Supplementary Material

Quorum sensing systems differentially regulate the production of phenazine-1-carboxylic acid in the rhizobacterium *Pseudomonas aeruginosa* PA1201

Authors: Shuang Sun¹, Lian Zhou¹, Kaiming Jin¹, Haixia Jiang¹, Ya-Wen He^{1*}

¹State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

Contents

Supplementary Figure S1

Supplementary Figure S2

Supplementary Figure S3

Supplementary Figure S4

Supplementary Figure S5

Supplementary TableS1

Supplementary TableS2

Supplementary Figure S1 HPLC analysis of strain PA1201 and strain MSH with mutations in *phzM*, *phzS*, and *phzH*.

Supplementary Figure S2 The schematic strategies for (a) *in-frame* gene deletion and (b) construction of a single copy reporter for the gene cluster *phz1* or *phz2*.

a

Supplementary Figure S3 LC-MS analysis of 3-oxo-C12-HSL production in various deletion strains. (a) LC-MS analysis of the commercially available 3-oxo-C12-HSL samples at different concentrations. (b) The standard curve of peak intensity for the specific extracted ion chromatogram (EIC) and 3-oxo-C12-HSL concentrations. (c) EIC chromatograms of extracted 3-oxo-C12-HSL samples.

Supplementary Figure S4 LC-MS analysis of C4-HSL in various PA1201-derived deletion mutation strains. (a) LC-MS analysis of the commercially available C4-HSL. (b) The standard curve of peak intensity for the specific extracted ion chromatogram (EIC) and C4-HSL concentrations. (c) EIC chromatograms of extracted C4-HSL samples

Supplementary Figure S5 LC-MS analysis of PQS in various PA1201-derived deletion mutation strains. (a) LC-MS analysis of the commercially available PQS. (b) The standard curve of peak intensity for the specific extracted ion chromatogram (EIC) and PQS concentrations. (c) EIC chromatograms of extracted PQS samples.

Strains	Relevant characteristics	Reference or source
P. aeruginosa strains		
PA1201	P. aeruginosa wild-type strain, Spe ^R	39
MSH	PA1201 $\Delta phzM\Delta phzS\Delta phzH$ The <i>phzM</i> , <i>phzS</i> and <i>phzH</i> in-frame deletion mutant, Spe ^R	40
MSH∆ <i>las</i> R	lasR in-frame deletion mutant based on MSH, Spe ^R	This study
MSHΔ <i>rhlR</i>	rhlR in-frame deletion mutant based on MSH, Spe ^R	This study
MSH∆ <i>mvfR</i>	mvfR in-frame deletion mutant based on MSH, Spe ^R	This study
MSH∆ <i>amb</i>	ambBCDE in-frame deletion mutant based on MSH, Spe ^R	This study
MSHΔ <i>pch</i>	pchABCDREFG in-frame deletion mutant based on MSH, Spe ^R	This study
MSHΔ <i>phz1</i>	$phzA_{I}B_{I}C_{I}D_{I}E_{I}F_{I}$ G_{I} in-frame deletion mutant based on MSH, Spe ^R	40
$MSH\Delta phz1\Delta lasR$	<i>lasR</i> in-frame deletion mutant based on MSH $\Delta phzI$, Spe ^R	This study
$MSH\Delta phz 1\Delta rhlR$	<i>rhlR</i> in-frame deletion mutant based on MSH $\Delta phzI$, Spe ^R	This study
$MSH\Delta phz1\Delta mvfR$	<i>mvfR</i> in-frame deletion mutant based on MSH $\Delta phzI$, Spe ^R	This study
MSHΔphz2	$phzA_2B_2C_2D_2E_2F_2G_2$ in-frame deletion mutant based on MSH, Spe ^R	40
$MSH\Delta phz 2\Delta lasR$	<i>lasR</i> in-frame deletion mutant based on MSH $\Delta phz2$, Spe ^R	This study
$MSH\Delta phz 2\Delta rhlR$	<i>rhlR</i> in-frame deletion mutant based on MSH $\Delta phz2$, Spe ^R	This study
$MSH\Delta phz2\Delta mvfR$	<i>mvfR</i> in-frame deletion mutant based on MSH $\Delta phz2$, Spe ^R	This study
MSH::Pphz1-lacZ	Single copy insertion of Pphz1-lacZ in the MSH chromosomal attB site	This study
MSH∆ <i>lasR</i> ::Pphz1-lacZ	Single copy insertion of $Pphz1$ -lacZ in the MSH $\Delta lasR$ chromosomal attB site	This study
MSH∆ <i>rhlR</i> ::Pphz1-lacZ	Single copy insertion of $PphzI$ -lacZ in the MSH $\Delta rhlR$ chromosomal attB site	This study
MSHΔmvfR::Pphz1-lacZ	Single copy insertion of $Pphz1$ -lacZ in the MSH $\Delta mv/R$ chromosomal attB site	This study
MSH∆amb::Pphz1-lacZ	Single copy insertion of $Pphz1$ -lacZ in the MSH Δamb chromosomal attB site	This study
MSHΔpch::Pphz1-lacZ	Single copy insertion of $Pphz1$ -lacZ in the MSH Δpch chromosomal attB site	This study
MSH::Pphz2-lacZ	Single copy insertion of Pphz2-lacZ in the MSH chromosomal attB site	This study
MSH∆lasR::Pphz2-lacZ	Single copy insertion of $Pphz2$ -lacZ in the MSH $\Delta lasR$ chromosomal attB site	This study
MSH∆ <i>rhlR</i> ::Pphz2-lacZ	Single copy insertion of $Pphz2$ -lacZ in the MSH $\Delta rhlR$ chromosomal attB site	This study
MSHΔmvfR::Pphz2-lacZ	Single copy insertion of $Pphz2$ -lacZ in the MSH $\Delta mvfR$ chromosomal attB site	This study
MSH∆amb::Pphz2-lacZ	Single copy insertion of $Pphz2$ -lacZ in the MSH Δamb chromosomal attB site	This study
MSHΔpch::Pphz2-lacZ	Single copy insertion of $Pphz2$ -lacZ in the MSH Δpch chromosomal attB site	This study
MSHΔphz2::Pphz1-lacZ	Single copy insertion of $Pphz1$ -lacZ in the MSH $\Delta phz2$ chromosomal attB site	This study
MSHΔphz2ΔlasR::Pphz1-lacZ	Single copy insertion of $Pphz1$ -lacZ in the MSH $\Delta phz2\Delta lasR$ chromosomal attB site	This study
MSH∆phz2∆rhlR::Pphz1-lacZ	Single copy insertion of $Pphz1$ -lacZ in the MSH $\Delta phz2\Delta rhlR$ chromosomal attB site	This study
MSHΔphz2ΔmvfR::Pphz1-lacZ	Single copy insertion of $Pphz1$ -lacZ in the MSH $\Delta phz2\Delta mvfR$ chromosomal attB site	This study
MSHΔphz1::Pphz2-lacZ	Single copy insertion of $Pphz2$ -lacZ in the MSH $\Delta phzI$ chromosomal attB site	This study
MSHΔphz1ΔlasR::Pphz2-lacZ	Single copy insertion of Pphz2-lacZin the MSH $\Delta phz1\Delta lasR$ chromosomal attB site	This study
MSHΔ <i>phz1</i> Δ <i>rhlR</i> ::Pphz2-lacZ	Single copy insertion of Pphz2-lacZ in the MSH $\Delta phz1\Delta rhlR$ chromosomal attB site	This study

Single copy insertion of Pphz2-lacZ in the MSH Δ phz1 Δ mvfR chromosomal attB site

This study

MSHΔphz1ΔmvfR::Pphz2-lacZ

Supplementary Table S1 The strains and plasmids used in this study

Supplementary Table S1 The strains and plasmids used in this study

Strains	Relevant characteristics	Reference or source
Reporter strains		
C. violaceum CV026	Double mini-Tn5 mutant derived from C. violaceum ATCC 31532, AHL biosensor	42
A.Tumefaciens CF11	Harbors two plasmids expressing TraR and the reporter gene lacZ under the tra	41
	reporter.respectively	
E. coli strains		
DH5a	E. coli F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK-, mK+) phoA	Lab collection
	supE44 λ– thi-1 gyrA96 relA1	
pRK2013	A conjugative plasmid,Kan ^R	Lab collection
S17-1λpir	TpR SmR recA, thi, pro, hsdR-M+RP4: 2-Tc:Mu: Kan Tn7 λpir	Lab collection
Plasmids		
pEX18Gm	$\mbox{Gm}^R; \mbox{ ori} T^+ \mbox{ sac} B^+, \mbox{ gene replacement vector with MCS This study}$	49
	from pUC18	
mini-CTX-lacZ	Tet ^R ; integration-proficient vector for chromosomal insertion at the attB site	52
pEX18Gm-∆lasR	pEX18Gm with the fusion product of the lasR flanking fragments for in-frame deletion of lasR,	This study
	Gm ^R	
pEX18Gm-Δ <i>rhlR</i>	pEX18Gm with the fusion product of the <i>rhlR</i> flanking fragments for in-frame deletion of <i>rhlR</i> ,	This study
	Gm ^R	
pEX18Gm- $\Delta mvfR$	pEX18Gm with the fusion product of the $mvfR$ flanking fragments for in-frame deletion of	This study
	$mvfR, \mathrm{Gm}^{\mathrm{R}}$	
pEX18Gm-\Deltaamb	pEX18Gm with the fusion product of the ambBCDE flanking fragments for in-frame deletion	This study
	of amb cluster, Gm ^R	
pEX18Gm-Δpch	pEX18Gm with the fusion product of the pchABCDREFG flanking fragments for in-frame	40
	deletion of pch cluster, Gm^R	
mini-CTX-Pphz1-lacZ	integration-proficient vector with the promoter region of <i>phzA1</i> , Tet ^R	This study
mini-CTX-Pphz2-lacZ	integration-proficient vector with the promoter region of <i>phzA2</i> , Tet ^R	This study

Supplementary Table S2 Primers used in this study

Application	Oligos and sequence(5'to3')
Deletion of <i>lasR</i>	lasR-F1: GGAATTCCAGCGTGGTGGTGTGCGAGATGTT
	lasR-R1: GTGCCCGACGACCCCTGAAGATGT
	lasR-F2: ggggtcgtcgggcacGCCTGGCGCGAGCATTACGAC
	lasR-R2: <u>CGGGATCC</u> CGCTACGCGGCGGGAGGTCAC
	lasR-con-F: TGGCCTTGGTTGACGGTTTTCTTG
Deletion of <i>rhlR</i>	rhlR-F1: GGAATTCCTGCCGCCGGTACACCCCAAGTTC
	rhlR-R1: CAACCCTATCTGTTATGCCAGCACCG
	rhlR-F2: taacagatagggttgTTCGACGCGCCGAACAAGACG
	rhlR-R2: CGGGATCCGTGCGCGAAACGGCTGACGACCT
	rhlR-con-F: GCTCGCGATTGGGGGCCTCTGTGT
	mvfRF1: GGAATTCCACGCGCCACCCAATAAAAGGAAT
	mvfRR1: CGGCGGGATGGCGGTGTC
Deletion of <i>mvfR</i>	mvfRF2:accgccatcccgccgCGCGCCGCACCAGAGTAGAG
	mvfRR2: <u>CCCAAGCTT</u> GAGGCCGAGGAAACCCGCAAC
	mvfR-con-R AGCCGAGCACGCACTGGTTGAAGC
	ambF1: GGAATTCCGCGGCGTACTCCACCATCTGTTC
	ambR1: CGCCGCCAGTACCCCGCTCCATT
	ambF2: ggggtactggcggcgCCGGCGAACCTGGCAACCTGA
Deletion of <i>amb</i> cluster	ambR2: <u>CCCAAGCTT</u> GGCCGCCGCGAACGCTTAGAAAAA
	amb-con-F: CTTCCTCCGCCATGGGGTGTGCTA
	amb-con-R: CGGCCGTGGACGCTGATGAAGTT
	pch-F1:CG <u>GAATTC</u> GTTCCGAATCGCCTACCAGACCGC
Deletion of <i>pch</i> cluster	pch-R1:CAATGGGAAGCCAAGGTGAGCGAC
	pch-F2:cttggcttcccattgCCAGCTCACCCATCTCGACCAGGC
	pch-R2:ACGC <u>GTCGAC</u> GAAACCGGCATACCAGTCGTCCCG
	pch-con-F:GCTGGCGCGGACGTTGTAGAGAT
	pch-con-R:TGCCGCCCGCCAATGATAATAAAT
Construction of <i>phz1</i> reporter strain	Pphz1-For: <u>GGAATTC</u> CACATTTCCGTAACCCGAGAAGTACCC
	Pphz1-Rev: CGGGATCCGGGGGGGGTGTTTCCCCTGTACCGCTGACC
Construction of <i>phz2</i> reporter strain	Pphz2-For: GGAATTCCTCAACTCCAGCAACAAGGCGGAG
	Pphz2-Rev: CGGGATCCCCCTTTCAACCGTTGGTACTCTCG

The sequences with underline are the introduced restriction sites.