Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells

Zhenhai Yang¹, Pingqi Gao^{1,*}, Cheng Zhang², Xiaofeng Li², and Jichun Ye^{1,*}

¹Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

²College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China

Corresponding author: gaopingqi@nimte.ac.cn (PG); jichun.ye@nimte.ac.cn (JY)

Supplement information

Fig. S1. The refractive index *n* and extinction coefficient *k* for (a) ITO, (b) TiO_2 , (c) a-Si:H, (d) AZO, and (e) Ag, respectively.

Fig. S2. (a)/(b) photocurrent density (J_{ph}) versus thickness of ITO and AZO for the flat/nanosphered TFSCs, (c) absorption spectra (P_{abs}) under flat and nanosphered designs, and (d) normalized scattering spectrum (Q_{sca}) under TiO₂-nanosphered system.

In this study, on the basic of electromagnetic field distributions, we calculated the scattering efficiency (Q_{sca}) by integrating energy flux densities under the entire surface area of nanosphere. In detail, it can be expressed as the following formulas:

$$Q_{\rm sca} = \oint P_{\rm sca} ds \tag{1}$$

$$P_{\rm sca} = n_{\rm x} \cdot P_{\rm scax} + n_{\rm y} \cdot P_{\rm scay} + n_{\rm z} \cdot P_{\rm scaz} \tag{2}$$

$$P_{\text{scax}} = \frac{1}{2} \operatorname{Re}(\boldsymbol{E}_{y} \times \boldsymbol{H}_{z} - \boldsymbol{E}_{z} \times \boldsymbol{H}_{y})$$
(3)

$$P_{\text{scay}} = \frac{1}{2} \operatorname{Re}(\boldsymbol{E}_{z} \times \boldsymbol{H}_{x} - \boldsymbol{E}_{x} \times \boldsymbol{H}_{z})$$
(4)

$$P_{\text{scaz}} = \frac{1}{2} \operatorname{Re}(\boldsymbol{E}_{\text{x}} \times \boldsymbol{H}_{\text{y}} - \boldsymbol{E}_{\text{y}} \times \boldsymbol{H}_{\text{x}})$$
(5)

where n_x , n_y and n_z are the refractive indexes, P_{scaz} , P_{scaz} and P_{scaz} are the energy flux densities, E_x , E_y and E_z (H_x , H_y and H_z) are the electric (magnetic) fields along x, y and z directions, respectively. S is the surface area of nanosphere. To well address this problem, we presented the P_{scaz} values with the space angle (in the yz plane) as an example (as shown in Fig. S3).

Fig. S3. P_{scaz} as a function of the angle under (a) $\lambda = 420$ nm, and (b) 750 nm, respectively.

Fig. S4. The spatial distributions of the stabilized carrier generation $(a_1)/(a_2)$, electron concentration $(b_1)/(b_2)$, hole concentration $(c_1)/(c_2)$, and bulk recombination $(d_1)/(d_2)$ inside the a-Si:H layer at the wavelength of 500nm for flat/TiO₂ nanosphered TFSCs, respectively.

The three dimensional (3D) transport equations for electrons and holes in this study can be expressed as:

$$\nabla(-D_n\nabla n + n\mu_n\nabla\Phi) = G - U \tag{6}$$

$$\nabla \left(-D_p \nabla p - p \mu_p \nabla \Phi \right) = G - U \tag{7}$$

where *n* (*p*) is the electron (hole) concentration, $D_n = \mu_n K_B T/q$ ($D_p = \mu_p K_B T/q$) is the electron (hole) diffusion coefficient, μ_n (μ_p) is the electron (hole) mobility, K_B is Boltzmann's constant, *T* is the operating temperature, *q* is the electron charge, Φ is the electrostatic potential. The electrostatic potential Φ is determined by the charge profiles in the device according to the Poisson's equation:

$$\nabla^2 \Phi = \frac{q}{\varepsilon} (n - p - N_d + N_a) \tag{8}$$

where ε is the material permittivity, N_d (N_a) is the concentration of the ionized donor (acceptor). The wavelength-dependent photocarrier generation rate $G(\lambda)$ can be expressed as following formula:

$$G(\lambda) = \frac{\varepsilon''(\lambda)|E(\lambda)|^2}{2\hbar} \Phi_{AM1.5}(\lambda) d\lambda$$
(9)

where ε'' is the imaginary part of the permittivity, *E* is the electric field, and \hbar is the reduced Planck constant. *U* includes contributions from Shockley-Read-Hall, radiative, and Auger recombinations:

$$U_{\text{bulk}} = U_{\text{SRH}} + U_{\text{Aug}} + U_{\text{Rad}} \tag{10}$$

$$U_{\rm SRH} = \frac{np - n_i^2}{\tau_n (p + n_i) + \tau_p (n + n_i)} \tag{11}$$

$$U_{\text{Aug}} = (C_n n + C_p p)(np - n_i^2)$$
⁽¹²⁾

$$U_{\rm Rad} = B_{rad}(np - n_i^2) \tag{13}$$

where $\tau_n (\tau_p)$ is the electron (hole) lifetime, n_i is the intrinsic carrier concentration, B_{rad} is the coefficient of bimolecular radiative recombination, and $C_n (C_p)$ the electron (hole) Auger coefficient. The short-current density (J_{sc}) is calculated by integrating the *EQE* spectrum of the cell under the standard AM1.5G illumination.

$$J_{\rm sc} = \int_{300nm}^{850nm} \frac{e\lambda}{hc} \Phi_{\rm AM1.5}(\lambda) EQE(\lambda) d\lambda$$
(14)

where *e* is the unit charge, *h* the Plank constant, *c* the speed of light in vacuum, and $\Phi_{AM1.5}$ the solar spectral irradiance under air mass 1.5.

Variables	Values	Unit
N_{a}	1.3×10^{17}	cm^{-3}
$N_{ m d}$	4.3×10^{16}	cm^{-3}
Т	300	Κ
$ au_{ m n}$	1.7 - 2	μs
$ au_{ m p}$	0.34 - 2	μs
$\mu_{ m n}$	$4.6 \times 10^{-2} - 1$	cm ² /Vs
$\mu_{ m n}$	$9.2 \times 10^{-3} - 0.5$	cm ² /Vs
З	11.7	
$C_{\rm n}$	1×10^{-30}	cm ⁶ /s
$C_{ m p}$	1×10^{-30}	cm ⁶ /s
$B_{\rm rad}$	7.2×10^{-10}	cm ³ /s
n _i	5×10 ⁷	cm ⁻³

Table. S1 Parameters used in this simulation