8
glutamine synthetase (GS) (GlnA)	319	halTADL_3423	97	18
Carbohydrat	e metabolism			·
alpha-amylase (glycosyl hydrolase, family 13)	193	halTADL_0142	84	35
glucose-1-phosphate thymidylyltransferase (RfbA, RffH)	421	halTADL_3353	93	11
Cell d	ivision			·
cell division protein FtsA	467	halTADL_0130	96	9.2
VCP-like protein (2 x CDC48 domains + 2 x AAA family ATPase domains)	927	halTADL_2740	95	1.2
Cell s	urface	•		•
invasin/intimin cell-adhesion domain protein (Sec signal)	577	No match to tADL – unique to tADL-II	-	5.5
archaellin FlaA or FlaB	95	halTADL_0078	75	59
hypothetical protein (TAT signal)	490	halTADL_0878	50	8.3
adhesion pilin (PilA)	666	halTADL_1387	66	3.9
hypothetical protein (Sec signal, PGF-CTERM, C-terminal transmembrane helix)	126	halTADL_1403	29	49
archaellin FlaA or FlaB	786	halTADL_1544	75	2.3

hypothetical protein (TAT signal)	370	halTADL 1761	40	14
hypothetical protein (Sec signal, PGF-CTERM, C-terminal	2(1		7(14
transmembrane helix)	361	halTADL_1765	76	14
archaellin FlaA or FlaB	59	halTADL 1812	77	94
archaellin FlaA or FlaB	12	halTADL 1813	76	239
Central carbon	metabolism			
pyruvate:ferredoxin oxidoreductase, alpha subunit (PorA)	691	halTADL_0382	93	3.4
phosphoenolpyruvate carboxylase (Ppc)	572	halTADL_0401	94	5.9
fructose-1,6-bisphosphate aldolase, class I (FbaB)	733	halTADL_0575	92	2.8
phosphoglycerate kinase (Pgk)	833	halTADL_0816	94	1.7
glyceraldehyde-3-phosphate dehydrogenase (NAD(P)+-dependent), type I (Gap)	591	halTADL_0817	90	5.2
phosphoenolpyruvate (PEP) synthase (Pps)	451	halTADL 1011	79	9.8
acetate : CoA ligase (Acs)	449	halTADL 1017	92	9.8
triosephosphate isomerase (TpiA)	249	halTADL_2532	89	26
enolase (phosphopyruvate hydratase) (Eno)	391	halTADL_2780	90	12
aconitate hydratase (AcnA)	401	halTADL_2902	96	12
pyruvate kinase (Pyk)	695	halTADL_3014	91	3.4
fructose 1,6-bisphosphate aldolase (multifunctional)	420	halTADL_3234	96	11
DNA replicatio	n & repair			
methylated-DNA-[protein]-cysteine S-methyltransferase (Ogt)	1031	halTADL_0579	82	0.6
DNA polymerase sliding clamp subunit (PCNA homolog)	244	halTADL_1713	97	27
DNA repair and recombination protein RadA	284	halTADL_2135	90	22
Energy cons	ervation			
cytochrome c oxidase, subunit II (CoxB)	959	halTADL_1060	82	0.9
inorganic pyrophosphatase (Ppa)	937	halTADL_1644	88	1.0
ATP synthase, K subunit (AtpK)	293	halTADL_1940	80	21
ATP synthase, beta subunit (AtpB)	406	halTADL_1945	92	12
ferredoxin	42	halTADL_2137	96	109
NADPH-dependent F420 reductase	1096	halTADL_2320	91	0.4
Glycerol met	1			
glycerol-3-phosphate dehydrogenase (GlpA)	327	halTADL_2244	87	17
glycerol kinase (GlpK)	381	halTADL_2249	96	13
dihydroxyacetone (DHA) kinase, L subunit (DhaL)	982	halTADL_2259	92	0.9

dihydroxyacetone (DHA) kinase, K subunit (DhaK)	140	halTADL_2260	94	45		
Hypothe	etical					
hypothetical protein	431	halTADL_0015	94	10		
nucleic acid-binding/OB-fold/TRAM domain protein	267	halTADL_0109	93	24		
DUF964 / YheA/YmcA domain	777	halTADL_0133	88	2.4		
DUF655 (predicted RNA-binding domain)	428	halTADL_0183	89	10		
hypothetical protein	887	halTADL_0395	85	1.5		
predicted RNA-binding protein containing KH domain, possibly ribosomal protein	1088	halTADL_0545	81	0.4		
DUF827 / WEB family domain	183	halTADL_0555	77	36		
selT/selW/selH selenoprotein domain / Rdx domain	979	halTADL 1063	81	0.9		
ThiJ/PfpI domain-containing protein	199	halTADL_1769	83	33		
hypothetical protein (DUF4382)	215	halTADL_2062	87	31		
hypothetical protein	307	halTADL_2560	89	19		
hypothetical protein	629	halTADL_2576	95	4.5		
hypothetical protein	1100	halTADL_3036	79	0.4		
nucleic acid binding OB-fold tRNA/helicase-type	150	halTADL_3218	86	42		
DUF4013 (4 x transmembrane domains)	727	halTADL_3238	73	3.0		
Metabolism	(other)					
nucleoside-diphosphate kinase (Ndk)	641	halTADL_0169	84	4.4		
orotate phosphoribosyltransferase (PyrE)	749	halTADL_0398	90	2.6		
thiamine-phosphate pyrophosphorylase ThiE	1087	halTADL_0473	74	0.4		
ribonucleoside-diphosphate reductase, alpha subunit (NrdE)	965	halTADL_0884	91	0.9		
oxidoreductase FAD-binding domain	672	halTADL_1014	80	3.8		
FAD-dependent pyridine nucleotide-disulfide oxidoreductase	650	halTADL_2528	90	4.2		
rhodanese-like protein	258	halTADL_2750	92	25		
adenine phosphoribosyltransferase (Apt)	985	halTADL_2952	95	0.9		
dodecin	238	halTADL_3198	95	28		
Oxidative stress						
ferritin Dps family protein	20	halTADL_1068	92	170		
UspA domain-containing protein	851	halTADL_1904	76	1.6		
glutaredoxin	1014	halTADL_2104	94	0.6		
UspA domain-containing protein	910	halTADL_2276	75	1.2		
thioredoxin	665	halTADL_2563	91	3.9		

manganese/iron superoxide dismutase (Sod)	164	halTADL_2687	95	39
Protein c	naperones			
group II chaperonin (thermosome)	135	halTADL_0092	91	45
Hsp20-type chaperone	335	halTADL_0114	93	17
peptidylprolyl isomerase FKBP-type	77	halTADL_0251	89	81
chaperone protein DnaK	212	halTADL_0595	94	32
heat shock protein Hsp20	217	halTADL_0724	95	31
prefoldin, beta subunit (PfdB)	177	halTADL_1114	95	37
group II chaperonin (thermosome)	19	halTADL_1928	95	200
prefoldin, alpha subunit (PfdA)	148	halTADL 2197	95	43
peptidylprolyl isomerase, cyclophilin type	152	halTADL 2273	91	42
peptidylprolyl isomerase, FKBP-type	827	halTADL_3026	90	1.8
group II chaperonin (thermosome)	6	halTADL_3279	95	387
Prote	olysis			
membrane metalloprotease (peptidase M50)	640	halTADL_0323	79	4.4
proteasome alpha subunit (PsmA)	50	halTADL_2681	95	102
proteasome beta subunit (PsmB)	441	halTADL_2911	92	10
Ribos	somes			
ribosomal protein L11	705	halTADL_0103	94	3.2
ribosomal protein L1	246	halTADL_0105	99	26
acidic ribosomal protein P0-like protein	478	halTADL_0106	94	8.7
ribosomal protein L7Ae	93	halTADL_0166	98	63
ribosomal protein S28e	922	halTADL_0167	95	1.2
ribosomal protein S7	304	halTADL_0623	87	19
ribosomal protein S6e	612	halTADL_2119	91	4.9
ribosomal LX protein	471	halTADL_2196	97	9.0
ribosomal protein S4	648	halTADL_2772	93	4.2
ribosomal protein L18e	713	halTADL_2775	93	3.0
ribosomal protein L13	607	halTADL_2776	96	5.0
ribosomal protein S3Ae	592	halTADL_3142	98	5.2
ribosomal protein S8e	762	halTADL_3327	89	2.5
ribosomal protein L30P	456	halTADL_3366	94	9.7
ribosomal protein L32e	268	halTADL_3370	91	24
ribosomal protein L6P	834	halTADL_3371	90	1.7

ribosomal protein S8	647	halTADL 3372	97	4.3
ribosomal protein L5	674	halTADL 3374	90	3.7
ribosomal protein S4e	338	halTADL 3375	90	16
ribosomal protein L29	194	halTADL 3380	92	34
ribosomal protein S19	643	halTADL 3383	97	4.3
ribosomal protein L23	463	halTADL 3385	88	9.3
ribosomal protein L4P	620	halTADL 3386	89	4.8
ribosomal protein L3	1001	halTADL 3387	93	0.8
Transcri				
TATA-box-binding protein (Tbp)	523	halTADL 0042	99	7.4
DNA-directed RNA polymerase subunit H (RpoH)	639	halTADL 0616	84	4.4
DNA-directed RNA polymerase subunit A (RpoA1)	589	halTADL 0619	96	5.3
DNA-directed RNA polymerase subunit A2 (RpoA2)	360	halTADL 0620	93	14
TATA-box-binding protein (Tbp)	966	halTADL 1732	96	0.9
DNA-directed RNA polymerase subunit D (RpoD)	499	halTADL 2774	91	7.9
DNA-directed RNA polymerase subunit N (RpoN)	842	halTADL 2778	97	1.6
Transcriptional	l regulators			
transcriptional regulator, AsnC family	921	halTADL_0058	93	1.2
phosphate uptake regulator, PhoU	699	halTADL_1186	92	3.3
transcriptional regulator, RosR (PadR family)	376	halTADL_1645	92	14
transcriptional regulator, XRE family	926	halTADL_2533	70	1.2
phosphate uptake regulator, PhoU	908	halTADL_3204	93	1.3
transcriptional regulator, AsnC family	172	halTADL_3422	96	38
Transdu				
response regulator receiver domain + HalX domain	229	halTADL_0055	96	29
response regulator receiver protein	566	halTADL_1808	94	6.0
KaiC domain	924	halTADL_1815	94	1.2
chemotaxis signal transduction protein CheW	925	halTADL_1838	91	1.2
Translation				T
translation elongation factor aEF-2 (FusA)	89	halTADL_0647	95	66
translation initiation factor 2, alpha subunit (a/eIF2-alpha) (Eif2a)	1090	halTADL_0923	91	0.4
translation initiation factor 2, beta subunit (a/eIF2-beta) (Eif2b)	545	halTADL_2337	95	6.7
methionyl-tRNA synthetase (MetG)	611	halTADL_3069	87	4.9
elongation factor 1-beta (aEF-1beta) (Ef1b)	454	halTADL_3453	94	9.7

Transport						
phosphate ABC transporter solute-binding protein (PstS)	85	halTADL_1182	51	71		
ABC-type antimicrobial peptide transport system, permease component	693	halTADL_1613	88	3.4		
iron ABC transporter solute-binding protein	856	halTADL_1788	83	1.6		
carbohydrate ABC transporter solute-binding protein	247	halTADL_2761	84	26		
carbohydrate ABC transporter ATPase	1099	halTADL_2764	88	0.4		
branched-chain amino acid ABC transporter solute-binding protein	202	halTADL_2916	88	33		
K+ uptake system, TrkA subunit	1048	halTADL_3061	89	0.6		
nitrate/sulfonate/bicarbonate ABC transporter solute-binding protein	697	No match to tADL – unique to tADL-II	-	3.3		

Table S10 Variant proteins detected for *Hht. litchfieldiae*, tADL, DL31 and *Hrr. lacusprofundi*. Protein numbers are given according to Table S3 (ranked by the sum of the normalized total spectrum count). Sequence identity refers to the amino acid sequence identity of the detected protein to its best match (column denoted "Locus tag") in a BLASTP search. Spectrum count shows the sum of the normalized total spectrum count across all 15 samples. SNP denotes variation caused by a single nucleotide polymorphism.

Protein annotation	Protein #	Locus tag	Sequence identity (%)	Spectrum count	Additional notes	
Hht. litchfieldiae - variants						
α-amylase (glycosyl hydrolase, family 13)	543	halTADL_0142	94	6.8	also detected for tADL and tADL-II	
adhesion pilin (PilA)	750	halTADL_0751	65	2.6		
cell surface glycoprotein (Sec signal, PGF-CTERM, C-terminal transmembrane helix)	8	halTADL_1043	51	338		
cell surface glycoprotein (Sec signal, PGF-CTERM, C-terminal transmembrane helix)	18	halTADL_1043	44	205		
cell surface glycoprotein (Sec signal, PGF-CTERM, C-terminal transmembrane helix)	339	halTADL_1043	50	16		
cell surface glycoprotein (Sec signal, PGF-CTERM, C-terminal transmembrane helix)	356	halTADL_1043	42	15		
cell surface glycoprotein (Sec signal, PGF-CTERM, C-terminal transmembrane helix)	618	halTADL_1043	34	4.8		
hypothetical protein (TAT signal)	800	halTADL_1047	59	2.1		
SMC domain protein	709	halTADL_1458	62	3.1		
phosphate ABC transporter solute-binding protein (PstS)	61	halTADL_2155	88	92		
phosphate ABC transporter solute-binding protein (PstS)	75	halTADL_2155	93	82		
	DL - variants			-		
phosphate ABC transporter solute-binding protein (PstS)	13	halTADL_2155	99	235	SNP	
methylated-DNA-[protein]-cysteine S-methyltransferase (Ogt)	273	halTADL_0579	99	24	SNP	
winged helix-turn-helix DNA-binding domain	128	halTADL_0044	99	48	SNP	
hypothetical protein	495	halTADL_2296	99	8.0	SNP	
hypothetical protein (transmembrane helix near N-terminal)	852	halTADL_2505	97	1.6		
ribosomal protein L1	78	halTADL_0105	99	81		
methionyl-tRNA synthetase (MetG)	325	halTADL_3069	99	17	SNP	

threonine synthase (ThrC)	655	halTADL_2266	97	4.0		
DL31 - variants						
RND superfamily / MMPL (mycobacterial membrane protein large) family protein	29	Halar_1791	99	134		
ribosomal protein L29	271	Halar_2474	99	24		
cell surface glycoprotein (Sec signal, PGF-CTERM, C-terminal transmembrane helix)	2	Halar_0829	47	629		
cell surface glycoprotein (Sec signal, PGF-CTERM, C-terminal transmembrane helix)	36	Halar_0829	45	118		
Hrr. lacusprofundi - variants						
hypothetical cell surface protein (TAT signal)	27	Hlac_0476	49	138		
archaellin FlaA or FlaB	30	Hlac_2557	38	133		
cell surface glycoprotein (Sec signal, PGF-CTERM, C-terminal transmembrane helix)	223	Hlac_2976	38	30		

Table S11 Detected proteins with high sequence identity to *Hht. litchfieldiae*, DL31 or *Hrr. lacusprofundi* encoded on contigs with neighbouring genes that best matched to other haloarchaeal species. Protein numbers are given according to Table S3 (ranked by the sum of the normalized total spectrum count). Sequence identity refers to the amino acid sequence identity of the detected protein to its best match (column denoted "Locus tag") in a BLASTP search. Spectrum count shows the sum of the normalized total spectrum count across all 15 samples. Contig IDs are from the Deep Lake metagenome assemblies (Antarctic Lakes Metagenome: whole_lake.gbk at http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism=AntLakMetagenome).

Protein annotation	Protein #	Locus tag	Sequence identity (%)	Spectrum count	Contig ID
glycerol kinase (GlpK)	191	halTADL_0681	98	35	7180000420363
glycerol kinase (GlpK)	593	halTADL_0681	98	5.2	7180000399115
glycerol kinase (GlpK)	586	halTADL_0681	98	5.4	7180000397231
transcriptional regulator, AsnC family	47	halTADL_1491	88	104	7180000456564
hypothetical protein (Sec signal, Ig fold domain, C-terminal transmembrane helix)	163	halTADL_1042	73	39	7180000422580
transcriptional regulator, AsnC family	222	halTADL_1491	80	30	7180000396862
adhesion pilin (PilA)	358	halTADL_1885	33	15	7180000459513
hypothetical protein (transmembrane helix near N-terminal)	708	halTADL_1615	70	3.1	7180000398936
nucleic acid binding OB-fold tRNA/helicase-type (RPA32 homolog)	747	halTADL_3434	44	2.6	7180000455564
response regulator receiver protein	759	halTADL_2696	65	2.5	7180000268900
FeS assembly protein SufB	820	halTADL_0973	95	1.8	7180000432870
core histone	903	halTADL_1708	89	1.3	7180000446839
winged helix-turn-helix DNA-binding domain	909	halTADL_0044	62	1.2	7180000394553
SecD/SecF/SecDF export membrane protein	958	halTADL_0787	51	0.9	7180000457612
TATA-box-binding protein (Tbp)	980	halTADL_1450	93	0.9	7180000443701
Hsp20-type chaperone	795	Halar_3162	47	2.1	7180000457612
adhesion pilin (PilA)	839	Halar_2364	39	1.6	7180000242587
hypothetical protein (Sec signal; 2 x PKD/chitinase domains)	585	Hlac_2824	34	5.4	7180000456692
hypothetical protein: 3 x chitinase/PKD domains, C-terminal transmembrane helix	809	Hlac_2824	27	1.9	7180000434565
carbohydrate ABC transporter solute-binding protein	870	Hlac_2862	72	1.5	7180000267581
VCP-like protein (2 x CDC48 domains + 2 x AAA family ATPase domains)	1106	Hlac_2377	67	0.4	7180000414114

archaellin FlaA or FlaB	239	Hlac_2557	77	28	7180000295546
-------------------------	-----	-----------	----	----	---------------