Article

Title:

Translocation of the ABC transporter ABCD4 from the endoplasmic reticulum to lysosomes requires the escort protein LMBD1

Author names and affiliations:

Kosuke Kawaguchi¹, Takumi Okamoto¹, Masashi Morita and Tsuneo Imanaka^{*}

Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan

*Correspondence and requests for materials should be addressed to T.I. E-mail: imanaka@pha.u-toyama.ac.jp Phone: +81-76-434-7545 Fax: +81-76-434-7545;

¹These authors contributed equally to this work.

Primer name	5'- sequence-3'	
Fw-inv-ABCD4-HA	CAGACTACGCTGGTTACCCGTACGATGTACCAGACTACGCTTGACTC	
	GAGTCTAGAGGGCCCGTTTAAAC	
Rv-inv-ABCD4-HA	GTACATCGTACGGGTAACCAGCGTAGTCTGGTACATCGTACGGGTAT	
	TCCACTTTGAT TCTCATCAGCTC	
Fw-D1-TM1	CGGTTCCTGTGGCTCCTGCGGCTGCTGTTC	
Rv-D1-TM1	GTCTTTGTTGACGATGCAGCGGGCCAGCC	
Fw-D1-TM2	AACAAAGACCCGCGGGCCTTTGGCTGGCAG	
Rv-D1-TM2	GTAGAGGCGGTAGGCGTGGGCCACCAGACG	
Fw-D1-TM3	CCGGACCAGTCTCTGACGGAGGACGTGG	
Rv-D1-TM3	GCACTGGTAGGAAGTCACAGCCACGTCCAG	
Fw-D1-TM4	GACCGTGGTGCTGCGGGCCTTCTCGCC	
Rv-D1-TM4	GTAGAAAGCGATCTCCTCCGAGTTGGCCAC	
Fw-D1-TM5	CATGTGGAGCTGGCCCTGCTACAGCGCTCC	
Rv-D1-TM5	GGGGATTGCCACCATGAGCAGGCCCGAG	
Fw-D1-TM6	CCCGCAGAGCGCACAGAAGCCTTCACTATTGCCC	
Rv-D1-TM6	GTAGCCAGCCAGCTCCGTCACCTCCTTGTACGAC	
Fw-D4-invTM1	CTGCATCGTCAACAAAGACTTGGAAGGGTTTAAGACTC	
Rv-D4-invTM1	CAGGAGCCACAGGAACCGCTGGAGAAATTG	
Fw-D4-invTM2	CACGCCTACCGCCTCTACTTCCGGGGGCC	
Rv-D4-invTM2	GGCCCGCGGGTCTTTGTTTCCCAGGACC	
Fw-D4-invTM3	GTGACTTCCTACCAGTGCTTCCAAAGCACAGGC	
Rv-D4-invTM3	CGTCAGAGACTGGTCCGGGTTATCGATGTC	
Fw-D4-invTM4	GAGGAGATCGCTTTCTACAGAGCTGGGCATGTGG	
Rv-D4-invTM4	GGCCCGCAGCACCACGGTCCCCAGGATG	
Fw-D4-invTM5	CTCATGGTGGCAATCCCCATTTTCAGCGGG	
Rv-D4-invTM5	GGGCCAGCTCCACATGCCCAGCTCTGTAG	
Fw-D4-invTM6	CGGAGCTGGCTGGCTACACGCACAGAATTG	
Rv-D4-invTM6	CTTCTGTGCGCTCTGCGGGACTCAGGTCTC	
Fw-LMBD1-Kpn	CTGGTACCATGGCGACTTCTGGCG	
Rv-LMBD1-Xho	GCATCTCGAGTCAAGCAGAATAGACAGAGG	
Fw-LMBD- Cla	GATGACCTCGAGTCTAGAGGGCC	
Rv-LMBD- Cla	GATAGCAGAATAGACAGAGGGGCTCATCATC	
Fw-LMBD1-del1405G	ATGCTCCTGAAGATCAGTGTACTGTTACC	
Rv-LMBD1-del1405G	TGCATCACATCTCTTTGGCACAGAAAGG	
Fw-LMBD1-del848-851	GCATTTAGAATTCATTGAAAACAGCTGGTGG	
Rv-LMBD1-del848-851	CTCTCTTCTTAAGTGTTCGTAACCTTTCTTC	
Fw-mutLMBD1-GFP	ATCGATATGGTGAGCAAGGGCGAGGAGC	
Rv-mutLMBD1-D469fs	AAAATACCCCAAGAAAGGCCCAGTTACCAAAATAG	
Rv-mutLMBD1-K281fs	AATGCCTCTCTTCTTAAGTGTTCGTAACCTTTCTTC	
Fw-LMBD1-233AAAA	CAGCTGCGGAAAACACTGAAGACATTGAAG	

 Table S1
 List of oligonucleotide primers

Rv-LMBD1-233AAAA	CAGCAGCAGCGCTTCTAGTGCCTTTTATC
Fw-LMBD1-294AAAA	CTTGTGGCGCTCTGCGTCCCCTGAAGATC
Rv-LMBD1-294AAAA	CTGCTGCCGCCCAGCTGTTTTCAATGAATTCTAAATGC
Fw-GFP- Cla	ATCGATATGGTGAGCAAGGGCGAGG
Rv-GFP- Cla	ATCGATTTACTTGTACAGCTCGTCCATGCC

Supplementary Figure Legends

Supplementary Figure 1 - Stable expression of LMBD1-GFP in CHO cells. PNS was prepared from CHO cells with or without the expression of LMBD1-GFP. LMBD1-GFP was detected by immunoblot analysis using an anti-GFP antibody.

Supplementary Figure 2 - Interaction between ABCD4 and LMBD1. ABCD4-HA constructs were transfected to CHO cells with or without the expression of LMBD1-GFP. Cell homogenates from the cells were treated with 1% digitonin and subjected to immunoprecipitation using an anti-GFP antibody. Co-precipitate proteins were analyzed by SDS-PAGE followed by immunoblotting using an anti-HA antibody.

Supplementary Figure 3 - Interaction between ABCD4-HA and ABCD4-His.

ABCD4-His constructs were transfected to HuH7 cells with or without the expression of ABCD4-HA. Cell homogenates from the cells were treated with 1% digitonin and subjected to immunoprecipitation using an anti-HA antibody. Co-precipitated proteins were analyzed by SDS-PAGE followed by immunoblotting using an anti-His antibody.

Supplementary Figure 4 - Amino acid sequence alignment of ABCD4, ABCD1 and CmABCB1. Each of the shaded sequences was exchanged between ABCD4 and ABCD1.

Supplementary Figure 5 - Subcellular localization of LMBD1(K281fs)-GFP in HEK293 cells. The distribution of LMBD1(K281fs)-GFP was compared with that of ER or lysosomes labeled with anti-KDEL and anti-LAMP1, respectively. Bar, 20 μm.

Supplementary Figure 6 - Subcellular localization of ABCD4-HA in HEK293 cells

expressing mutant LMBD1-GFP. The distribution of ABCD4-HA and

LMBD1(295WTKF/AAAA)-GFP was compared with that of lysosomes stained with anti-LAMP1. Bar, 20 µm.

Supplementary Figure 7 - Construction of *LMBRD1* knockout cells. (A) Sequence analysis of HEK293 cells injected with PX459-lmbrd1 targeting LMBRD1 gene. The PCR products were analyzed by direct sequencing to identify mutations in LMBRD1. (B) PNS was prepared from wild type and LMBRD1 knockout cells. LMBD1 was detected by immunoblot analysis using an anti-LMBD1 antibody (left) and an anti-Actin antibody (right). (C) Detection of endogenous ABCD4 in HEK293 cells. PNS (1.5 mg) from the wild type or LMBRD1 knockout cells was concentrated by Na₂CO₃ treatment. PNS (10 μ g) of CHO cells expressing ABCD4 was used as the positive control. Endogenous ABCD4 was detected by immunoblot analysis using an anti-ABCD4 antibody. The asterisk indicates a non-specific signal.

<i>Cm</i> ABCB1 <i>Hs</i> ABCD1 <i>Hs</i> ABCD4	MNAHAAQSFETANYSSVGENHRERTLSSSIYETDPVSPDTAVSSEATAFQESFPSLKLKEKDTPNRRWWRFWARPSAAGEDPEAGDPKKAAKASGPESAY MPVLSRPRPWRGNTLKRTAVLLALAAYGAHKVYPLVRQCLAPARGLQAPAGEPTQEASGVAAAKAGMNRVFLQ MAVAGPAPGAGARPRLDLQFLQ	100 73 22
<i>Cm</i> ABCB1 <i>Hs</i> ABCD1 <i>Hs</i> ABCD4	TM1 TM2 TTGVTARR I FALAWSSSATMI V I GF I AS I LEGATLPAFA I V-FGRMFQVFTKSKSQ I EGETWKYSVGFVG I GVFEF I VAGSRTALFG I ASERLARDLRVA RLLWLLRLFPRVLCRETGLLALHSAALVSRTFL SVYVARLDGRLARC I VRKDPRAFGWQLLQWLL I ALPATFVNSA I RYLEGQLAL SFRSRL VAHAYRL RFLQ I LKVLFPSWSSQNALMFLTLLCLTLLEQFV I YQVGL I PSQYYGVLGNKDLEGFKTLTFLAVML I VLNSTLKSFDQFTCNLLYVSWRKDLTEHLHRL chimera 1 chimera 2	199 173 122
<i>Cm</i> ABCB1 <i>Hs</i> ABCD1 <i>Hs</i> ABCD4	TM3 TM4 AFSNLVEQDVTYFDRRKAGELGGKLNNDVQVIQYSFSKLGAVLFNLAQCVVGIIVAFIFAPALTGVLIALSPLVVLAGAQMIEMSGNTKRSS YFSQQTYYRVSNMDGRLRNPDQSLTEDVVAFAASVAHLYSNLTKPLLDVAVTSYTLLRAARSRGAGTAWPSAIAGLVVFLTANVLRAFSPKFGELVAEEA YFRGRAYYTLNVLRDDIDNPDQRISQDVERFCRQLSSMASKLIISPFTLVYYT YQCFQSTGWLGPVSIFGYFILGTVVNKTLMGPIVMKLVHQE chimera 3	292 273 216
<i>Cm</i> ABCB1 <i>Hs</i> ABCD1 <i>Hs</i> ABCD4	TMS EAYASAGSVAAEVFSNIRTTKAFEAERYETQRYGSKLDPLYRLGRRRYISDGLFFGLSMLVIFCVYALALWWGGQLIARGSLNL RRKGELRYMHSRVVANSEE IAFYGGHEVELALLQRSYQDLASQINLILLERLWYVMLEQFLMKYVWSASGLLMVAVPIITATGYSESDAEAVKKAALEKK KLEGDFRFKHMQIRVNAEPAAFYRAGHVEHMRTDRRLQRLLQTQRELMSKELWLYIGI-NTFDYLGSILSYVVIAIPIFSGVY	376 373 298
CmABCB1 HsABCD1 HsABCD4	TM6 GELFAMIDRVPQYRRPDPGAEVVTQPLVLK EEELVSERTEAFTIARNLLTAAADAIERIMSSYKEVTELAGYTARVHEMFQVFEDVQRCHFKRPRELEDAQAGSGTIGRSGVRVEGPLKIRGQVVDVE GDLSPAELSTLVSKNAFVCIYLISCFTQLIDLSTTLSDVAGYTHRIGQLRETLLDMSLKSQDCEILGESEWGLDTPPGWPAAEPAD chimera 6	440 471 384
<i>Cm</i> ABCB1 <i>Hs</i> ABCD1 <i>Hs</i> ABCD4	QGIVFENVHFRYPTRMNVEVLRGISLTIPNGKTVAIVGGSGAGKSTIIQLLMRFYDIEPQGGGLLLFDGTPAWNYDFHALRSQIGLVSQEPVLFSGTIRD QGIICENIPIVTPSGEVVVASLNIRVEEGMHLLITGPNGCGKSSLFRILGGLWPTYGGVLYKPPPQRMFYIPQRPYMSVGSLRD TAFLLERVSISAPSS-DKPLIKDLSLKISEGQSLLITGNTGTGKTSLLRVLGGLWTSTRGSVQMLTDFGPHGVLFLPQKPFFTDGTLRE Walker A	540 555 472
<i>Cm</i> ABCB1 <i>Hs</i> ABCD1 <i>Hs</i> ABCD4	NILYGKRDATDEEVIQALREANAYSFVMALPDGLDTEVGERGLALSGGQKQRIAIARAILKHPTLLCLDESTSALDAESEALVQEALDRMMAS QVIYPDSVEDMQRKGYSEQDLEAILDVVHLHHILQREGGWEAMCDWKDVLSGGEKQRIGMARMFYHRPKYALLDECTSAVSIDVEGKIFQAAKD QVIYPLKEVYPDSGSADDERILRFLELAGLSNLVARTEGLDQQVDWNWYDVLSPGEMQRLSFARLFYLQPKYAVLDEATSALTEEVESELYRIGQQ Walker B	633 649 568
<i>Cm</i> ABCB1 <i>Hs</i> ABCD1 <i>Hs</i> ABCD4	DGVTSVVIAHRLSTVARADLILVMQDGVVVEQGNHSELMALGPSGFYYQLVEKQLASGDMSAA	696 743 606

LMBD1-GFP	α-LAMP1	Merge
K281fs		
LMBD1-GFP	α-KDEL	Merge
K281fs	đ	

Α