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1. China Central North Analysis

In Figure 1 we show the central north region, in relation to the whole of China.

Beijing
Tianjin
Hebei
Henan
Shandong
Shanxi

Figure 1. The central north region, in relation to China as a whole.

A movie of the log SMRs and the smoothed estimates

α̂+ γ̂t +

K∑
k=1

b̂ktBik

can be found at http://www.stat.brown.edu/cbauer/ along with R code for fitting the models described in
the paper.

We use standardized residuals which are defined as

rit =
yit − ŷit√

ŷit
,

i = 1, . . . , I , t = 1, . . . , T . These are plotted against time t, for the Type I-IV models in Figure 2. We see that the fit is
generally good, though we slightly underestimate the observed counts at the start of the epidemic.
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(e) Epidemic/endemic Model

Figure 2. Residuals versus time, for the Type I - IV models, compared to the epidemic/endemic model in (1) .

2. Gaussian Markov Random Field (GMRF) Models

Second-Order Random Walk Model

In the paper we use GMRF models in both time and space, so here we give some technical details on these models,
beginning with the second-order random walk (RW2) model. We write γ = [γ1, . . . , γT ]

T ∼ RW2(τ−1γ ). This model
corresponds to an improper Gaussian distribution of the form

π(γ|τγ) ∝ τγ(T−2)/2 exp
(
− τγ

2
γTATγ

)
,
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with the structure matrix AT given by

AT =



1 −2 1

−2 5 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

. . . . . . . . . . . . . . .

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 5 −2
1 −2 1


, (1)

with the blank space corresponding to zeros. Note that AT has rank T − 2. It is natural to model dependencies in a
conditional fashion. Let σ2

γ denote the variance of γt, σ2
γ = 1/τγ . The conditional mean and variance are:

E[γt|γ−t, σ2
γ) =

4

6
(γt+1 + γt−1)−

1

6
(γt+2 + γt−2) (2)

var(γt|γ−t, σ2
γ) =

σ2
γ

6

for 2 < t < n− 2. Some intuition into the conditional mean form may be gained by defining

p(t) = β0 + β1t+ β2t
2/2.

If we carry out a least squares fit through the points

(t− 2, γt−2), (t− 1, γt−1), (t+ 1, γt+1), (t+ 2, γt+2).

Then E[γt|γ−t, σ2
γ ] from (2) corresponds to p̂(t). Hence, the RW2 model is often described as a local quadratic smoother.

If we fix the second-order random walk at 1, . . . , T then

E[γT+k|γ1, . . . , γT , σ2
γ ] = (1 + k)γT − kγT−1

var(ηT+k|γ1, . . . , γT , σ2
γ) = σ2

γ(1 + 22 + · · ·+ k2).

Therefore the conditional mean is a linear extrapolation based on the last two points and the variance is cubic, since

1 + 22 + · · ·+ k2 = k(k + 1)(2k + 1)/6.

This explains why long term predictive explode under this model, though the locally quadratic mean form results in less
bias than the random walk first-order model.

The model has rank T − 2 with the rank 2 deficiency indicating that the RW2 distribution is invariant to the addition of
any line α+ γt to γ. We have an intercept in our model and to make the temporal random effects γt identifiable, we put
both

∑
t γt = 0 and

∑
t tγt = 0 constraints on γ.

Intrinsic CAR Model

We now describe the intrinsic conditional autoregressive (ICAR) model introduced by (2). This model has been widely
adopted in disease mapping context. Letting u = [u1 . . . , uN ] represent the collection of spatial random effects, the
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conditional distributions are

ui|uj , j 6= i ∼ N

(
1

mi

∑
j∼i

uj ,
1

miτu

)
, (3)

where mi is the number of neighbors of area i and τu is the conditional precision. The notation j ∼ i indicates that areas
j and i are neighbors. A common approach to define neighbors is if two areas share boundaries. Other neighborhood
schemes are possible however, for example, (3) defines the neighborhood structure as a function of the distance between
centroids.

An alternative way to write the ICAR “density” of u is to use the joint distribution

π(u|τu) ∝ τu(I−1)/2 exp

[
−τu

2

∑
i∼j

(ui − uj)2
]
. (4)

Notice that this distribution is only defined by the pairwise difference of the elements of u and so the overall level is
unspecified, and hence we do not have a proper density. It is easy to see that the ICAR model is an example of a Gaussian
Markov Random Field (GMRF) by rewriting the joint distribution of u in terms of the precision matrix AS, see (4)

π(u|τu) ∝ τu(I−1)/2 exp
[
−τu

2
uTASu

]
, (5)

where the structure matrix AS has entries

ASij =


mi i = j,

−1 i ∼ j,

0 otherwise.

(6)

Here we have assumed that each of the areas is connected to at least one other. Note that the structure matrix AS has
rank I − 1 because the sum of each row (or column) is zero, again confirming that the ICAR prior distribution used for
the spatial random effect u is improper. To make the random effects ui identifiable in the posterior distribution, we need
to either exclude the intercept, or if an intercept is included in the model with a flat prior then we place a sum-to-zero
constraint on the spatial random effects. Both approaches reduce the number of parameters by 1, which is required for
identifiability. The second approach was recommended in (2) and we follow their recommendation when we use the ICAR
prior in the paper.

Kroneker Forms for the Interaction Models

In this section we describe in more detail the form of the joint distribution of the interaction terms b. All four types can be
represented as GMRF models with the general form

π(b|τb) ∝ exp
[
−τb

2
bTASTb

]
.

LetAS andAT denote the structure matrices in space and time respectively. The structure matrix of the spline coefficients
is the Kronecker product of the two matrices, i.e. AST = AS ⊗AT (5; 6).

For the Type I prior, since there is no spatial or temporal structure, AS and AT are both identity matrices with
corresponding dimension giving the resulting structure matrix AST = IK ⊗ IT, assuming K is the number of spline bases
and T is the number of time points. For the Type II prior, which has temproal structure but no spatial structure we takeAT

of the form in (1), to get the structure matrixAST = AK ⊗ IT. Note that in this caseAST has rank K(T − 2) becauseAT has
rank T − 2. Under the Type III prior, which has spatial structure only, we consider a first-order neighborhood structure for
the basis functions and use the form (6) to obtain AST = IK ⊗AT, with rank T (K − 1). Finally, for the Type IV prior, we
take both the structured spatial and temporal matrices to get AST = AK ⊗AT, with rank (T − 2)(K − 1).
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Figure 3. CubicB spline basis functions in one dimension withK = 4 knots.

3. Tensor Product of B-Splines

There are many possibilities for spline modeling including natural thin plate splines (7), thin plate regression splines
(which are the two-dimensional analog of natural cubic regression splines, see (8)) and P -splines (9) which use B-splines
with a penalty on the differences. Radial bases have also been used in a spatial context (10). In our approach we use a
tensor product of B-splines.

We first describe one-dimensional cubic B-splines in x

K+4∑
k=1

γkB
3
k(x).

The total number of knots is K with knot locations κk, k = 1, . . . ,K. A B-spline with degree d = 0 is just a set of
piecewise constant basis functions. Higher degree B-splines are constructed recursively from those of lower degree:

Bdk(x) =
x− κk

κk+d − κk
Bd−1k (x) +

κk+d+1 − x
κk+d+1 − κk+1

Bd−1k+1(x).

This is equivalent to a truncated power series basis, but has more desirable numerical behavior. B-splines have many
advantages (11). For example, with the are being bounded from above and for all x at most d+ 1 bases are positive.
Figure 3 shows cubic B spline basis functions in one dimension with K = 4 knots.

For two-dimensional surface fitting, the bivariate B-spline basis function is constructed as the tensor products of two
univariate B-splines. Let Bk1,1(x1), k1 = 1, ...,K1 and Bk2,2(x2), k2 = 1, ...,K2 be cubic B-spline bases for x1 and x2
with K1 − 4 and K2 − 4 knots in each direction. Then the tensor product is

f(x1, x2) =

K1∑
k1=1

K2∑
k2=1

bk1k2Bk1k2(x1, x2),

where
Bk1k2(x1, x2) = Bk1,1(x1)Bk2,2(x2), k1 = 1, ...,K1; k2 = 1, ...,K2.
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This is a low/intermediate rank representation. Figure 4 shows the bases functions in two dimensions with K = 4 knots in
each direction. In the paper, for simplicity, we write the model as

K∑
k=1

bktBik, k = 1, . . . ,K,

where Bik is a tensor product of cubic B-spline basis functions

Figure 4. Tensor product of cubic B-splines with 4 knots in each direction.

4. Example code for WinBUGS and INLA

Example WinBUGS code for running the Type II model

# use the one-directional conditional distribution for b

model {

for (i in 1:I) {

for (t in 1:T) {

# Likelihood

Y[i, t] ˜ dpois(mu[i, t])

mu[i, t] <- E[i]*eta[i, t]

log(eta[i, t]) <- alpha + f[i, t]

# spline: Z is the tensor product of cubic B-splines

f[i,t] <- inprod(Z[i, ], b[, t])

}}

# define number of neighbors

num[1] <- 1

num[2] <- 5

for (t in 3:(T-2)){

num[t] <- 6 }

num[T-1] <- 5

num[T] <- 1
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# second order random walk (RW2) : undirectional condimental dstribution

for (k in 1:nknots){

for (t in 1:1){

bmean[k, t] <- (2*b[k, t+1] - b[k, t+2] )}

for (t in 2:2){

bmean[k, t] <- (2*b[k, t-1] +4*b[k, t+1] - b[k, t+2])/5}

for (t in 3:(T-2)){

bmean[k, t] <- ( - b[k, t-2] + 4*b[k, t-1] +4*b[k, t+1] - b[k, t+2])/6}

for (t in (T-1):(T-1)){

bmean[k, t] <- (- b[k, t-2] +4*b[k, t-1] +2* b[k, t+1])/5 }

for (t in T:T){

bmean[k, t] <- ( -b[k, t-2] +2*b[k, t-1])}

}

# calculate the likelihood function of precision parameter tau.b

for (t in 1:T){

tautmp[t] <- num[t] * tau.b

for (k in 1:nknots){

b[k, t] ˜ dnorm(bmean[k, t] , tautmp[t])

# likelihood of tau

tau.like[k, t] <- num[t] * b[k, t] * (b[k, t] - bmean[k, t]) }

}

# priors

alpha ˜ dnorm(0.0,1.0E-6)

d <- 1+ sum(tau.like[, ]) / 2

r <- 0.005 + nknots*(T-2)/ 2

tau.b ˜ dgamma(r, d)

sigma.b <- 1 / sqrt(tau.b)

}

}

Example INLA code for running the Type II model

### construct the stacked design matrix: Z matrix is the tensor-product B spline

X.mat <- matrix(NA, nrow=n.area*n.time, ncol=n.basis*n.time)

I.tmp <- diag(1, nrow=n.time, ncol=n.time)

for (i in 1:n.area){

X.mat[((i-1)*(n.time)+1):(i*n.time),] <- I.tmp %x% matrix(Z[i,], nrow=1)

}

dim(X.mat) # should be (IT)*(KT)

#########--------------- type 2 interaction ---------------#########

# create vectors in the A matrix

intercept <- c(1, rep(NA, n.basis*n.time))

idx <- c(NA, rep(1:n.time, each=n.basis))

group <- c(NA, rep(1:n.basis, n.time))

data.inla <- list(y=y, idx=idx, intercept=intercept, group=group)

# fit the model

formula.2 <- y ˜ -1 + intercept +

f(idx, model = "rw2", constr=F, hyper = list(prec = list(param=c(1, 0.005))),

replicate=group)

r.2 = inla(formula.2, data=data.inla,family="poisson", control.predictor =

list(A=cBind(rep(1, nrow(X.mat)), X.mat),

compute=TRUE, link=1),control.compute=list(dic=T, cpo=TRUE),

8 www.sim.org Copyright c© 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 00 1–16
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verbose=F, E=E.lvec)

summary(r.2)

# extract the coefficients

b.hat.2.inla <- r.2$summary.linear.predictor[(n+2):(n+1+m), "mean"]

b.hat.mat.2.inla <- matrix(b.hat.2.inla, nrow=n.basis, ncol=n.time, byrow=F)

head(b.hat.mat.2.inla)

5. Simulation

Bubble plots of the observed number of cases in the simulation study can be found in Figure 5.

Table 1. Comparison of the parameter estimates using the Type I–IV models in the simulation study. We report the
posterior medians for the intercept α and the variance parameter σ2

b .

Parameter Type I Type II Type III Type IV
α -0.1 -0.09 -0.09 -0.08
σ2
b 2.6 0.01 4.8 0.15

Table 1 gives parameter estimates from the four interaction models. For all four models, the estimated overall level
α is very close to the true value of −0.1. In the table we also report the variance parameter σ2

b , which is the inverse of
the precision parameter τb. The estimates of σ2

b are very different in the four models, and this is because of the different
interpretations of this parameter between the four types and so the parameter is not directly comparable. For example, in
the Type II interaction model, σ2

b is the variability of the basis coefficients bkt conditioned on those at the neighboring
time points bkt′ , t′ ∼ t. In the Type III interaction model, σ2

b is the variability of the basis coefficients bkt conditioned on
those at the neighboring spatial bases bk′t, k′ ∼ k. Finally, for the Type IV interaction model, σ2

b is the variability of the
basis coefficients conditioned on both the neighboring time points and the neighboring spatial bases.

6. Comparison between MCMC and INLA

Our proposed models can be fit using Markov Chain Monte Carlo (MCMC), or the newly developed Integrated Nested
Laplace Approximation (INLA) technique (12). Here we compare the inferential summaries for each of these two
approaches, based on the simulation study described in the main text. To reiterate the model we used for simulation,
let Yit indicate the observed count at area i and time t, and Eit indicate the expected count calculated using internal
standardization (in some cases, we may use the population total Nit instead). Then for the relative risk µit we have

Yit|µit ∼ Poisson(Eiµit) (7)

log(µit) = α+ fST(xi, t), (8)

where fST is the space-time interaction term and constructed using tensor product cubic B-splines. The observed counts
Yit are simulated at I = 150 randomly selected locations and T = 24 discrete time points, with the expected number of
cases Ei between 5 and 50 and constant over the study period. The basis coefficients bkt are estimated assuming proposed
Type I – IV interaction models.

The MCMC approach is implemented using WinBUGS, and the INLA approach is implemented in R package INLA.
For each of the interaction models, we run MCMC for 55, 000 iterations after an initial 5, 000 iterations for burn-in. Visual
inspection shows good mixing of MCMC chains. Table 2 provides the comparison of parameter estimates between INLA
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(g) Week 19
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(h) Week 21
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Figure 5. Bubble plots of the simulated number of cases at selected time points: size of the bubbles are proportional to the number of observed cases.

and MCMC, as well as their respective computation time in seconds. The parameter estimates between INLA and MCMC
are very close in terms of both the point estimation and their 95% credible intervals. Figure 6 shows the comparison of
estimated basis coefficients bkt using INLA and MCMC, and the estimation again shows agreement. However, shown in
Table 2, the computation time of INLA is much shorter than that of MCMC, clearly suggesting the advantage of using
INLA here.
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Table 2. Comparison of the parameter estimates using the Type I–IV models between MCMC and INLA. We report
the posterior medians for the intercept α and the variance parameter σ2

b , along with their 95% posterior intervals (in
parentheses). We also compare the computation time (in seconds) between MCMC and INLA approaches. For each type,

we run MCMC for 55,000 iterations with an initial 5,000 iterations as burn-in.

Inference Parameter Type I Type II Type III Type IV
INLA α -0.099 (-0.13, 0.071) -0.085 (-0.11, -0.056) -0.086 (-0.11, -0.058) -0.084 (-0.11, -0.055)

σ2
b 2.57 (2.32, 2.86) 0.11 (0.09, 0.13) 4.88 (4.35, 5.48) 0.16 (0.13, 0.20)

time (sec) 7.2 15.8 48.1 60.3
MCMC α -0.098 (-0.12, 0.071) -0.084 (-0.11, 0.057) -0.085 (-0.11, -0.058) -0.083 (-0.11, -0.054)

σ2
b 2.57 (2.32, 2.86) 0.11 (0.09, 0.13) 4.9 (4.46, 5.5) 0.2 (0.14, 0.16)

time (sec) 9240 9625 10010 10230
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Figure 6. Comparison of the estimated spline coefficients using four types of interactions in the simulation study, between results obtained with MCMC and INLA.

7. Sensitivity of Precision Parameters Priors

The interaction term in our proposed model has precision parameter τb, and is assigned a Gamma distribution prior. To
investigate the sensitivity of our model to the prior choices, we compare the estimated spline coefficients b between using
Gamma (1, 0.98) and Gamma (0.5, 0.005) as the priors, with the simulated data described in the paper. The results of the
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estimation, presented in Figure 7, show little change when using different priors. This exercise confirms that our models
are insensitive to the prior choice.
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Figure 7. Comparison of the estimated spline coefficients using four types of interactions in the simulation study, with Gamma (1, 0.98) and Gamma (0.5, 0.005) as the priors for
the precision parameter.

8. Prior of the Precision Parameter

In the simulation study, the prior of the precision parameter τb of the basis coefficients bkt is chosen as Gamma(1, 0.98).
The (2.5%, 97.5%) quantile interval of the coefficients bkt from this prior is (-4.8, 4.7) based on 1000 simulations. The
resulting relative risk captured by the interaction term at the observed locations has (2.5%, 97.5%) quantile of (0.15, 6.77),
which is considered a wide range for the possible values of residual relative risks.
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9. Sensitivity of Knots Choice

To compare how sensitive our proposed models to the selection of knots (both in total numbers and locations) we conduct
the following sensitivity analysis. In addition to the knots choice presented in the main text, we create a second set of
knots, with k = 27 total knots (compared to k = 22 knots presented in the main text) and different locations, presented
in Figure 8. Models with larger number of knots would be expected to perform better, but they also suffer from losing
parsimony. Hence we choose the total number of knots k = 22 vs k = 27 for fair comparison. The parameter estimates
(median and 95% interval) from four types of interaction models, using two sets of knots, are shown in Table 3. The
estimated coefficient of population density β may be seen as slightly different between these sets of knots. We believe the
difference is a result of the high correlation between the fixed effect (i.e. population density) and the random effect, as they
share similar spatial structures. This is the circumstance described in detail by (13). When we compare the estimated total
counts Ŷit, shown in Figure 9, different knot choices actually provide very similar results. Because the aim of our model is
for prediction and not for estimating ecological associations, we see our models insensitive to the knots choice. Between
the two sets of knots, we prefer models with k = 22 because of our preference to parsimonious Bayesian spatial-temporal
models, and so we present results with k = 22 in the main text.
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Figure 8. Two different sets of knots numbers and locations used in the sensitivity analysis of knots choice.

Table 3. Comparison of parameter estimates (median and 95% interval) from four types of interaction models, using
weekly central north HFMD data in China 2009–2010.

Parameter Type I Type II Type III Type IV

k = 22 α -1.08 (-1.26, -0.88) -0.97 (-1.45, -0.48) -0.84 (-1.31, -0.37) -0.96 (-1.45, -0.46)
β 0.30 (0.14, 0.45) 0.15 (-0.12, 0.41) 0.33 (0.13, 0.52) 0.16 (-0.11, 0.42)

k = 27 α -1.07 (-1.23, -0.88) -1.09 (-1.22, -0.96) -0.9 (-1.5, -0.33) -0.83 (-1.39, -0.26)
β 0.25 (0.07, 0.42) 0.27 (0.1, 0.43) 0.30 (0.08, 0.51) 0.28 (-0.06, 0.62)
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Figure 9. Comparison of estimated total counts using two different sets of knots, using weekly central north HFMD data from 2009 to 2010.

10. Prediction Comparison with China Central North HFMD data

Figures 10 presents MSEP of q-weeks ahead prediction using weekly central north HFMD data from 2009 to 2010. Here
we choose q to be 1 and 2. The x-axis represents the week T ∗ up until which we have the observations. The y-axis
represents the MSEP, and are for the Type IIV spline models and the epidemic/endemic (epi/end) model. For each q, the
plots suggest that the performance of the Type II and Type IV of our proposed models is comparable to the epi/end model.

11. Results from Epi/End Model with China Central North HFMD data

For comparison we also carry out the analysis of the China HFMD data using the epi/end model of (1),with all weeks
between 2009 and 2010. The analysis is implemented within the R surveillance package. Specifically, we use the
form yit|θit ∼ Poisson(θit) with

θit = λAR
i yi,t−1 + λNE

i

∑
j 6=i

wjiyj,t−1 + Eiλ
EN
it (9)
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Figure 10. MSEP of q-weeks ahead prediction using weekly central north HFMD data from 2009 to 2010, using Type I – IV spline models and the epidemic/endemic (epi/end)
model.

where λAR
i = αAR

0 + bAR
i represents the autoregressive “self-area” component with random effects bAR

i , λNE
i = αNE

0 + bNE
i is an

autoregressive “neighboring area” component with random effects bAR
i , and

λEN
it = αEN

0 + bEN
i + βzi +

S∑
s=1

(
γs sin

[
st

52
2π

]
+ δs sin

[
st

52
2π

])
is an endemic component with the random effects bEN

i and S = 1. All the random effects are assumed independently and
normally distributed. The results are summarized in Table 4. Clearly the estimated self-area autoregressive exp(αAR) (i.e.,
0.83) is much larger then the neighboring-area autoregressive exp(αNE) (i.e., 0.05), suggesting the epidemics are driven
locally. This is in line with what out models suggest: majority of the variation in the data is from temporal trend rather
than the spatial component.

Table 4. Results of the epi/end model, using weekly central north HFMD data in China 2009–2010.

Model exp(αAR) exp(αNE) αEND
0 β σAR σNE σNE l.pen l.mar

epi/end model 0.83 0.05 -13.42 1.04 0.13 1.38 1.07 -47393.57 -464.34
(0.015) (0.0092) (0.38) (0.14)
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