Supplementary Figures and Legends
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Supplementary Figure 1: Parameter dependencies; temporal accuracy. Case 1: white
noise, flat but unknown baseline. Panel a expands all estimation errors for different conditions
(columns: frame rate, noise level and spiking rate) and different MLspike parameter settings
(rows: sigma, the expected RMS of noise in the data, and drift, the amount of allowed baseline
drifts/fluctuations; parameter spikerate is fixed to 1sp/s). Optimal parameter settings are indicated
with white stars and correspond to simulation results presented in Fig. 2b. Color codes for error
rate (ER). Between 2 and 120 simulations were run for every data point, the exact number of
repetitions being adjusted to the datapoint’s relevance (e.g., only few repetitions were run for
datapoints with very large ER). At lower noise levels, the performance of MLspike deteriorated
only slowly when sigma moved away from its optimal value (note its range covering more than
two orders of magnitude). At a given frame rate and noise level, “good parameter” ranges were
similar up to spiking rates of 5sp/s, which means that estimation can be run without needing to
know a priori the exact spiking rate; for 10sp/s and 20sp/s spiking rates however, the algorithm
needed to be assigned to more consider signal variations as spikes rather than noise by setting
smaller values for sigma. Somewhat surprisingly, in a few cases mostly limited to the highest
spiking rates and sampling frequencies, estimation was slightly more accurate when the algorithm
was allowed a small amount of baseline fluctuations, despite the actually flat baseline (bottom




part, drift=0.01). We speculate that the resulting additional flexibility allowed the algorithm to
capture more spikes based on their sole onset. b: Same as (a), but displaying misses and false
detections separately. ¢: Error rate and mean spike time error as a function of noise. Data are the
same as in Fig. 2b, but plotted also using two other noise quantifications. Parameters were set to
optimal values (white stars in (a),(b)). Note that when noise is quantified by “noise level” (RMS
between 0.1Hz and 3Hz), the algorithm’s performance becomes largely invariant with respect to
frame rate. This underscores the fact that the fluorescence time series’ relevant information is
contained within the frequency range that covers the essential part of the individual action
potential’s fluorescence response spectrum (Fig. 3d).
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Supplementary Figure 2: Comparison of MLspike’s performance with that of the
Peeling algorithm on white noise, flat and known baseline; parameter dependencies. a:
Reproduction of the simulations in Fig. 3 of', using Poissonian spike trains (spike rate = 0.2sp/s)
at several (white) noise levels, quantified as SNR = A/RMS(noise) (The Peeling algorithm was
run using the code available online — which indeed reproduced the published results'). b:
Summarizing error rate as function of SNR (left) or noise level (right). When baseline was flat
and its value known as was the case here and in', MLspike and Peeling performed much
similarly. Yet, even in such restrictive (and in practice rare) conditions, MLspike slightly but
consistently outperformed Peeling at lowest SNR (=1). Note that when plotting the error as a
function of noise level, the points for different frame rates overlap, underscoring the adequacy of
our noise level quantification (except for frame rates < 3Hz, at which noise level is ill-defined:
2Hz points shown in light green). ¢: Mean spike time error. Note that the temporal accuracy of
data at low SNR is limited by the noise (the SNR=1,2 curves overlap when plotted as function of




noise level), while temporal accuracy at high SNR is limited by frame rate (the SNR=4,8 curves
overlap when plotted as function of frame rate). d: Dependency of both MLspike and Peeling on
its most important parameters (graphical conventions as in Supp. Fig. 1). Curves in (a-c) were
obtained using optimal parameter settings (white stars in (d)).
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Supplementary Figure 3: Parameter dependencies; temporal accuracy. Case 2:
different types of noise. As in Supp. Fig. 1, panel a shows all estimation errors for different
conditions (columns: noise type, noise level and spiking rate) and different MLspike parameter
settings (rows: drift, spikerate and sigma, see Supp. Fig. 1 for their meaning). It expands Fig. 3c.
As expected, the most critical parameter was sigma, higher noise levels calling for larger values
(note also its smaller range as compared to Supp. Fig. 1) in order to limit the number of false
detections (b), therefore restricting the range of good parameter values. b: Same as (a), but
displaying miss- and false detection rates separately. ¢: Error rate and spike time error. Same
simulations as in Fig. 3¢, but plotted using three different noise quantifications. Parameters were
set to optimal values (white stars in (a),(b)). Once more, quantifying noise as “noise level” allows
to strongly reducing MLspike’s performance dependency on the type of noise. Frame rate: 100Hz
in all panels.
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Supplementary Figure 4: Performance comparison of MLspike with Peeling on
different noise types; parameter dependencies. These simulations are similar to those in Fig.
3c and S3, but without any calcium saturation (allowing to use the linear version of Peeling,
which in our hands is more stable). Moreover, here, the baseline fluctuations have an additive
rather than multiplicative effect, i.e., the signal increase for one spike is fixed to a constant value
— as required by the Peeling algorithm. On the contrary, in all other simulations the signal
increase was scaled by the baseline value. This is more rigorous but also more delicate to handle,
in particular at high spiking rates where exact baseline estimation is difficult. a: Dependency on
tuning parameters. b: Estimation on example traces; as in Fig. 3, blue traces (simulated
fluorescence signals) are the sum of red (noise-free fluorescence signals) and grey (noise) traces.
Three estimation examples (same graphical conventions as in Fig. 2,3) are displayed in black
(MLspike) and green (Peeling). Their noise levels and ERs are marked by green/black circles in
(c). Note that the difference in performance between the two algorithms is mostly due to a better
ability of MLspike to discriminate between calcium transients due to spikes and baseline
fluctuations. ¢: ER and the average delay between estimated and true spike times were plotted as
a function of noise level and SNR. Frame rate = 100Hz in all panels.
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Supplementary Figure 5: Illustration of the autocalibration algorithm on one
example of real data. Data consisted of 75 trials of 25s. a: The six steps of the autocalibration
(for details see: Methods). Steps 1-2-3 are aimed at estimating the amplitudes of isolated Ca*"
fluorescence events. These amplitudes are indicated as percentages in black on four example
trials (N.B.: electrically recorded spikes are also shown in red to compare the results to the
“ground truth”, but are obviously not used by the method). Steps 4-5 are aimed at assigning a
number of spikes to each of these events, based on the histogram of event amplitudes (more
precisely, on specific functions derived from the histogram). Step 6 finally estimates parameters
A and 7. b: Spike estimation by MLspike, using the autocalibrated parameter.




a (polynomial nonlinearity modeling) (full physiological model)

A (AF/F for 1 spike) tau p2 p3 saturation Hill exponent c0 rise time
0GB 4.90% (+1.3) 0.78s (+0.37) 0.091 (+0.06)
GCaMP5 1.20% (+1.7) 1.63s (+0.55) | 1.11 (+1.61) 0.0087 (+0.05) | 2.4e-4 (+1.7e-4)| 2.57 (+0.41) 1.1 (20.73) [ 26.2ms (£9.6)
GCaMP6s | 11.30% (+8.3) 1.87s (+0.35) | 0.81 (+0.54) -0.056 (+£0.056)| 7.9e-3 (+1.4e-2)| 1.84 (+0.25) | 0.36 (+0.64) | 70.2ms (+18.7)
GCaMP6f 3.41% (+1.04) | 0.76s (£0.17) [ 0.85 (+1.05) -0.006 (+0.11) 7e-4 (£1.2e-3)| 2.99 (+0.53) 1.5 (x0.59) [ 15.6ms (+7.1)
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Supplementary Figure 6: Calibration report: model parameters obtained using
simultaneous imaging and electrophysiology. a: Table summarizing “calibrated” model
parameters, i.e., minimizing the discrepancy between the measured fluorescence and that
predicted by the electrically recorded spikes. Our estimations of parameter 4 for GECIs are
slightly lower than those reported in >, due to our different normalization convention (division of
the background-subtracted signal by baseline alone, rather than by (baseline-0.7xbackground)). b:
Plotting single-exponential decay constant 7z against unitary calcium transient 4 (“calibrated”
parameter values) allows comparing the characteristics of the different indicators (see
Supplementary Methods and Supplementary Fig. 9 for more details, including on different
response models). Numbers near points correspond to example traces in Fig. 5a,b. ¢: Amplitude




of fluorescence transients as function of spikes recorded from cells in (a). Non-linearities in the
response dynamics were accounted for by either a cubic polynomial based on heuristics °, or by a
more physiological model based on Ca*" dynamics as predicted by the Hill equation®. In both
cases, the model parameters were obtained through calibration as described above. Top: mean.
Bottom: same data as (top), but plotted separately for parameters obtained from each neuron in
(b). Some variability was encountered among cells. In addition, in some GCaMP6 cases the
response amplitude predicted by the polynomial model re-decreased to near-zero values for large
spike numbers, underscoring the limitations of this non-physiology based model.
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Supplementary Figure 7: Model parameter estimation details; noise level
investigations. a: Optimized parameters; top: parameter estimation on our complete set of real
data shows an equilibrated distribution of misses and false detections (black square marks
position of average - same data and graphical conventions as in Fig. 5b,c, in all panels). Bottom:
mean spike time error shown as a function of noise level. b: Same as (a), but for autocalibrated
parameters (no electrophysiology data were used). Note that estimations using optimized
parameters (a) are overall more equilibrated in terms of misses and false detections than in (b),
where some points are largely imbalanced due to errors in parameter estimation by the
autocalibration ((a) and (b) top are differently scaled). Average timing error, however, was the
same in the two cases. ¢: Correlation between autocalibrated parameter values and those obtained
by calibration using simultaneous electrophysiological recordings (see Methods). Two models
were tried for the GECls: a cubic polynomial with instantaneous risetime (left) and the “Hill
exponent” (right), i.e., finite risetime and amplitude derived from the Hill equation *. Same color
conventions as in (a). d-e: Correlation values between ER and noise RMS/A in various narrow




frequency bands, for synthetic Ca®" indicator OGB (d) and GECIs (e). In the OGB case, a
correlation peak is clearly seen around 1Hz, despite strong correlation of the noise power among
different bands. The latter is due to global-effect factors such as: quality of staining,
physiological condition of the preparation, photonic noise, etc. In the case of GECIs, the
correlation between ER and noise level was altogether weaker: despite the small value of some of
the cells’ parameter 4 (leading to low SNR values and hampering estimations of transients
evoked by single spikes), the SNR and estimation accuracy were excellent for bursts, thanks to
the probe’s strong supralinearity. Both for OGB and GECIs, the precise frequency band
maximizing correlation differed slightly from the 0.1-3Hz band used throughout our study (e.g.,
yielding p = 0.76 vs. 0.69 in the case of OGB (d)). This is possibly due to small differences in the
power frequency spectrum of actual vs. simulated unitary fluorescence transients. However, both
for OGB and GECIs, correlation between ER and noise power dropped above 10Hz
independently of the precise band chosen to quantify noise level (d), thus underscoring the
stronger impact of low- frequency with respect to high-frequency noise on spike estimation
accuracy.
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Supplementary Figure 8: Algorithm comparison: examples. Performance of MLspike,
Peeling, MCMC (spike probability and two sample spike trains), CD and SMC on two examples
(see legend of Fig. 6a for details), which illustrate the variety of signals that MLspike can handle.
a: This OGB in vivo recording shows MLspike’s better handling of several kinds of noises than
the other algorithms, including slow drifts and temporally correlated faster fluctuations. In
particular, these noises strongly confuse parameter estimation for the MCMC algorithm (4 being
underestimated, leading respectively to many false detections). b: Example from the GCaMP6s




dataset: although the probe’s strong nonlinearities pose a strong challenge also to MLspike, it
handles them better than the other algorithms. Peeling underestimates small transients (resulting
in many misses) but overestimates large transients (resulting in many false positives); MCMC
overestimates 4, leading to many misses.
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Supplementary Figure 9: Comparing three models for the non-linearities of GECIs
Three different models were tested to account for the non-linear response dynamics of GCaMP5
and GCaMP6: (i) “Hill exponent”: instantaneous risetime but amplitude derived from the Hill
equation®, (i) “Hill + risetime”: same as (i) but with finite risetime, and (iii) “polynomial”:
instantaneous risetime and amplitude modeled heuristically via a cubic polynomial ® see
Methods). a: Comparison of estimation accuracy between the three non-linearity models applied
on the three different GECIs, for optimized and autocalibrated (the latter failed for GCaMP5)
parameter sets. Top: spike estimation error, bottom: spike timing error (one-sided Wilcoxon
signed ranked test, *: p<0.05, **: p<0.01, ***: p<0.001). The poorer performance of the finite as
compared to the instantaneous risetime model in the autocalibration case might result from some
cases where the true risetime was shorter than the one used in the model (which was fixed to the
values specified in Supplementary Fig. 6a), thus inducing large errors in the estimation of the
other model parameters. b: Example spike estimation using the three different models. In one
case, an isolated spike is correctly detected (arrow) only by the model with finite rise time. c:
same as (b), but during a period displaying both an isolated spike and a burst. Only the
polynomial model succeeds in estimating the correct number of spikes in both cases (arrow).
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Supplementary Figure 10: MLspike used to return either the unique MAP estimate,
spike probabilities, or sample spike trains. The original equations of MLspike can be modified
so as to return either spike probabilities or sample spike trains (see Methods). The latter provide
additional information on the uncertainty of the estimations. Here, the three different estimations
have been applied to simulated data with two different levels of noise. a: When noise is low,
estimation uncertainty is low too: as a consequence, spiking probabilities are very focused in
time, and sample estimates are very similar one to another (3 examples are shown). b: When
noise is high, spiking probabilities are more scattered, and sample estimates display large
variability. All graphical conventions are the same as in Fig. 6 and Supplementary Fig. 8.



Supplementary Table 1: Summary of parameters and methods used in the different

Figures of the article (including the Supplementary ones).

Dataset Simulations Real data
flat baseline | flat drifts & autocalibration | optimized autocalibration 1,011
but unknown | baseline, fluctuations (OGB: 24 cells; | (OGB: 24 cells; | neurons
level known GCaMP5k: 9; | GCaMP6s: 9; (OGB)
level 6s: 9; 6f: 11; 6f: 11)
6f-awake: 2)
Figures 2,S1 S2 3,S3,S84 4b,c 5a,b.,d, 6, S6, 4a, 5¢,d, 6, S5, 7
S7a,d,e, S8, S9 | S7b,c, S8, S9a
Spikes poisson poisson poisson poisson events | physiological spikes
(fix rate), but
events can be
bursts
£| Frame rate different different 100Hz 100Hz from 30Hz to 200Hz 30Hz
8 frame rates frame rates
f: real4andz [ 10% - 1s random A (4%- | could be estimated through could be
° 10%) and © calibration from electrophysiology | estimated
e (0.4s - 1.6s) for all cells; for GCaMP through
g nonlinearity | y=0.1 y=0 y=0.1 or y=0.1 estimations, we used the electr. calibr.
‘g parameter(s) y=0 (in S4) polynomial nonlinearity model only for
g except in S9 that compares 3 patched
5 models neuron
noise white noise | white noise | filtered slow drift + photonic noise + system noise + biological noise +
noise (3 white noise calcium activity not related to spiking and possible
different oversimplifications of the model...
spectra)
Algorithm(s) | MLspike MLspike, MLspike, | MLspike MLspike MLspike, Peeling, MCMC, CD,
tested Peeling Peeling (S4 SMC
only)
Physiological | 4, z and y known by the algorithm Aandt calibration autocalibrated
parameters autocalibrated, | value givento | (except Peeling : fixed)

Details of the estimations

y fixed to 0.1

the algorithm

Noise and
drift
parameters

optimized

optimized

optimized

o auto-
calibrated, #
fixed

optimized

MLspike: ¢ autocalibrated, 7
fixed; Peeling: 3 parameters
fixed; others: autocalibrated




Supplementary Note 1: “Factor Box” "* T ER: 0.0% (miss: 0.0% / fd: 0.0%) '

This document illustrates qualitatively how the performance of MLspike
depends on various primary and secondary factors.

AF/F

The simulation on the right is characterized by a spiking rate of 1Hz, low
photonic noise (RMS = 0.01) and small baseline drift/fluctuations. It serves
as “starting point”. In the following simulations, various factors will be varied,
one at a time, whereas the other simulation parameters stay unchanged
(unless specified otherwise).

| Primary factors for MLspike estimation accuracy

1) Noise level
Increasing photonic noise results in poorer performance. However, it is not the high frequency part of this noise that hampers
estimation. Rather,the critical part of the noise is around 1Hz, as is shown further below.

(RMS=0.05) (RMS=0.1)
ER: 3.2% (miss: 6.3% / fd: 0.0%)

ER: 17.2% (miss: 25.0% / fd: 7.7%)

Performance is quite robust against low frequency noises up to ~0.1Hz.

(<0.1Hz, RMS=0.3) (<0.1Hz, RMS=0.5)
ER: 0.0% (miss: 0.0% / fd: 0.0%) ER: 6.3% (miss: 6.3% / fd: 6.3%)

Noises in the "worst band" (0.1-3Hz) most strongly impact on the estimation's accuracy.
(RMS=0.015) (RMS=0.05)
ER: 0.0% (miss: 0.0% / fd: 0.0%) ER: 43.6% (miss: 31.3% / fd: 52.2%)

2) Spiking rate and spiking regularity

Higher spiking rates result in poorer estimations, mainly because it becomes more difficult to correctly estimate the baseline.
Therefore, the spiking patterns are also important: bursts alternating with silent periods ease baseline estimation (firstrow), wheras
near to regularly dense spiking (last row) impairs it. Note that noise also hampers baseline estimation: in the bottom-left example,
baseline and spikes are exquisitely recovered but when noise hides the individual spike onsets, estimation quality rapidly
deteriorates (not shown). Note also that the ability to recover fast spiking pattern depends on the calcium sensor properties, in
particular decay time constant and saturation. The simulations here assume an OGB dye, see next section for GCaMP6 probes.

(Spikerate=5 Hz) (Spikerate=20 Hz)
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Il Secondary factors for MLspike estimation accuracy

Anumber of factors can be considered as "secondary", in the sense that their effect can be reduced to the effect of one or more of the
primary factors described above.

1) Ca-fluorescence transient amplitude
Decrease of unitary Ca transient amplitude has a similar effect as increasing noise: more errors occur, as it becomes more difficult to
distinguish spikes from noise. Baseline estimation is also impaired.

(amplitude of unitary Ca transient=10%AF/F)
ER: 0.0% (miss: 0.0% / fd: 0.0%)

(amplitude of unitary Ca transient=2.5%AF/F)
ER: 23.1% (miss: 37.5% / fd: 0.0%)

2) Laser intensity
Increasing laser intensity decreases the photonic noise in the AF/F signals (by the square root of the increase in signal). This
improves spike estimation significantly only if the noise in the 0.1-3Hz frequency band is of photonic origin, but not otherwise.

3) Changing sampling rate at constant laser power

Left panel vs. middle panel: When decreasing sampling rate by scanning the same field of view at lower speed, the SNR in individual
frames increases (by the square root of the speeds' ratio, due to increased dwell time: here, a 4x slower scanning results in 2x higher
SNR). Yet, the estimation quality remains similar (main text, Fig. 2a, right), because the noise level (quantified as RMS in the 0.1-3Hz
band) remains constant. However, atlow noise levels, slow sampling may obviously reduce temporal precision (e.g. Supp. Fig. 1a).
Left panel vs. right panel: When decreasing sampling rate by scanning a larger field of view without changing scanning speed, the
SNRinindividual frames does notincrease (dwell time remains unchanged), reducing estimation accuracy.

(sr=50Hz, RMS=0.05) (sr=12.5Hz, RMS=0.025) (sr=12.5Hz, RMS=0.05)
ER: 6.3% (miss: 6.3% / fd: 6.3%) ER: 6.3% (miss: 6.3% / fd: 6.3%) ER: 9.7% (miss: 12.5% / fd: 6.7%)

4) Contamination

The fluorescence recorded from one cell can be contaminated by the signal from another one (or from the neuropil, e.g., when
imaging with low numerical aperture or from deep locations). Dealing with this kind of "noise" is particularly challenging.
Nevertheless, the algorithm can handle up to more than 30% contamination, as shown below. The top and middle traces represent
the contribution of the primary and of the contaminating cell to the effectively recorded signal (bottom trace).

Note that, here, keeping the unitary transient amplitude set to its "uncontaminated” value (middle column) rather than to its actual
value (right column) improved the estimations.

Signal = 90% correct + 10% contamination Signal = 70% correct + 30% contamination Signal = 70% correct + 30% contamination
Algorithm expects 10%AF/F transients (too high)  Algorithm expects 10%AF/F transients (too high) Algorithm expects 7%AF/F transients (correct)

ER: 0.0% (miss: 0.0% / fd: 0.0%) ER: 3.0% (miss: 0.0% / fd: 5.9%) ER: 15.8% (miss: 0.0% / fd: 27.3%)
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5) Numerical aperture of the objective

Lower numerical apertures result in lower SNR because of weaker signal (laser beam less focused)
and in more contamination by other cells and/or the neuropil (degraded spatial resolution). The
graph here displays SNR computed as unitary peak response to stimulation / standard deviation of

the fluorescence baseline. compensated for
Data stems from whole-cell patched GCaMP6f neurons in mice cortical slices recorded with a power loss at aperture

variable NAnextto the objective's back aperture. Objective: Olympus XLUMPLFLN 20x, NA=1.0. 1 .74NA51 32 .2

-

SNR (norm.)
o
(4,1

6) Recording depth

The effects of recording depth can vary importantly between different experimental conditions and depend on tissue transparency,
the efficacy of scattered fluorescence collection, and the locality and sparseness of the Ca probe's distribution. In general,
recording deep inside scattering tissues reduces the signal (less ballistic excitation photons reach the sample), thus demanding high
laser power, and increases contamination by other cells and/or the neuropil. This contamination originates both from the
neighborhood of the recorded cell (due to a larger point spread function of the focused beam), and from the superficial layers where
the probe is excited despite a non-focused laser beam, because the latter is strong and only weakly attenuated by tissue scattering
(see simulations below). In order to avoid contamination from surface fluorescence upon deep imaging, it is thus preferable to load
only the imaged area with the calcium sensor, rather than the full volume.
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7) Calcium sensors

Carefully exploring all factors making some sensors preferable over others in general (ability to do chronic imaging, target specific
cells, pharmacological side-effects, etc.) goes beyond the scope of this work. Here, we characterize only those that directly affect the
ability to estimate spikes from calcium recordings. Their transient amplitude for one spike directly influences the SNR; their rise
and decay times influence the temporal precision of the estimations and the ability to follow high spiking rates — which can also be
limited by saturation; finally, the a priori knowledge on the exact values of these parameters and their variability also influence the
ability to perform autocalibration: e.g., we still miss knowledge on the exact function governing nonlinearities of GCaMP6 sensors.

In the graphs below we compare spike estimation accuracy on data simulated using characteristics of GCaMP6s and GCaMP6f. At
low spiking rate (left column), GCaMP6s clearly outperforms GCaMP6f thanks to its larger unitary fluorescence transients: it can
accomodate a noise 5 times larger at comparable level of accuracy (note that OGB dye would be positioned halfway). This
advantage is progressively lost at higher spiking rates (top left). Finally, only GCaMP6f can follow (Poisson-statistics) trains of spikes
at 20sp/s (bottom right), while GCaMP6s is limited to about 5sp/s.
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lll Fine-tuning of MLspike algorithm

MLspike estimation accuracy obviously depends on its parameter settings. Here, we assume physiological parameters (A, tau,
nonlinearity of the probe) to be known (see next section on autocalibration when this is not the case) and investigate the effects of the
three remaining parameters: sigma, drift, and spikerate.

These parameters code for the a priori level of expected photonic noise, slow drifts and spiking activity present in the data. Their
relative settings therefore influence how the algorithm interprets ambiguous variations of the signal.

1) Apriori white noise level: parameter sigma

sigma is the expected RMS of a temporally uncorrelated noise. When the signals are unambiguous, because the noise is small (first
line: RMS=0.01, 2 spikes/s), a wide range of sigma values leads to correct estimations. However, when the noise is large (second
line: RMS=0.04), low values of sigma amount to "over-trusting the data " and cause false detections (as well as an underestimation of
the baseline level:, left). Conversely, high sigma values amount to "not trusting the data enough”, increasing the number of misses

(right).

(sigma=0.0075) (sigma=0.02) (sigma=0.05)

ER: 0.0% (miss: 0.0% / fd: 0.0%) ER: 0.0% (miss: 0.0% / fd: 0.0%) ER: 0.0% (miss: 0.0% / fd: 0.0%)
)
o
Il
n
=
X - - -
~ FEn s na o rndTerr < =asmiY a2

AR N IR LA

FEnrime | fnaiei2 1 3 121122

(sigma=0.015) (sigma=0.04) (sigma=0.1)

ER: 53.6% (miss: 0.0% / fd: 69.8%) ER: 0.0% (miss: 0.0% / fd: 0.0%) ER: 58.5% (miss: 73.8% / fd: 0.0%)
<
=
o
Il
n
=
x

.
a2 o0 KR OOBD WD

[
| || | |1
PUIGHD & 4B OB2 O PbD2

| |l (] \HHH'! | H\w HH\,
\\uusw 1ne H?Ji. ~ Ik IS ]3I
Parameter sigma can be autocalibrated from the data themselves. The simulations below show estimated sigma values and
resulting spike estimations for the same signals as above (left and center). Autocalibration is possible also when the noise is
temporally correlated (right).
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2) A priori drift level: drift parameter

The drift parameter has a similar effect as sigma, but for low-frequency noises: Setting a low value results in fluctuations to be
mistaken for spikes (second line, left), while setting a high value results in spikes to be mistaken for drifts/fluctuations (right).
However, estimations are robust with respect to mis-setting the drift parameter (first line), provided the signals are not too ambiguous
(secondline).

(a priori drift=0.003) (a priori drift=0.01) (a priori drift=0.03)
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3) Apriori spiking activity level: parameter spikerate

Increasing parameter spikerate increases the algorithm's tendency to assign spikes (i.e. decreases misses but increases false
detections). Note that the optimal value for spikerate is not necessarily the true spike rate. Note also that the 3 parameters sigma, drift
and spikerate together control only 2 degrees of freedom of the estimation, as increasing one of them has exactly the same effect as
decreasing the other two. In practice, parameter spikerate can thus be assigned a fix value (we usually use 1sp/s) while the other two
parameters are fine tuned if necessary.



IV Autocalibration of physiological parameters

Parameters A (the fluorescence transient amplitude for one spike) and 1 (decay time constant) can be autocalibrated. The
autocalibration algorithm (see Fig. 4a and Sup. Figs. 5) detects isolated calcium events and uses a histogram of all event amplitudes
in order to assign a number of spikes to each event and to finally return estimated values for Aand 7.

1) Noise level

The same factors that affect MLspike's estimations affect also the autocalibration. Below we show that, e.g., different types of noises
affect autocalibration differently: slow drifts (second row) have only little effect, as opposed to “worst band” (0.1-3Hz) noises, which
affects autocalibration critically.

For each estimation, purple arrows indicate the events detected by the autocalibration, their amplitude (AF/F in %) and the number of
spikes they were assigned. Larger noise can lead to less events to be detected or to falsely detected ones, to approximate amplitude
estimations and to wrong spike number assignments. Eventually this results in an erroneous estimation of A (see the indicated
goodness of estimation expressed as ratios A /Aand 1.,/T), and in spike estimations errors.
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2) Datalength
Autocalibration requires a sufficient number of isolated spikes. Autocalibration on longer data therefore yields more accurate results

than on short ones, provided the quality of the data remains constant in time (see below results for T=20s on the left vs. T=60s on the

right, at an average spiking rate of 1sp/s).
For the same reason autocalibration becomes less accurate at higher spiking rates (see Fig. 4b), as less isolated events can be

detected.
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