
Supplementary Figures and Legends 
 
 
 
 
 

 
 
 
Supplementary Figure 1: Parameter dependencies; temporal accuracy. Case 1: white 

noise, flat but unknown baseline. Panel a expands all estimation errors for different conditions 
(columns: frame rate, noise level and spiking rate) and different MLspike parameter settings 
(rows: sigma, the expected RMS of noise in the data, and drift, the amount of allowed baseline 
drifts/fluctuations; parameter spikerate is fixed to 1sp/s). Optimal parameter settings are indicated 
with white stars and correspond to simulation results presented in Fig. 2b. Color codes for error 
rate (ER). Between 2 and 120 simulations were run for every data point, the exact number of 
repetitions being adjusted to the datapoint’s relevance (e.g., only few repetitions were run for 
datapoints with very large ER). At lower noise levels, the performance of MLspike deteriorated 
only slowly when sigma moved away from its optimal value (note its range covering more than 
two orders of magnitude). At a given frame rate and noise level, “good parameter” ranges were 
similar up to spiking rates of 5sp/s, which means that estimation can be run without needing to 
know a priori the exact spiking rate; for 10sp/s and 20sp/s spiking rates however, the algorithm 
needed to be assigned to more consider signal variations as spikes rather than noise by setting 
smaller values for sigma. Somewhat surprisingly, in a few cases mostly limited to the highest 
spiking rates and sampling frequencies, estimation was slightly more accurate when the algorithm 
was allowed a small amount of baseline fluctuations, despite the actually flat baseline (bottom 



part, drift=0.01). We speculate that the resulting additional flexibility allowed the algorithm to 
capture more spikes based on their sole onset. b: Same as (a), but displaying misses and false 
detections separately. c: Error rate and mean spike time error as a function of noise. Data are the 
same as in Fig. 2b, but plotted also using two other noise quantifications. Parameters were set to 
optimal values (white stars in (a),(b)). Note that when noise is quantified by “noise level” (RMS 
between 0.1Hz and 3Hz), the algorithm’s performance becomes largely invariant with respect to 
frame rate. This underscores the fact that the fluorescence time series’ relevant information is 
contained within the frequency range that covers the essential part of the individual action 
potential’s fluorescence response spectrum (Fig. 3d).  

 
 
 

 
 
Supplementary Figure 2: Comparison of MLspike’s performance with that of the 

Peeling algorithm on white noise, flat and known baseline; parameter dependencies. a: 
Reproduction of the simulations in Fig. 3 of1, using Poissonian spike trains (spike rate = 0.2sp/s) 
at several (white) noise levels, quantified as SNR = A/RMS(noise) (The Peeling algorithm was 
run using the code available online – which indeed reproduced the published results1). b: 
Summarizing error rate as function of SNR (left) or noise level (right). When baseline was flat 
and its value known as was the case here and in1, MLspike and Peeling performed much 
similarly. Yet, even in such restrictive (and in practice rare) conditions, MLspike slightly but 
consistently outperformed Peeling at lowest SNR (=1). Note that when plotting the error as a 
function of noise level, the points for different frame rates overlap, underscoring the adequacy of 
our noise level quantification (except for frame rates < 3Hz, at which noise level is ill-defined: 
2Hz points shown in light green). c: Mean spike time error. Note that the temporal accuracy of 
data at low SNR is limited by the noise (the SNR=1,2 curves overlap when plotted as function of 



noise level), while temporal accuracy at high SNR is limited by frame rate (the SNR=4,8 curves 
overlap when plotted as function of frame rate). d: Dependency of both MLspike and Peeling on 
its most important parameters (graphical conventions as in Supp. Fig. 1). Curves in (a-c) were 
obtained using optimal parameter settings (white stars in (d)).  

 
 

 
 
Supplementary Figure 3: Parameter dependencies; temporal accuracy. Case 2: 

different types of noise.  As in Supp. Fig. 1, panel a shows all estimation errors for different 
conditions (columns: noise type, noise level and spiking rate) and different MLspike parameter 
settings (rows: drift, spikerate and sigma, see Supp. Fig. 1 for their meaning). It expands Fig. 3c. 
As expected, the most critical parameter was sigma, higher noise levels calling for larger values 
(note also its smaller range as compared to Supp. Fig. 1) in order to limit the number of false 
detections (b), therefore restricting the range of good parameter values. b: Same as (a), but 
displaying miss- and false detection rates separately. c: Error rate and spike time error. Same 
simulations as in Fig. 3c, but plotted using three different noise quantifications. Parameters were 
set to optimal values (white stars in (a),(b)). Once more, quantifying noise as “noise level” allows 
to strongly reducing MLspike’s performance dependency on the type of noise. Frame rate: 100Hz 
in all panels. 

 



 
 
Supplementary Figure 4: Performance comparison of MLspike with Peeling on 

different noise types; parameter dependencies. These simulations are similar to those in Fig. 
3c and S3, but without any calcium saturation (allowing to use the linear version of Peeling, 
which in our hands is more stable). Moreover, here, the baseline fluctuations have an additive 
rather than multiplicative effect, i.e., the signal increase for one spike is fixed to a constant value 
– as required by the Peeling algorithm. On the contrary, in all other simulations the signal 
increase was scaled by the baseline value. This is more rigorous but also more delicate to handle, 
in particular at high spiking rates where exact baseline estimation is difficult. a: Dependency on 
tuning parameters. b: Estimation on example traces; as in Fig. 3, blue traces (simulated 
fluorescence signals) are the sum of red (noise-free fluorescence signals) and grey (noise) traces. 
Three estimation examples (same graphical conventions as in Fig. 2,3) are displayed in black 
(MLspike) and green (Peeling). Their noise levels and ERs are marked by green/black circles in 
(c). Note that the difference in performance between the two algorithms is mostly due to a better 
ability of MLspike to discriminate between calcium transients due to spikes and baseline 
fluctuations. c: ER and the average delay between estimated and true spike times were plotted as 
a function of noise level and SNR. Frame rate = 100Hz in all panels. 

 



 
 
Supplementary Figure 5: Illustration of the autocalibration algorithm on one 

example of real data. Data consisted of 75 trials of 25s. a: The six steps of the autocalibration 
(for details see: Methods). Steps 1-2-3 are aimed at estimating the amplitudes of isolated Ca2+ 

fluorescence events. These amplitudes are indicated as percentages in black on four example 
trials (N.B.: electrically recorded spikes are also shown in red to compare the results to the 
“ground truth”, but are obviously not used by the method). Steps 4-5 are aimed at assigning a 
number of spikes to each of these events, based on the histogram of event amplitudes (more 
precisely, on specific functions derived from the histogram). Step 6 finally estimates parameters 
A and τ.  b: Spike estimation by MLspike, using the autocalibrated parameter. 

 



 
 
Supplementary Figure 6: Calibration report: model parameters obtained using 

simultaneous imaging and electrophysiology. a: Table summarizing “calibrated” model 
parameters, i.e., minimizing the discrepancy between the measured fluorescence and that 
predicted by the electrically recorded spikes. Our estimations of parameter A for GECIs are 
slightly lower than those reported in 2, due to our different normalization convention (division of 
the background-subtracted signal by baseline alone, rather than by (baseline-0.7xbackground)). b: 
Plotting single-exponential decay constant τ against unitary calcium transient A (“calibrated” 
parameter values) allows comparing the characteristics of the different indicators (see 
Supplementary Methods and Supplementary Fig. 9 for more details, including on different 
response models). Numbers near points correspond to example traces in Fig. 5a,b. c: Amplitude 



of fluorescence transients as function of spikes recorded from cells in (a). Non-linearities in the 
response dynamics were accounted for by either a cubic polynomial based on heuristics 3, or by a 
more physiological model based on Ca2+ dynamics as predicted by the Hill equation4. In both 
cases, the model parameters were obtained through calibration as described above. Top: mean. 
Bottom: same data as (top), but plotted separately for parameters obtained from each neuron in 
(b). Some variability was encountered among cells. In addition, in some GCaMP6 cases the 
response amplitude predicted by the polynomial model re-decreased to near-zero values for large 
spike numbers, underscoring the limitations of this non-physiology based model. 

 

 
 
Supplementary Figure 7: Model parameter estimation details; noise level 

investigations. a: Optimized parameters;  top: parameter estimation on our complete set of real 
data shows an equilibrated distribution of misses and false detections (black square marks 
position of average - same data and graphical conventions as in Fig. 5b,c, in all panels). Bottom: 
mean spike time error shown as a function of noise level. b: Same as (a), but for autocalibrated 
parameters (no electrophysiology data were used). Note that estimations using optimized 
parameters (a) are overall more equilibrated in terms of misses and false detections than in (b), 
where some points are largely imbalanced due to errors in parameter estimation by the 
autocalibration ((a) and (b) top are differently scaled). Average timing error, however, was the 
same in the two cases. c: Correlation between autocalibrated parameter values and those obtained 
by calibration using simultaneous electrophysiological recordings (see Methods). Two models 
were tried for the GECIs: a cubic polynomial with instantaneous risetime (left) and the “Hill 
exponent” (right), i.e., finite risetime and amplitude derived from the Hill equation 4. Same color 
conventions as in (a). d-e: Correlation values between ER and noise RMS/A in various narrow 



frequency bands, for synthetic Ca2+ indicator OGB (d) and GECIs (e). In the OGB case, a 
correlation peak is clearly seen around 1Hz, despite strong correlation of the noise power among 
different bands. The latter is due to global-effect factors such as: quality of staining, 
physiological condition of the preparation, photonic noise, etc. In the case of GECIs, the 
correlation between ER and noise level was altogether weaker: despite the small value of some of 
the cells’ parameter A (leading to low SNR values and hampering estimations of transients 
evoked by single spikes), the SNR and estimation accuracy were excellent for bursts, thanks to 
the probe’s strong supralinearity. Both for OGB and GECIs, the precise frequency band 
maximizing correlation differed slightly from the 0.1-3Hz band used throughout our study (e.g., 
yielding ρ = 0.76 vs. 0.69 in the case of OGB (d)). This is possibly due to small differences in the 
power frequency spectrum of actual vs. simulated unitary fluorescence transients. However, both 
for OGB and GECIs, correlation between ER and noise power dropped above 10Hz 
independently of the precise band chosen to quantify noise level (d), thus underscoring the 
stronger impact of low- frequency with respect to high-frequency noise on spike estimation 
accuracy. 

 
  

  
 
Supplementary Figure 8: Algorithm comparison: examples.  Performance of MLspike, 

Peeling, MCMC (spike probability and two sample spike trains), CD and SMC on two examples 
(see legend of Fig. 6a for details), which illustrate the variety of signals that MLspike can handle. 
a: This OGB in vivo recording shows MLspike’s better handling of several kinds of noises than 
the other algorithms, including slow drifts and temporally correlated faster fluctuations. In 
particular, these noises strongly confuse parameter estimation for the MCMC algorithm (A being 
underestimated, leading respectively to many false detections). b: Example from the GCaMP6s 



dataset: although the probe’s strong nonlinearities pose a strong challenge also to MLspike, it 
handles them better than the other algorithms. Peeling underestimates small transients (resulting 
in many misses) but overestimates large transients (resulting in many false positives); MCMC 
overestimates A, leading to many misses. 

 

 
 
Supplementary Figure 9: Comparing three models for the non-linearities of GECIs 

Three different models were tested to account for the non-linear response dynamics of GCaMP5 
and GCaMP6: (i) “Hill exponent”: instantaneous risetime but amplitude derived from the Hill 
equation4, (ii) “Hill + risetime”: same as (i) but with finite risetime, and (iii) “polynomial”: 
instantaneous risetime and amplitude modeled heuristically via a cubic polynomial 3 see 
Methods). a: Comparison of estimation accuracy between the three non-linearity models applied 
on the three different GECIs, for optimized and autocalibrated (the latter failed for GCaMP5) 
parameter sets. Top: spike estimation error, bottom: spike timing error (one-sided Wilcoxon 
signed ranked test, *: p<0.05, **: p<0.01, ***: p<0.001). The poorer performance of the finite as 
compared to the instantaneous risetime model in the autocalibration case might result from some 
cases where the true risetime was shorter than the one used in the model (which was fixed to the 
values specified in Supplementary Fig. 6a), thus inducing large errors in the estimation of the 
other model parameters. b: Example spike estimation using the three different models. In one 
case, an isolated spike is correctly detected (arrow) only by the model with finite rise time. c: 
same as (b), but during a period displaying both an isolated spike and a burst. Only the 
polynomial model succeeds in estimating the correct number of spikes in both cases (arrow). 



 

 
 

  Supplementary Figure 10: MLspike used to return either the unique MAP estimate, 
spike probabilities, or sample spike trains. The original equations of MLspike can be modified 
so as to return either spike probabilities or sample spike trains (see Methods). The latter provide 
additional information on the uncertainty of the estimations. Here, the three different estimations 
have been applied to simulated data with two different levels of noise. a: When noise is low, 
estimation uncertainty is low too: as a consequence, spiking probabilities are very focused in 
time, and sample estimates are very similar one to another (3 examples are shown). b: When 
noise is high, spiking probabilities are more scattered, and sample estimates display large 
variability. All graphical conventions are the same as in Fig. 6 and Supplementary Fig. 8. 
  



Supplementary Table 1: Summary of parameters and methods used in the different 
Figures of the article (including the Supplementary ones).  

 
 
 
 
 

Dataset Simulations Real data 
flat baseline 
but unknown 
level 

flat 
baseline, 
known 
level 

drifts & 
fluctuations 

autocalibration optimized 
(OGB: 24 cells; 
GCaMP5k: 9; 
6s: 9; 6f: 11;  
6f-awake: 2) 

autocalibration 
(OGB: 24 cells; 
GCaMP6s: 9;  
6f: 11) 

1,011 
neurons 
(OGB) 

Figures 2, S1 S2  3, S3, S4 4b,c 5a,b,d, 6, S6, 
S7a,d,e, S8, S9 

4a, 5c,d, 6, S5, 
S7b,c, S8, S9a 
 

7 

C
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ct
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f t
he

 d
at
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Spikes poisson poisson poisson poisson events 
(fix rate), but 
events can be 
bursts 

physiological spikes 

Frame rate different 
frame rates 

different 
frame rates 

100Hz 100Hz from 30Hz to 200Hz 30Hz 

real A and τ 10% - 1s random A (4%-
10%) and τ 
(0.4s - 1.6s) 

could be estimated through 
calibration from electrophysiology 
for all cells; for GCaMP 
estimations, we used the 
polynomial nonlinearity model 
except in S9 that compares 3 
models 

could be 
estimated 
through 
electr. calibr. 
only for 
patched 
neuron 

nonlinearity 
parameter(s) 

γ=0.1 γ=0 γ=0.1 or 
γ=0 (in S4) 

γ=0.1 

noise white noise white noise filtered 
noise (3 
different 
spectra) 

slow drift + 
white noise 

photonic noise + system noise + biological noise + 
calcium activity not related to spiking and possible 
oversimplifications of the model… 
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he
 e
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at
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ns
 Algorithm(s) 

tested 
MLspike MLspike, 

Peeling 
MLspike, 
Peeling (S4 
only) 

MLspike MLspike MLspike, Peeling, MCMC, CD, 
SMC 

Physiological 
parameters 

A, τ and γ known by the algorithm A and τ 
autocalibrated, 
γ fixed to 0.1 

calibration 
value given to 
the algorithm 

autocalibrated 
(except Peeling : fixed) 
 

Noise and 
drift 
parameters 

optimized optimized optimized σ auto-
calibrated, η 
fixed 

optimized MLspike: σ autocalibrated, η 
fixed; Peeling: 3 parameters 
fixed; others: autocalibrated 
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