Web-Based Supplementary Materials for "Global Rank Tests for Multiple, Possibly Censored, Outcomes" by Ritesh Ramchandani, David Schoenfeld, and Dianne Finkelstein

1 Web Appedix A: Consistency of Variance Estimate in Equation (3)

We want to show that the variance estimate given in equation (3) is a consistent estimate of the asymptotic variance given in equation (2) under H_0 . Consider the first term of the asymptotic variance, $\frac{1}{\lambda}E[\phi(\mathbf{r}_{ij})\phi(\mathbf{r}_{ij'})]$. Since we assume $\frac{N}{n} \to \frac{1}{\lambda}$, it suffices to show that $\hat{\xi}_1 \stackrel{p}{\to} \xi_1$, where $\hat{\xi}_1 = \frac{1}{nm^2} [\sum_i^n \sum_j^m \sum_{j'\neq j}^m \phi(\mathbf{r}_{ij})\phi(\mathbf{r}_{ij'})]$ and $\xi_1 = E[\phi(\mathbf{r}_{ij})\phi(\mathbf{r}_{ij'})]$. Observe that $U = \frac{2}{nm(m-1)} \sum_i^n \sum_j^m \sum_{j'< j}^m [\phi(\mathbf{r}_{ij})\phi(\mathbf{r}_{ij'})]$ is itself a U-statistic, and thus converges to the expected value of its kernel, which is ξ_1 , under the condition that $\phi^4(\mathbf{r}_{ij}) < \infty$. We can rewrite U as $\frac{1}{nm(m-1)} \sum_i^n \sum_j^m \sum_{j'\neq j}^m \phi(\mathbf{r}_{ij})\phi(\mathbf{r}_{ij'})$, which makes it easy to see that $\hat{\xi}_1$ is asymptotically equivalent to U, and thus converges to ξ_1 . In a similar manner, we can show $\frac{N}{(nm)^2} \sum_i^n \sum_{i'\neq i}^m \phi(\mathbf{r}_{ij})\phi(\mathbf{r}_{i'j}) \stackrel{p}{\to} \frac{1}{1-\lambda} E[\phi(\mathbf{r}_{ij})\phi(\mathbf{r}_{i'j})]$, which completes the proof.

2 Web Appendix B: Optimal Weights for Weighted Test Statistics

The proof follows the same argument given in Minas et al. [1] Let $\delta_w = \mathbf{w}' \boldsymbol{\theta}_{\phi}(\mathbf{w}' \boldsymbol{\Lambda} \mathbf{w})^{-1/2}$. As described in section 2.3, maximizing power corresponds to maximizing δ_w when $\boldsymbol{\theta}_{\phi} \geq 0$, or minimizing δ_w when $\boldsymbol{\theta}_{\phi} \leq 0$. Equivalently, we want to maximize δ_w^2 with respect to w. The generalized Cauchy-Schwarz inequality states that for any positive-definite matrix Σ , $(\gamma'y)^2 \leq \gamma' \Sigma \gamma y' \Sigma^{-1} y$ [2, lemma 5.3.2]. It follows that if $\boldsymbol{\Lambda}$ is positive-definite, $\delta_w^2 \leq \frac{\mathbf{w}' \boldsymbol{\Lambda} \mathbf{w} \boldsymbol{\theta}'_{\phi} \boldsymbol{\Lambda}^{-1} \boldsymbol{\theta}_{\phi}}{\mathbf{w}' \boldsymbol{\Lambda} \mathbf{w}} = \boldsymbol{\theta}'_{\phi} \boldsymbol{\Lambda}^{-1} \boldsymbol{\theta}_{\phi}$. δ_w^2 attains the maximum for $\mathbf{w} = \boldsymbol{\Lambda}^{-1} \boldsymbol{\theta}_{\phi}$.

3 Web Appendix C: ALS Simulation Model

We used a shared parameter model for generation of ALS and survival data in simulation scenario 2. Per Healy and Schoenfeld [3], the ALSFRS model is given by:

$$ALSFRS_{ij} = \beta_0 + \beta_1 \times time_{ij} + \beta_2 \times time_{ij} \times treat_i + b_{0,i} + b_{1,i} \times time_{ij} + \epsilon_{ij}$$

where the β are fixed effects, the b_i are patient specific random effects for subject i, and e_{ij} are independent error terms that are normally distributed, i.e. $e_{ij} \sim N(0, 4.35)$. The b_i follow a mean 0 bivariate normal distribution:

$$\begin{pmatrix} b_{0,i} \\ b_{1,i} \end{pmatrix} = N \begin{pmatrix} 0 & 28.38 & 0.79 \\ 0, & 0.79 & 0.71 \end{pmatrix}$$

The time to death outcome has a Weibull distribution with density $f(t) = \gamma \lambda t^{\gamma-1} exp(-\lambda t^{\gamma})$, where $\gamma = 2.28$, and λ follows the model:

$$\lambda_i = exp[\epsilon_0 + \epsilon_1 \times (\beta_0 + b_{0,i}) + \epsilon_2 \times (\beta_1 + \beta_2 + b_{1,i}) + \epsilon_3 \times treat_i]$$

For these models, the following parameters were fixed:

- $\beta_0 = 43.3$; $\beta_1 = -1.11$
- $\epsilon_0 = -7.55$; $\epsilon_1 = -.042$; $\epsilon_2 = -1.39$

The parameters ϵ_3 and β_2 are the treatment effect parameters for survival and ALSFRS, respectively. We varied these as follows:

Effect Size	ϵ_3	β_2
None	0	0
Mild	$\log(4/6)$	1/6
Moderate	$\log(3/6)$	2/6
Strong	$\log(2/6)$	3/6

References

- [1] Giorgos Minas, Fabio Rigat, Thomas E Nichols, John AD Aston, and Nigel Stallard. A hybrid procedure for detecting global treatment effects in multivariate clinical trials: theory and applications to fmri studies. *Statistics in medicine*, 31(3):253–268, 2012.
- [2] Theodore Wilbur Anderson. An introduction to multivariate statistical analysis, volume 3. New York: Wiley-Interscience, 2003.
- [3] Brian C Healy and David Schoenfeld. Comparison of analysis approaches for phase iii clinical trials in amyotrophic lateral sclerosis. *Muscle & nerve*, 46(4):506–511, 2012.