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Supplementary Information 

 

Addition information on the analytic and genetic samples 

Table S1 shows descriptive statistics for the entire sample of non-Hispanic white HRS 

respondents born between 1919 and 1955. Figure S1 shows the raw and residualized polygenic scores. 

In general, the polygenic scores have approximately normal distributions. Note that the density for 

height’s polygenic score shows a local maxima around -3. Table S2 and Figure S2 show associations 

between polygenic scores and their associated phenotypes after residualizing on the top 10 PCs. 

Information on Polygenic Score Construction 

 Genetic data used here for the HRS is based on DNA samples focus on single nucleotide 

polymorphisms (SNPs) collected in two phases. The first phase was collected via buccal swabs in 2006 

using the QuiagenAutopure method. The second phase used saliva samples collected in 2008 and 

extracted with Oragene. Genotype calls were then made based on a clustering of both data sets using the 

Illumina HumanOmni2.5-4v1 array. SNPs are removed if they are missing in more than 5% of cases, 

have low MAF (0.01), and are not in HWE (p<0.001). We retained 1,741,345 SNPs after removing 

those which did not pass the QC filters. 

 The scores were constructed via a pipeline that we have previously used elsewhere15,34. (Note 

that the software used to construct the polygenic scores is available at: https://github.com/ben-

domingue/HeritHelper.) We conducted the same basic process for each set of GWAS results6-10. First, 

SNPs in the HRS genetic database were matched to SNPs with reported results in the GWAS (note that 

we did not use imputed genotypes). Ambiguous SNPs, where the risk allele could not be readily 

identified, were dropped.The scores used here utilized substantial numbers of SNPs: BMI 838,490; 

height 837,087; depression 622,170; heart disease 807,011; education 771,589. For each of the 

remaining SNPs, a loading was calculated as the number of smoking associated alleles multiplied by the 

effect-size estimated in the original GWAS. SNPs with relatively large p-values will have small effects 

(and thus be down weighted in creating the composite), so we do not impose a p-value threshold. 

Loadings were summed across the SNP set to calculate the polygenic score (using the plink defaults for 

handling missing genotypes). The score was then standardized to have a mean of 0 and SD of 1. We 
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then residualized each score on the top 10 PCs (computed amongst the non-Hispanic whites in the HRS 

genetic sample).  

 

Sensitivity Analyses 

 The left-hand side of Table S3 contains coefficient estimates from the main model presented in 

the paper (these are the basis for Figure 1 from main text). Here we consider sensitivity analyses related 

to three issues: measurement error in the polygenic score as a predictor of a phenotype, population 

stratification, and the fact that the analyses are based on spousal pairs in many cases. We find our results 

to be robust to each of these issues. We also consider our power for recovering time-varying effects.  

 

Adjustment for measurement error 

 We used SIMEX to adjust for the fact that the polygenic score for each respondent is a noisy 

indicator of their true genetic risk37

1. We first estimate heritabilities via GCTA

. This worked as follows: 

38

2. We then assume that, for each outcome 

𝑦𝑦 = 𝑔𝑔𝑡𝑡 + 𝑒𝑒1 

 for the four outcomes (4). Denote these ℎ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2 .  

where𝑔𝑔𝑡𝑡  is the unobserved true polygenic score and is related to the heritability via the following 

expression: 

ℎ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2 = Var(𝑔𝑔𝑡𝑡)
Var(𝑦𝑦)

. 

We then assume that 

𝑔𝑔𝑜𝑜 = 𝑔𝑔𝑡𝑡 + 𝑒𝑒2 

Where 𝑔𝑔𝑜𝑜  is the observed polygenic score. The error terms (𝑒𝑒1and 𝑒𝑒2) are both assumed to be white-

noise random errors (i.e. independent of 𝑔𝑔𝑡𝑡) 

3. Usage of SIMEX requires an estimate for Var(𝑒𝑒2). We obtain that by first noting that  

Var(𝑔𝑔𝑡𝑡) = ℎ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2 Var(𝑦𝑦) 
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And then using 

Var(𝑒𝑒2) = Var(𝑔𝑔𝑜𝑜) − ℎ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2 Var(𝑦𝑦) 

by the assumption of independence with respect to 𝑒𝑒2.  

4. This estimate for Var(𝑒𝑒2) is then used in SIMEX to simulate predictors  

𝑔𝑔𝑆𝑆~Normal[𝑔𝑔𝑜𝑜 , (1 + 𝜆𝜆)Var(𝑒𝑒2)]. 

For different values of 𝜆𝜆 (typically over a grid between 0 and 2), a trend in the estimates of the relevant 

covariates is established which is then extrapolated back to the case where 𝜆𝜆 = −1. Under certain 

assumptions (e.g. additive measurement error) that are reasonable in the context of polygenic scores, this 

is the unbiased estimator.  

 Results are shown in the right-hand side of Table S3. The SIMEX-adjusted coefficients are 

uniformly larger in magnitude. The interaction coefficients are much stronger, at least 50% larger than 

their unadjusted baseline. As is to be expected, there is also an increase in the standard error associated 

with the parameter estimates after SIMEX. 

 

Implications of Population stratification 

Our approach in the main text includes a stringent correction for population stratification (i.e. 

residualizing on the PCs). This might be an overcorrection. Figure S3 is an updated version of Figure 1 

from the main text based on polygenic scores that are not residualized for population stratification. A 

comparison of these figures suggests that none of the substantive findings change. For example, the 

coefficient for the education polygenic score interaction with birth cohort from Equation 2 in Figure 1 of 

main text is -0.00225 (SE=0.00113) while in Figure S3 it is -0.00213 (SE=0.00113). 

 

Corrections for dependence 

 Table S4 compares regression estimates from Equation 2 before and after Huber-White 

corrections for the fact that spouses are nested within household in Equation 2. Key findings are robust 

to this correction. 

Power Analysis 
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Table S2 displays the results of a post-hoc power analysis for our sample. In one column, we 

show the R2 for the full GxE model (PGS, Cohort and PGS x Cohort) with the associated power to 

detect this effect size for the hypothesized model in the column to its right. All models have ~100 

percent power to detect the R2 of the size we are finding. To the right of this analysis are columns that 

show the partial R2

 Figure S4 graphically depicts results from a power analysis based on the main effects, sample 

size, and residual error variance of the main analysis and hypothesized interaction effects of -0.01 to 

0.01 in increments of 0.005 (we conducted 1000 simulations for each increment). The black and red 

vertical lines represent observed estimate and SIMEX estimates (i.e. left and right sides of Table S3) 

respectively. The true interaction is, of course, unknown, but the evidence suggests that the observed 

interaction (black line) is too low due to attenuation associated with the measurement error of the 

polygenic score. Thus, we consider the SIMEX estimate as well and use these two points to suggest a 

range of reasonable hypothetical effects.  

 for the transition from a main effects model (PGS, Cohort) to a full, GxE model as 

described above. Here we obtain a range of powers, with a low of 48% to a high of ~100%. Though 

48% is obviously below the ideal of 80% power or even the 60% threshold, given the overall power of 

the hypothesized model (i.e. K=3), we feel that we have an adequate sample size to detect the 

statistically significant effects we report. Of course, the ultimate test is replication in another dataset. 

 We are clearly well powered to detect BMI effects in the range of hypothesized effects. For other 

phenotypes, our power varies. For education, power varies from ~0.5 to 0.9 over the range of 

hypothetical effect estimates. Fairly comparable results hold for height and heart disease. We are very 

poorly powered to detect interactions for temporal changes in the genetic influence on depression.  

 

A discussion of higher order concerns 

 In the following sections, we consider several potential higher-order confounders to the analyses 

discussed here. These concerns are not issues that can be addressed via straightforward sensitivity 

analyses, so we focus on simulations and relevant empirical evidence to suggest the degree to which 

they are potential confounders.  

Mortality Bias and Changing Genotypic Penetrance 
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One potential concern with this exercise is mortality bias. Since HRS respondents had to survive 

until the 2000s in order to be included in the sample with genotype and phenotype information, the 

earlier cohorts in our analysis include individuals who lived longer on average.   Distinguishing sample 

selection from age and cohort effects is not an easy task, however. For example, in Figure S5 (Panel A), 

below, we see that there is a steep increase in the mean education by body mass index and birth cohort, 

with the later-born groups having much higher average years of schooling and BMI than the earlier-

borngroups. This likely reflects the rising rates of schooling over the course of the twentieth century and 

well-documented trends in obesity rates more recently26,39

The same pattern obtains when we considerpolygenic scores(Figure S6).  Here we are able to 

more directly assess evidence of mortality selection since the PGS score should not reflect 

environmental shifts and thus and differences should be entirely due to mortality differences (or shifts in 

the mean levels of PGS scores in the population due to differential fertility among their parents by PGS). 

The only score for which we observe a significant trend across birth cohorts is education, suggesting that 

those with lower scores die earlier, causing the earliest birth cohorts (i.e. the oldest respondents) to 

display significantly greater mean values than those with lower scores. It is interesting to note, then, that 

perhaps the education score is the better predictor of longevity even when compared to scores that are 

meant to directly capture health phenotypes. However, the variance in PGS, unlike that of phenotype, is 

relatively flat for all cases (Panel B of Figure S6), with the exception of height (which shows declining 

variance across cohorts, p=0.0122). The direction of change in the case of height PGS variance by birth 

cohort implies an underestimation of the trend we report. Namely, less variance in more recent cohorts 

would lead to attenuation bias due to decreased leverage for estimation in the younger groups, but what 

we observe is a larger effect in later cohorts despite such possible attenuation bias. The results of Panel 

B are largely unchanged when we consider the coefficient of variation for the scores (Panel C). 

. However, heart disease shows a steep decline 

in prevalence that is most likely due to age rather than cohort effects. Likewise, when we examine the 

variance over time of the phenotypes in Figure S5 (Panel B)we find patterns that match the mean 

phenotypic shifts across cohorts (with the exception of education, where the variance decreases in the 

younger birth cohorts likely due to a ceiling effect on number of years of schooling). To address the 

confounding of variance effects with levels changes, we also calculated the coefficient of relative 

variation over time (Figure S5, Panel C). Here we see that the changing variances appear to have been 

entirely an artifact of the shifting means across cohorts. 
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Even the existence of changing coefficients of variation, variance or means over time does not 

necessarily mean that our results are reflecting mortality bias. Assuming that the genetic effect is 

constant over time, what is the bias introduced by mortality selection on the estimated genetic effect? In 

earlier birth cohorts, those with advantageous genetics makeups are likely to be overrepresented relative 

to the population from those birth cohorts. This will cause a restriction of range such that the estimated 

genetic effect in earlier birth cohorts is biased towards zero. Thus, a constant genetic effect would not 

explain the education finding (since the effect in the earlier birth cohorts is larger) but may be related to 

the finding for height and BMI.  

Another possibility for mortality bias to occur is in the relationship between PGS and its 

associated phenotype, is if there is differential mortality by the covariance of PGS and phenotype. If 

individuals with low values of the underlying “healthy” genotypes (as measured by the PGSs) and high 

levels of phenotypic outcomes (or the converse) died earlier, we might observe a stronger correlation 

between genotype and phenotype in the older cohorts because of differential mortality (or vice versa). 

This is highly unlikely. Let us take the example of education: A vast research literature suggests that 

education is positively related to longevity40

 Another possibility is that the PGSs display non-linear effects and when people with low (or 

high) values on an attribute have an increased chance of early mortality, then they shift the remaining 

sample to a part of the distribution where the non-linearity evinces what appears to be a cohort change 

but is really just a local effect that is greater (or lesser) due to the truncation of the distribution. Since we 

have seen that mean values on the PGSs do change for some phenotypes, this could generate spurious 

cohort effects. We estimated regression equations where each phenotype was predicted by its PGS as 

well as a quadratic term in addition to the birth cohort variable. In most cases the quadratic term was not 

statistically significant (see Table S5, below). However, there were exceptions: Education showed a 

positive quadratic effect for its PGS as did the PGS for depression. (The BMI PGS was positive and just 

above conventional alpha levels.) For depression, this suggests that the lack of a trend in Figure 1 of the 

main text could be a combination of an upward trend in actual penetrance combined that is suppressed 

. If the PGS exerts a similar positive effect on longevity 

(independent of education), then individuals with low educational attainment and low values of the PGS 

would face the highest mortality rates. In that case, selection bias would work to attenuate the 

relationship between the PGS and education. Since this selection bias would be greater for the older 

cohorts, it would cause us to underestimate the decline in the importance of genetic factors.   
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by the fact that the mean depression PGS in the population has declined in more recent cohorts, moving 

the observed distribution of effects to a part of the curve where its impact is lessened.  For education, the 

effect goes in the same direction as the observed change: the effect of the education PGS seems to 

decline in more recent cohorts; however, this could partially reflect the declining mean values of the 

education PGS in more recent cohorts, moving the observed effect to a lower part of the distribution 

where it is weaker. (Meanwhile there is not a significant change in the mean PGS for BMI across birth 

cohorts.) When we added a cubic term, it was insignificant for education and BMI, but negative for 

depression, suggesting a possibly more complicated relationship—i.e. gene-gene interactions or gene-

environment interactions at work.   

 

Gene-environment correlation and GxE parameter estimates 

Some researchers have noted that gene-environment interaction (GxE) parameter estimates are 

sensitive to the presence gene-environment correlation (rGE).42

Figure S7 plots the absolute values of the test-statistics from each model. In total, 4,987 tests 

provided a significant interaction which is in line with the expected false-positive rate.  The value of 

1.96 is highlighted to illustrate the traditional level of significance (p<.05). As shown in this figure, there 

is no discernable pattern in the median test-statistic across the range of possible rGE values.  The results 

from a linear model predicting the absolute value of the test statistic with cohort and the results of a 

logistic regression model predicting significance as a function of cohort both produced non-significant 

results. The presence of rGE may be important for the interpretation of GxE estimates in general, but 

given the empirical correlations between education and cohort and PGS and education that we observed, 

our results are robust to this form of rGE. 

 This may be relevant to our inquiry 

because one can see some evidence rGE in Panel A of Supplementary Figure S6. Specifically, the 

average standardized PGS for education appears to decline across birth cohorts. While the correlation 

between PGS and cohort is very small in magnitude (r=-.04) we evaluated the sensitivity of our GxE 

parameter estimates to all possible values of rGE. We simulated 100,000 samples with values from a 

covariance matrix for PGS, education, and cohort that are similar to our empirical values. We randomly 

drew a correlation between PGS and cohort that ranged from -.90 to -.01 and estimated the gene-

environment interaction model comparable to our own.  
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Discovery Sample Ascertainment Bias 

It could theoretically be possible that any changes across cohorts in either the predictive accuracy 

of polygenic scores, are not the result of changes in the overall genetic component of the phenotypic 

variation (i.e. increasing or decreasing genetic effects or assortment) but rather the fact that those 

particular alleles that are associated with either phenotype or spousal genotype in one cohort are not 

predictive in another cohort (while alternative scores would be equally assortative or predictive). That is, 

it could be that any changes across birth cohorts merely reflect ascertainment bias due to the birth cohort 

distribution of the discovery samples.  Namely, even if genetic factors as a whole are similarly important 

across birth cohorts, if different genetic factors matter for different birth cohorts, then a PGS constructed 

with weights from younger birth cohorts may have worse predictive power in older birth cohorts.  

Specifically, if the discovery analysis was done on younger birth cohorts, it would come as no surprise 

that the score predicts better for the younger group in the HRS (or vice versa).  To find out whether this 

was driving the dynamics report here, we went back to the original studies that formed the bases of the 

meta-analyses of the consortia GWAS on which our polygenic scores are based.  Information about the 

birth date distribution was not available for all of studies for all cohorts.  For those that were available, 

we computed a weighted average of the birth year for the discovery sample of that particular polygenic 

score.  These birth cohort means are reported in Tables S7-S11, below.  The means summarized from 

that table are as follows: 

1. GIANT (Height): 1943 

2. GIANT (BMI): 1942 

3. SSGAC (education): 1947 

4. PSYCHE (depression): 1959 

5. CARDIO (heart disease): 1949 

In the case of all of the phenotypes, the mean year of birth was more recent than the median in 

our sample (1938). Thus, any ascertainment bias would work in the direction of finding greater 

predictive power in later cohorts. Taking the case of education, by way of example, the mean year of 

birth for all the cohorts in the discovery sample is 1947, whereas the mean year of birth for those 

included in our HRS analysis is 1938.Since our PGS is estimated on younger cohorts on average, then 

this source of bias would cause it to predict education better for the younger cohorts in the HRS. Thus, 

this source of bias is also unlikely to drive the pattern we show above. 
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As an additional exercise to insure we were not suffering from ascertainment bias as to the 

particular weighting of SNPs in the score calculations, we calculated additive heritability measures for 

young and old cohorts using a median birth year split (1938), deploying the GREML method as 

described elsewhere41. This approach does not rely on any discovery sample, but merely calculates the 

additive heritability based on the SNPs in the sample. When we compare younger and older birth 

cohorts in Figure S8, below, we do not find any striking patterns that would suggest systematic bias as 

compared to what we see in the reported in Figure 1 of the main text.  (Though it must be said that 

GREML requires larger sample sizes than we obtain when we perform the median split; thus the error 

bars are quite wide for the hsnps

 

 estimates.)  None of these median splits show statistically significant 

differences inheritability estimates nor any pattern that consistently contradicts what we report with 

respect to the PGS effects in Figure 1 of the main text.   

Comparison with Twin-Based Estimates 

Twin based models (as well as GREML models) could produce different results from the PGS 

analysis for several reasons.  One could be that they pick up a larger portion (perhaps all) of the additive 

heritability while the measured PGS picks up only a portion of it.  We tried to address this possibility by 

running GREML split by the median birth year as mentioned above.  However, we were underpowered 

to detect any differences (see Figure S8).  As also mentioned above, SIMEX analysis, which attempts to 

correct for the measurement error in the PGS failing to capture the entire additive heritability, does not 

change our results—in fact, this adjustment makes it stronger.  So we are left to speculate as to why the 

results may be different between twin models and our approach. 

In twin models, one cannot tell whether the change in additive heritability as a proportion of the 

total variance is due to the changing degree of environmental variation (C + E) or due to a change in the 

distribution of genetic variation.  With the PGS we can measure this directly, as we do in Figure S6, 

Panel B, where it appears to be constant for the education PGS.  We thus conclude that our observation 

is due to shifting environmental variation and not genetic variation.  That said, this interpretation begs 

the question of why the PGS is not a random “subsample” of the additive genetic variation and/or calls 

into question the earlier twin methods.  We suspect that it is due to problems with the external validity of 

twin samples and with the fact that many different samples are used across many populations, making 
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trends difficult to ascertain, at best.  In fact, more recent, twin-based research shows that trends may be 

different for men and woman and overall are ambiguous at best42

The differences between the present study and Branigan et al. (2013)

. 

20 are worth specifically 

noting.  Branigan and coauthors performed a large-scale meta-analysis of twin-based heritability 

estimates of educational attainment.  They found that—contrary to what we report here—younger 

cohorts demonstrated higher reported heritabilities.  In addition to the fundamental differences between 

PGS and twin-based models as discussed above, there are a number of other differences in analysis 

strategy worth noting.  First, there is little concordance in birth cohorts between their study and ours.  In 

Branigan et al. the cohort split is dichotomous before and after the 1950 birth year.  This split falls 

toward the end of our range of birth cohorts (1920-1955).  Thus, it is entirely possible that during the 

early- to mid-20th Century, omnibus genetic effects on education declined before rising in the post-

World War II period.  Second, as an anonymous reviewer noted, “the heterogeneity across studies in 

Branigan et al. is quite significant with Cochran I2 P < 0.05. Thus, the discrepancy can be just viewed as 

the heterogeneity between the HRS study sample and the studies in Branigan et al.”  Lastly, this 

reviewer also suggested that differences could arise from gender dynamics: “The meta-analysis was 

adjusted for gender effect and the effect was quite significant for the heritability of education.” It could 

be possible that gender moderates the penetrance of educational PGS by birth cohort.  This possibility is 

made all the more salient given the rapid rise in women’s education levels that occurred in the post-

1950, pooled birth cohorts they studied.  To test whether the trends in genetic penetrance differed by 

gender, we ran models for educational attainment (and the other phenotypes as well) that included—in 

addition to all the variables in our main models—a three-way interaction term between gender, PGS and 

birth cohort (as well as two-way interactions between gender and PGS, on the one hand, and birth 

cohort, on the other).  These results are presented in Table S6, below.  For none of the phenotypes is this 

interaction significant.  This does not, of course, rule out the possibility that we are underpowered to 

detect such a “true” three-way interaction or that such an interaction is present when comparing later 

birth cohorts than we study (as did Branigan et al.).
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Figure S1: Densities before (black) and after (red) residualization by 10 PCs. Normal curves with the observed 
mean and SD are show in dashed lines.  



12 
 

 

Figure S2: Graphical representation of correlations between polygenic scores and phenotypes. 
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Figure S3: Version of Figure 1 from main text polygenic scores not residualized on top 10 PCs. 
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Figure S4:Results from power analysis over a range of potential interaction effects. Vertical black and red lines 
represent observed interaction effect and SIMEX estimated interaction respectively.  
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Figure S5: Mean standardized phenotypes (Panel A), variance in standardized phenotypes (Panel B) and 
coefficient of relative variation (standard deviation divided by mean) (Panel C), by HRS birth cohort. 
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Figure S6: Mean standardized polygenic scores (Panel A) and variance in standardized polygenic scores (Panel 
B) by birth cohort in the HRS. 
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Figure S7. Distribution of GxE test statistics as a function of rGE levels.  
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Figure S8: GREML estimates of hsnps, by birth cohort in the HRS for selected phenotypes.   
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Table S1: Sample means and standard deviations for HRS genotyped respondents in analytic sample (non-
Hispanic Whites born between 1919 and 1955).  

  Mean-
all SD-all 

Birth 
Year 1938 9 

Female 0.57 0.5 

Education 13.2 2.6 

BMI 27.5 5.05 

Height 1.7 0.1 

Heart Dis. 0.39 0.49 

CES-D 1.21 1.33 

N 8865 
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Table S2: Correlation of phenotype & polygenic scores for all non-Hispanic white genotyped respondents 
(N=8,865).  

 

  Correlation CI 
R

(GxE) 
2  Power %  

(K=3, α=.05) 
Partial R

(GxE term) 
2  Power % 

(K=1, α=.05) 
  

Education 0.182 0.162 0.202 .061  100 .0004  48   
Height 0.199 0.179 0.219 .042  100 .0006  65   
BMI 0.251 0.232 0.271 .095  100 .0030  100   
Depression 0.064 0.043 0.084 .004  100 .0005  57   
Heart Dis. 0.053 0.032 0.074 .066  100 .0004  48   
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Table S3. Regression estimates underlying Figure 1 and SIMEX adjusted estimates 
 Main Analyses (Figure 1 of main text) 
 Education Height BMI Depression Heart Disease 
pgs  4.550* 

(2.195) 
-4.817* 
(2.176) 

-11.474*** 
(2.146) 

-1.386 
(2.214) 

4.384* 
(2.166) 

t .018*** 
(.001) 

.004*** 
(.001) 

.019*** 
(.001) 

<.001 
(.001) 

-.027*** 
(.001) 

pgs: t -.002* 
(.001) 

.003* 
(.001) 

.006*** 
(.001) 

<.001 
(.001) 

-.002* 
(.001) 

Intercept -34.954*** 
(2.174) 

-7.864*** 
(2.191) 

-36.077*** 
(2.129) 

-.049 
(2.233) 

53.122*** 
(2.163) 

 SIMEX Adjusted Analyses 
 Education Height BMI Depression Heart Disease 
pgs  7.528* 

(3.236) 
-8.921** 
(3.065) 

-19.559*** 
(3.231) 

-2.178 
(3.205) 

7.302* 
(3.144) 

t .019*** 
(.001) 

.004*** 
(.001) 

.019*** 
(.001) 

<.001 
(.001) 

-.028*** 
(.001) 

pgs: t -.004* 
(.002) 

.005** 
(.002) 

.010*** 
(.002) 

.001 
(.002) 

-.004* 
(.002)  

Intercept -36.118*** 
(2.173) 

-7.500*** 
(2.178) 

-35.952*** 
(2.124) 

-.699 
(2.234) 

53.341*** 
(2.164) 

Standard errors in parentheses.  
*** p< .001; ** p < .01; * p < .05 
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Table S4: Comparison of standard and Huber-White Corrected regression results (focusing on 
interaction estimates). 
 Education Height BMI Depression Heart Disease 
Standard -.002* 

(.001) 
.003* 

(.001) 
.006*** 

(.001) 
<.001 
(.001) 

-.002* 
(.001) 

HW-
Corrected 

-.002* 
(.001) 

.003* 
(.001) 

.006*** 
(.001) 

<.001 
(.001) 

-.002* 
(.001) 

N 8851 8865 8862 8865 8865 
Standard errors in parentheses.  
*** p< .001; ** p < .01; * p < .05 
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Table S5: Testing for non-linearities in effect of PGSs on phenotypes 
 Education Height BMI Depression Heart Disease 
pgs .185*** 

(.010) 
.200*** 

(.011) 
.249*** 

(.010) 
.067*** 

(.011) 
.057*** 

(.010) 
pgs^2 .018** 

(.007) 
.003 

(.003) 
.013 

(.007) 
.015* 

(.007) 
<.001 
(.007) 

t .018*** 
(.001) 

.004*** 
(.001) 

.019*** 
(.001) 

<.001 
(.001) 

-.027*** 
(.001) 

Intercept -34.789*** 
(2.172) 

-7.826*** 
(2.191) 

-35.853*** 
(2.132) 

-.615 
(2.233) 

52.987*** 
(2.162) 

Standard errors in parentheses.  
*** p< .001; ** p < .01; * p < .05 
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Table S6: Models with Gender Interaction Effects (Standard Errors in Parentheses) 
 Education BMI Height Depression Heart Disease 
PGS 11.244 

(7.330) 
 

-10.500 
(7.262) 

-2.260 
(4.823) 

-5.994 
(7.542) 

.464 
(7.206) 

BYear .018*** 
(.004) 
 

.014*** 
(.004) 

.004† 
(.002) 

.008* 
(.004) 

-.042*** 
(.004) 

Gender 
(Fem=1) 

-.540 
(4.406) 

 

-5.810 
(4.315) 

-3.253 
(2.887) 

10.075* 
(4.490) 

-18.100*** 
(4.378) 

PGS x 
BYear 
 

-.006 
(.004) 

.006 
(.004) 

.001 
(.002) 

.003 
(.004) 

<.001 
(.004) 

PGS x 
Gender 
 

-4.249 
(4.433) 

-.556 
(4.359) 

-.216 
(2.884) 

3.188 
(4.487) 

2.710 
(4.362) 

BYear x 
Gender 
 

<.001 
(.002) 

.003 
(.002) 

.001 
(.001) 

-.005* 
(.002) 

.009*** 
(.002) 

PGS x 
BYear x 
Gender 
 

.002 
(.002) 

<.001 
(.002) 

<.001 
(.001) 

-.002 
(.002) 

-.001 
(.002) 

Intercept -34.431*** 
(7.330) 

-27.200*** 
(7.174) 

-5.862 
(4.801) 

-15.829* 
(7.469) 

81.400*** 
(7.287) 

 
N 8851 8862 8865 8865 8865 
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Table S7: GIANT—Height
 

6 

PERCENT TOTAL SAMPLE, BIRTHYEAR ASCERTAINED: 63.5% 
WEIGHTED AVERAGE BIRTHYEAR: 1943.012 
Study  Year(s) Ages [mean,sd] Birth Cohort N 
The AIDS Clinical Trials 
Group (ACTG) 

  NA 1055 

Athero-Express Biobank 
Study (AE) 

  Mean: 1934 686 

Anglo-Scandinavian 
Cardiac Outcome Trial 
(ASCOT) 

  Mean: 1935 3802 

Baltimore Longitudinal 
Study on Aging (BLSA) 

  Mean: 1933.9 844 

B-Vitamins for the 
Prevention of 
Osteoporotic Fractures 
(B-PROOF) 

  NA 2669 

Data from an 
Epidemiological Study on 
the Insulin Resistance 
Syndrome (DESIR) 

  NA 716 

Danish National Birth 
Cohort-Preterm Delivery 
Study (DNBC) 

  Mean: 1966.69 1802 

Estonian Genome Center, 
University of Tartu 
(EGCUT-370) 

  NA 866 

Estonian Genome Center, 
University of Tartu 
(EGCUT-OMNI) 

  NA 1356 

Erasmus Rucphen Family 
Study (ERF) 

  NA 2726 
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Family Heart Study 
(FamHS) 

  Mean: 1942 
(Males); 1936 
(Females) 

1463 

Health, Aging, and Body 
Composition Study (Health 
ABC) 

  Mean: 1925 1655 

Health, Risk Factors, 
Training and Genetics 
(HERITAGE) Family 
Study 

  Mean: 1957 500 

HYPERGENES (Cases)   NA 1900 

HYPERGENES (Control)   NA 1841 

Invecchiare in Chianti 
(InCHIANTI) 

  Mean: 1928 1138 

Charles Bronfman Institute 
for Personalized Medicine 
BioMeBioBank Program 
(IPM) 

  Weighted 
Average: 
1946.596 

2867 

Lifelines Cohort Study 
(LifeLines) 

  Mean: 1959.97 8118 

Leiden Longevity Study 
(LLS) 

  Mean: 1942 1903 

London Life Sciences 
Prospective Population 
Study (LOLIPOP-EW610) 

  NA 927 

London Life Sciences 
Prospective Population 
Study (LOLIPOP-EWA) 

  NA 513 

London Life Sciences 
Prospective Population 
Study (LOLIPOP-EWP) 

  NA 651 
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Dutch and Belgian Lung 
Cancer Screening Trial 
(NELSON) 

  Mean: 1945 2668 

Prostate, Lung, Colorectal, 
and Ovarian Cancer 
Screening Trial (PLCO2 
Controls) 

  NA 1193 

PLOC2 (Cases)   NA 2976 

Prevention of REnal and 
Vascular ENdstate Disease 
(PREVEND) Study 

   3624 

Precocious Coronary 
Artery Disease 
(PROCARDIS) 

  Mean: 1945 7000 

The PROspective study of 
Prevastatin in the Elderly 
at Risk for Vascular 
Disease 
(PROSPER/PHASE) 

  NA 5244 

Quebec Family Study 
(QFS) 

  NA 860 

Twin Study at Queensland 
Institute of Medical 
Research (QIMR) 

  Mean: 1951 3627 

Relationship between 
Insulin Sensitivity and 
Cardiovascular Disease 
Study (RISC) 

  Mean: 1959 1031 

Study of Health in 
Pomerania (SHIP-TREND) 

  Mean: 1945 986 

Tracking Adolescents' 
Individual Lives Survey 
(TRAILS) 

  Mean: 1971 1139 

TWINGENE   Mean: 1922 9380 
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Table S8: GIANT—BMI
 

7 

PERCENT TOTAL SAMPLE, BIRTHYEAR ASCERTAINED: 82.91% 
WEIGHTED AVERAGE BIRTHYEAR: 1942.363 
Study  Year(s) Ages [mean,sd] Birth Cohort N 

Previous GWAS Studies (Speliotes) 
Age, Gene/Environment 
Susceptibility-Reykjavik 
Study (AGES) 

Baseline 
2002 

34-77 [m-49.69, f-52] 1925-1968 
Mean: 1952 
(Males) 1950 
(Females) 

3207 

Amish Hereditary and 
Phenotype Heart Study 
(Amish HAPI Heart Study) 

Baseline 
2002 

20-98 [m-45.90, f-
47.50] 

1904-1982 
Mean: 1956 
(Males); 1954 
(Females)  

905 

Atherosclerosis Risk in 
Communities Study (ARIC) 

Baseline 
1987-1989 

44-66 [m-54.69, f-
53.97] 

1921-1945 
Mean: 1934 

8108 

British 1958 Birth Cohort--
Type I Diabetes Genetic 
Consortium Controls 
(B58C-T1DGC) 

Baseline 
1958 

44.5-46 1958 only 2587 

British 1958 Birth Cohort--
Wellcome Trust Case 
Control Consortium 
Controls (B58C-WTCCC) 

Baseline 
1958 

44.5-46 1958 only 1479 

The British Genetics of 
Hypertension (BRIGHT) 
Study (BRIGHT-WTCCC-
HT) 

2002 
(hypertension 
module 
baseline) 

21-85 [m-56.29, f-
57.43] 

1917-1981 
Mean: 1945 

1960 

WTCCC Coronary Heart 
Disease Cases 
(CAD_WTCCC) 

2005  35-82 [m-59.97, f-
60.30] 

1923-1970 
Mean: 1945 

1876 

Cancer Prostate in Sweden 1 
(CAPS1) 

Baseline 
2001-2003 

44.90-81.10 [67] 1920-1962 
Mean: 1935 

1011 

Cancer Prostate in Sweden 2 
(CAPS2) 

Baseline 
2001-2003 

44.90-82.20 [66] 1919-1962 
Mean: 1936 

2002 

Cardiovascular Health Study 
(CHS) 

Baseline 
June 12, 
1989 

65-98 [m-73, f-71.90] 1891-1923/24 
Mean: 1916 
(Males); 1917 
(Females) 

3238 



30 
 

     

CohorteLausannoise 
(CoLaus) 

2003 35-75 [m-52.92, f-
53.88] 

1928-1968  
Mean: 1950 

5409 

Diabetes Epidemiology: 
Collaborative Analysis of 
Diagnostic Criteria in 
Europe (deCODE) 

1997 
Baseline 

11.50-108 [m-64.74, 
f-57.94] 

1889-1985 
Mean: 1932 
(Males); 1939 
(Females) 

26799 

Diabetes Genetics Initiative 
of Broad Institute and MIT, 
Lund, Novartis (DGI) 

ND/NA 35-95 [63 case, 58 
control] 

NA 
Mean: No baseline 
established 

2405 

Estonian Genome Center, 
University of Tartu 
(EGCUT) 

2001 
baseline (to 
2007, 
rolling? not 
defined) 

18-92 [m-40.62, f-
42.88] 

1909-1983 
Mean: 1960 
(Males); 1958 
(Females) 

1417 

European Prospective 
Investigation into Cancer 
and Nutrition-Obesity Study 
(EPIC-Obesity Study) 

Rolling 
recruitment, 
1993-1998 

45-74 [59] 1919-1953 
Mean: Approx. 
1937 

2415 

Erasmus Rucphen Family-
EUROSPAN (ERF) 

Baseline 
2002 (-
2005) 

18-92.10 [50] 1910-1987  
Mean: 1953/1954 

2060 

Fenland Study (Fenland) Active 30-62 at recruitment 
(30-57 in sample) 
[45] 

1950-1975 
Mean: Wave not 
specified 

1402 

Framingham Heart Study 
(FRAM) 

Baseline 
1948; 2002-
2005 third. 

21-72 [38] (Assuming third 
cohort, 1930-1984)  
Mean: 1964 
approx. 

8094 

Finnish Twin Cohort (FTC) Baseline 
1975 

26-76 (in meta) [64] Approx. 1933-1983  
Mean: Wave not 
determined 

125 

Finland-United States 
Investigation of NIDDM 
Genetics (FUSION) 

NA 40-83 [62] NA 
Mean: Wave not 
determined 

1092 

Health 2000/GENMETS 
Substudy (GENMETS) 

2000/2001 30-75 1925-1971 
Mean: 1948 
(Female cases); 
1950 (Other) 

1681 

http://www.mrc-epid.cam.ac.uk/research/studies/fenland�
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German Myocardial 
Infarction Family Study I 
(GerMiFSI) 

1997-2002 32-82 1915-1970 
Mean: Approx.  
Mean: 1943 
(Males); 1940 
(Females) 

600 

German Myocardial 
Infarction Family Study II 
(GerMiFSII) 

1997-2002 29-90 1907-1973 
Mean: 1940 
(Males); 1937 
(Females) 

1124 

Cooperative Health 
Research in the Region 
Augsburg, 
KOoperativeGesundheitsfors
chung in der Region 
Augsburg (KORA3) 

1994-1995 25-74 (25-69 in 
sample) 

1925-1970 
Mean: 1941 

1644 

Cooperative Health 
Research in the Region 
Augsburg, 
KOoperativeGesundheitsfors
chung in der Region 
Augsburg (KORA4) 

1999-2001 25-74 1925-1976 
Mean: 1946 

1814 

MICROS-EUROSPAN 
(MICROS) 

2002-2003 18-88 1914-1985 
Mean: 1957 

1097 

Myocardial Infarction 
Genetics Consortium 
(Migen) 

Baseline 
1997  

<51 (male), <61 
(female); 
<45 (Italian 
subsample, both 
sexes) 
[48.8, 8.2] 

1937-undefined 
Mean: 1948 (MGH 
sub) 

2681 

WTCCC National Blood 
Service Donors 
(NBS_WTCCC) 

ND 42-69 NA 
Mean: ND 

2681 

Northern Finland Birth 
Cohorts (1966)--(NFBC-
1966) 

Initial 
collection 
1969 for '66 
cohort 

All 31 1966 Only 4497 

The Nurse's Health Study 
(NHS) 

1976 
baseline 

30-55 first NHS 
cohort 
(39-66 in sample) 

1921-1946 
Mean: 1932 (based 
on second wave) 

2265 
 

Northern Sweden Population 
Health Study-EUROSPAN 
(NSPHS) 

2006 14-91 1915-1992 
Mean: 1959 

656 

Netherlands Twin Register 
& the Netherlands Study of 
Depression and Anxiety 
(NTRNESDA) 

NESDA 
baseline 
1996 
NTR 1991 

18-81 1910-1978 
Mean: Can't 
determine, pooled 
data 

3516 
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Orkney Complex Disease 
Study-EUROSPAN 
(ORCADES) 

Baseline 
enrollment 
2005 

17-97 1908-1988 
Mean: 1951/1952 
(case, control) 

716 

Prostate, Lung, Colorectal, 
Population-Based and 
Ovarian Cancer Screening 
Trial (PLCO) 

Pilot 1994, 
recruitment 
to 2000 

55-74 1920-1945 
Mean: 1933 

2238 

Rotterdam Study 1 (RS-1) Baseline 
1990 

55-99 [69] 1891-1935 
Mean: 1921 

5974 

Nijmegen Bladder Cancer 
Study and Nijmegen 
Biomedical Study 
(RUNMC) 

2002-2003 
baseline 

24-91 1911-1979 
Mean: 1939 
(Males); 1947 
(Females) 

2873 

Swedish and Singapore 
Breast Association 
Consortium (SASBAC) 

Sw: 1993-
1995 

Sw: 50-74 (63-75 in 
sample) [62] 

1918-1932 
Mean: 1932 (in 
meta analysis) 

1559 

Studies of Epidemiology and 
Risk Factors in Cancer 
Heredity/UK Ovarian 
Cancer Population Study 
(SEARCH/UKOPS) 

2001-2005 20-91 1910-1985 [57] 
Mean: 1946 

1710 

Study of Health in 
Pomerania (SHIP) 

1996 20-79 (20-81 in 
sample) 

1915-1976 [48] 
Mean: 1948 

2073 

WTCCC Type 2 Diabetes 
(T2D-WTCCC) 

1996 29-96 1900-1967 
Mean: 1938 

798 

TwinsUK (TwinsUK) 1993 16-85 (16-76 in 
sample) 

1917-1977 
Mean: 1947 

1479 

VIS EUROSPAN and 
KORCULA (VIS) 

2007 
(Korcula) 

18-93 1914-1989 
Mean: 1951 
(Korcula) 

795 

New or Updated GWAS Studies 
 

Athero-Express Biobank 
Study (AE) 

  Mean: 1934 622 
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Anglo-Scandinavian Cardiac 
Outcome Trial (ASCOT) 

  Mean: 1935 3802 

Baltimore Longitudinal 
Study on Aging (BLSA) 

  Mean: 1933.9 844 

Busselton Health Study 
(BSN-BHS) 

  Mean: 1919 1327 

Genetic Predisposition of 
Coronary Heart Disease in 
Patients Verified with 
Coronary Angiogram 
(COROGENE) 

  NA 3756 

Data from an 
Epidemiological Study on 
the Insulin Resistance 
Syndrome (DESIR) 

  NA 716 

Danish National Birth 
Cohort-Preterm Delivery 
Study (DNBC) 

  Mean: 1966.69 1802 

Estonian Genome Center, 
University of Tartu 
(EGCUT-370) 

  NA 866 

Estonian Genome Center, 
University of Tartu 
(EGCUT-OMNI) 

  NA 1356 

Erasmus Rucphen Family 
Study (ERF) 

  NA 2726 

Family Heart Study (FHS)   Mean: 1942 
(Males); 1936 
(Females) 

1463 

Finnish Genetic Study of 
Arrhythmic Events 
(FinGesture) 

  Mean: 1939.81 
(Males); 1933.56 
(Females) 

943 

Gothenburg Osteoporosis 
and Obesity Determinants 
Study (GOOD) 

  NA 938 
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Health, Aging, and Body 
Composition Study (Health 
ABC) 

  Mean: 1925 1655 

Helsinki Birth Cohort Study 
(HBCS) 

  Mean: 1940.85 1726 

Health, Risk Factors, 
Training and Genetics 
(HERITAGE) Family Study 

  Mean: 1957 500 

Invecchiare in Chianti 
(InCHIANTI) 

  Mean: 1928 1139 

Charles Bronfman Institute 
for Personalized Medicine 
BioMeBioBank (IPM) 

  Mean varies 
between 
subsamples--1939-
1954 

2867 

Lifelines Cohort Study   Mean: 1959.97 8118 

Leiden Longevity Study 
(LLS) 

  Mean: 1942 1903 

London Life Sciences 
Prospective Population 
Study (LOLIPOP-EW610) 

  NA 927 

London Life Sciences 
Prospective Population 
Study (LOLIPOP-EWA) 

  NA 513 

London Life Sciences 
Prospective Population 
Study (LOLIPOP-EWP) 

  NA 651 

Molecular Genetics of 
Schizophrenia/NIMH 
Repository Control Sample 
(MGS) 

  NA 2597 

Dutch and Belgian Lung 
Cancer Screening Trial 
(NELSON) 

  Mean: 1945 1135 
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Prostate, Lung, Colorectal, 
and Ovarian Cancer 
Screening Trial (PLCO2) 

  NA 4175 

Precocious Coronary Artery 
Disease (PROCARDIS) 

  Mean: 1945 7279 

The PROspective Study of 
Pevastatin in the Elderly at 
Risk for Vascular Disease 
(PROSPER/PHASE) 

  NA 5244 

Quebec Family Study (QFS)   NA 860 

Twin Study at Queensland 
Institute of Medical 
Research (QIMR) 

  Mean: 1951 3627 

Relationship between Insulin 
Sensitivity and 
Cardiovascular Disease 
Study (RISC) 

  Mean: 1959 1031 

Rotterdam Study III (RSIII)   Mean: 1950 2006 

Study of Health in 
Pomerania-TREND (SHIP-
TREND) 

  Mean: 1945 986 

Self-contained population 
from East Germany, 
European Descent (Sorbs) 

  NA 907 

Tracking Adolescents' 
Individual Lives Survey 
(TRAILS) 

  Mean: 1971 1141 

TWINGENE   Mean: 1922 9176 

TwinsUK   Mean: 1947 3003 
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Women's Genome Health 
Study (WGHS) 

  Mean: 1939 22888 

Cardiovascular Risk in 
Young Finns Study (YFS) 

  Mean: 1969 1989 
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Table S9: Social Science Genetics Association Consortium (SSGAC), Education
 

9 

PERCENT TOTAL SAMPLE, BIRTHYEAR ASCERTAINED: 100% 
WEIGHTED AVERAGE BIRTHYEAR: 1947.271 
Study  Year(s) Ages [mean,sd] Birth Cohort N 

Age, 
Gene/Environment 
Susceptibility-
Reykjavik Study 
(AGES) 

Baseline 2002 66-95 [ 76.41, 5.45] 1908-1936 

Mean: 1926 

3,212 

Avon Longitudinal 
Study of Parents 
and Children 
(ALSPAC) 

 15-44 [28.69, 4.66] 1948-1977 

Mean: 1962.95 

6,919 

Austrian Stroke 
Prevention Study 
(ASPS) 

 46-85 [65.51, 7.98] 1909-1949 

Mean: 1931.97 

848 

Baltimore 
Longitudinal Study 
of Aging (BLSA) 

 30-101 [71.63, 15.55] 1902-1977 

Mean: 1933.9 

821 

Cancer Hormone 
Replacement 
Epidemiology in 
Sweden (CAHRES) 

 66-92 [79, 6.2] 1919-1944 

Mean: 1931  

1,497 

Cancer Prostate 
Sweden (CAPS) 

 49-81 [68, 7.5] 1921-1954 

Mean: 1933 
(Cases); 1935 
(Controls) 

459 

Cleveland Clinic 
Foundation (CCF) 

 30-84 [59.39, 9.82] 1923-1978 

Mean: 1947 

485 

CohorteLausannois
e (CoLaus) 

2003 34-75 [53.43, 10.75] 1928-1970 

Mean: 1951 

5410 

Croatia Korcula 
(CRKOR) 

 30-98 1909-1979 

Mean: 1949 
(Korcula); 1955.9 
(Split); 1944.8 

2,124 
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(Vis) 

Estonian Genome 
Center, University 
of Tartu (EGCUT) 

2001 baseline 
(to 2007, 
rolling? not 
defined) 

30-103 1905-1979 

Mean: 1949 

1,537 

Erasmus Rucphen 
Family-
EUROSPAN (ERF) 

Baseline 2002 
(-2005) 

30-89 [51.77, 12.29] 1914-1974 

Mean: 1951 

2,380 

Finnish FINRISK 
(FINRISK) 

 30-74 [46.28, 11.40] 1923-1977 

Mean: 1946 

1,823 

Finnish Twin 
Cohort (FTC) 

 41-67 [54.88, 4.48] 1937-1961 

Mean: 1948 

729 

Genetic Association 
Information 
Network 
Schizophrenia 
Controls (GAIN) 

 30-90 [55.48, 14.23] 1916-1976 

Mean: 1950 

1,164 

Genetic 
Epidemiology 
Network of 
Arteriopathy 
(GENOA) 

 24-89 [55.33, 10.82] 1908-1974 

Mean: 1942 

1,439 

Health ABC 
(HABC) 

 69-80 [73.77, 2.84] 1917-1928 

Mean: 1923 

1,659 

Helsinki Birth 
Cohort Study 
(HBCS) 

 56-69 [61.47, 2.92] 1934-1944 

Mean: 1940.85 

1,717 

Invecchiare in 
Chianti 
(InCHIANTI) 

 30-102 [69.95, 13.29] 1896-1970 

Mean: 1928 

1,164 

KooperativeGesund
heitsforschung in 
der Region 
Augsburg (KORA3) 

 30-69 [53.28, 9.20] 1925-1964 

Mean: 1940 

1,595 
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KooperativeGesund
heitsforschung in 
der Region 
Augsburg (KORA4) 

 31-74 [53.93, 8.82] 1926-1969 

Mean: 1946 

1,809 

Lifelines Cohort 
Studies 
(LIFELINE) 

 30-89 [48.57, 10.31] 1920-1980 

Mean: 1959.97 

7,493 

Lothian Birth 
Cohort 1921 
(LBC1921) 

 77-80 1921 Only 515 

Lothian Birth 
Cohort 1936 
(LBC1936) 

 67-71 1936 Only 1,003 

Mother and Child 
Cohort of NIPH 
(MoBa) 

 20-34 1966-1976 

Mean: 1971 

759 

Netherlands Study 
of Depression and 
Anxiety (NESDA) 

 30-65 [46.69, 9.35] 1939-1976 

Mean: 1959 

1,517 

Northern Finland 
Birth Cohort 1966 
(NFBC1966) 

 31 1966 Only 5,371 

Non-Genetic 
Association 
Information 
Network 
Schizophrenia 
(nonGAIN) 

 30-90 [53.02, 13.88] 1916-1976 

Mean: 1953 

1,109 

Netherlands Twin 
Register (NTR) 

 30-91 [51.39, 12.49] 1917-1980 

Mean: 1954 

2,650 

Queensland 
Institute of Medical 
Research (QIMR) 

 30-101 [44.95, 10.09] 1900-1975 

Mean: 1951 

7,985 

Rotterdam Study 
Baseline (RSI) 

 55-99 [69.18, 8.95] 1893-1938 

Mean: 1922 

5,806 
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Rotterdam Study 
Extension (RSII) 

 55-95 [64.97, 8.15] 1906-1944 

Mean: 1935 

1,641 

Rotterdam Study 
Young (RSIII) 

 45-97 [56.11, 5.84] 1910-1960 

Mean: 1950 

2,014 

Rush University 
Medical Center-
Memory and Aging 
Project (RUSH-
MAP) 

 55-101 [81.10, 6.66] 1901-1948 

Mean: 1921 

888 

Rush University 
Medical Center-
Religious Orders 
Study (RUSH-
ROS) 

 60-102 [75.70, 7.35] 1896-1946 

Mean: 1921 

810 

Study of Addiction: 
Genetics and 
Environment 
(SAGE) 

 30-65 [38.70, 5.68] 1938-1975 

Mean: 1965 

1,321 

SardiNIA Study of 
Aging (SardiNIA) 

 30-101 [52.81, 14.25] 1900-1980 

Mean: 1954 

3,639 

Study of Health in 
Pomerania (SHIP) 

 30-81 [53.27, 14.08] 1918-1971 

Mean: 1945 

3,556 

Swedish Twin 
Register (STR) 

 47-89 [63.82, 8.74] 1916-1958 

Mean: 1941 

9,553 

UK Adult Twin 
Registry 
(TwinsUK) 

 30-80 [51.03, 10.72] 1919-1978 

Mean: 1949 

2,619 

Cardiovascular Risk 
in Young Finns 
Study (YFS) 

 30-45 [37.72, 5.01] 1962-1977 

Mean: 1969 

2,029 
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Table S10: Birth cohorts for discovery samples--Psychiatric GWAS Consortium, depression and mental health8 

 
PERCENT TOTAL SAMPLE, BIRTHYEAR ASCERTAINED: 43.9% 
WEIGHTED AVERAGE BIRTHYEAR: 1958.596 
Segment from: (MDD) Major Depressive Disorder Working Group of the Psychiatric GWAS 
Consortium44 

Study  Year(s) Ages [mean,sd] Birth Cohort N 

Bonn/Mannheim 
MDD Study 

NA 47.5, 13.9 NA  

GAIN 2004-2007 18-65 

[Cases: 42.6, 12.6; 
Controls: 45.1, 
14.1] 

1939-1989 

Mean: 1963 
(Cases); 1961 
(Controls) 

NA 

The Genetics of 
Recurrent Early-
Onset Depression 
(GenRED) 

Genotyped in 
2007/2008. 

Cases=40.5, 11.9; 
Controls=52.5, 17.2 

NA 

Mean: 1967 
(Cases); 1955 
(Controls) 

 

Glaxo-Smith-Kline 
(GSK) 

GSK (Descriptives 
based on Genome-
Wide Association 
and Meta Analysis 
of Bipolar Disorder 
in Individuals of 
European Ancestry) 

Sample II: 2003 SII: 35-75 years SII only: 1928-
1968 

Mean: No 
descriptives 

SII: 1544 

NA 18-84 [47.1, 12.2] 1919-1985 

Mean: 1956 (2003) 

899 

MDD2000/QIMR   1900-1978 (except 
UoE subsample--
University of 
Edinburgh MDD) 

Mean: NA 

 

 Max Planck 
Institute of 
Psychiatry (MPI-P) 

Multiple studies, no 
detailed information 
on cohorts/age ranges 

 Mean: NA  

RADIANT--
Genetic-Based 

~2005-2008 19-72 ~1933
-1989 

811 



42 
 

Therapeutic Drugs 
for Depression 
(GENDEP) 

Mean: 
NA 

RADIANT--
Depression Case 
Control Study 
(DeCC) 

NA 18+ [Men: 48.59, 11.71; 
Female: 46.49, 12.31] 

ND 

Mean: 
NA 

1237 

The Depression 
Network Study 
(DeNT) 

NA 18+ [Avgs: 42.39-51.67 
through eight study 
locations] 

ND 

Mean: 
NA 

 

Sequenced 
Treatment 
Alternatives to 
Relieve Depression 
(STAR*D) 

2001-2006 18-75 1926-1988 

Mean: No 
Descriptives 

4041 

Children's Hospital 
of Philadelphia 
(CHOP) 

NA 6-18 ND 2026 

International 
Multisite ADHD 
Genetics Project 
Phase I (IMAGE) 

2003-2007 5-17 1986-2002 

Mean: No 
descriptives 

 

IMAGE II 2007 5-17 1986-2002 

Mean: No 
descriptives 

 

Pfizer, Washington 
University and 
Mass General 
(PUWMa) 

MGH: NA 

WASHU: 1996-2002 

UCLA: NA 

6-17 WASH: 1979-1996 

Mean: No 
descriptives 

 

Bipolar Study, 
University of Bonn and 
CIMH Mannheim 
(BOMA) 

NA NA ND 

Mean: No 
descriptives 

675 (case) 

Genetic Association 
Information Network 
(GAIN)/Bipolar Genome 

NA NA ND 

Mean: No 

542 (case) 



43 
 

Study (BiGS) descriptives 

GlaxoSmithKline (GSK) NA 18-84 [47.1, 12.2] Assuming 2003, 
1919-1985 

Mean: 1956 (2003) 

899 

Pritzker 
Neuropsychi
atric 
Disorders 
Research 
Consortium 

NIMH 
Repositor
y 

1991-1998 14-88 [42.2, 12.6] 

 

1903-1984 

NIMH Mean: 1953 

Michigan Mean: 
1963 

1177 TOTAL 
CASE 

Michigan 
Repositor
y 

2005 (Not sure if 
DNA collected 
previous) 

Systematic Treatment 
Enhancement Program 
for Bipolar Disorder 
(STEP1) 

1999-2003 >18 NA-1985 

Mean: NA 

922 

Systematic Treatement 
Enhancement Program 
for Bipolar Disorder 
(STEP2) 

NA/PROP 
UNPUBLISHED 

NA NA 

Mean: NA 

659 

Thematically Organized 
Psychosis Study (TOP) 

NA NA ND 

Mean: NA 

 

Trinity College Dublin NA ND ND 

Mean: NA 

 

University College 
London (UCL) 

1991-2006 NA ND 

Mean: NA 

 

University of Edinburgh NA ND ND 

Mean: NA 

 

Wellcome Trust Case 
Control Consortium 
(WTCCC) 

1996 29-96 1900-1967 

Mean: NA 

1868 CASE 

Cardiff UK  1990-2003 [44.8, 13.1] ND 

Mean: 1952 
(Rolling, midpoint) 

472 
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Clinical Antipsychotic 
Trials of Intervention 
Effectiveness (CATIE) 

2001-2005 18-65 [41.3, 11.4] 1936-1987 

Mean: 1962 

402 

ISC-Aberdeen 1997-2006 [40, 13.5] ND 

Mean: 1961 

720 

ISC-Cardiff 1999-2005 [36.8, 10.5] ND 

Mean: 1966 

527 

ISC-Dublin 2000-2005 [45.4, 11.7] ND 

Mean: 1958 

270 

ISC-Edinburgh 1986-2006 [42.2, 13.5] ND 

Mean: 1954 

368 

ISC-London 1983-2006 [45.3, 14.8] ND  

Mean: 1950 

518 

ISC-Portugal 1995-2002 [39.9, 14.7] ND 

Mean: 1959 

346 

ISC-SW1 2005-2009 [52, 11.5] ND 

Mean: 1955 

168 

ISC-SW2 2005-2009 [55.8, 12.8] ND 

Mean: 1952 

390 

MGS 1989-2008 [43, 11.6] ND 

Mean: 1954 

2679 

SGENE-Bonn 1992-2002 [34.1, 11] ND 

Mean: 1963 

474 

SGENE-Copenhagen 2003-2009 [41.3, 12.7] ND 

Mean: 1965 

482 

SGENE-Munich 1997-2010 [37.9, 11.7] ND 

Mean: 1967 

434 
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SGENE-TOP3 2003-2007 18-65 [34.1, 10.2] 1938-1989 

Mean: 1971 

248 

SGENE-UCLA 1995-2003 [34.8, 13.9] ND 

Mean: 1965 

704 

Zucker Hillside 1999-2006 [38.8, 10.4] ND 

Mean: 1964 

192 
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Table S11: Birth cohorts for discovery samples--Coronary ARteryDIsease Genome wide Replication and Meta-Analysis 
(CARDIoGRAM) consortium, cardiovascular disease10 

 
PERCENT TOTAL SAMPLE, BIRTHYEAR ASCERTAINED: 11.4% 
WEIGHTED AVERAGE BIRTHYEAR: 1949.408 
Study  Year(s) Ages [mean,sd] Birth Cohort N 

Atherosclerotic Disease 
Vascular Function and 
Genetic Epidemiology 
(ADVANCE) 

Baseline 
2001-2003 

[45.8, 6.2] ND 

Mean: 1957 

278 

Atherogene Registry 1996-1997 
Baseline 

Registry 

[Without Event-
60.9, 10.1; With 
Event-67, 7.8] 

ND 

Mean: 1936 No MI; 
1929 MI 

2078 

The Gutenberg Heart 
Study (GHS) 

2007-2008 35-74 [55] 1933-1973 

Mean: 1953 

2078 

Gutenberg Heart Express 
Study (GHSExpress) 

2007-2008 35-74 [55] 1933-1973 

Mean: 1953 

2078 

Age, Gene/Environment 
Susceptibility (AGES) 

1967 
Baseline 

 1907-1935 

Mean: ND 

 

Atherosclerosis Risk in 
Communities (ARIC) 

1987-1989 45-64 1923-1944 

Mean: 1934  

 

Cardiovascular Health 
Study (CHS) 

1989-1990 65-98 

[72.3, 5.4] 

1891  to approx. 
1923-24 

Mean: 1917 

 

Framingham Heart 
Study (FHS) 

1948 
baseline 

 Effectively 1886-
1986 

Mean: No wave data 

 

Rotterdam Study (RS) 1990-1993; 
2000-2001 
wave 2 

>55 WI; >45 WII ND-1956 

Mean: Pooled/NA 

 

Diabetes Epidemiology: 
Collaborative Analysis 
of Diagnostic Criteria in 

1997 
Baseline 

11.50-108 [m-
64.74, f-57.94] 

1889-1985 

Mean: 1933 

26799 



47 
 

Europe (deCODE) (Males); 1940 
(Females) 

German Myocardial 
Infarction Family 
Studies I (GERMIFS I) 

1997-2002 32-82 [50.2, 7.8] 1915-1970 

Mean: 1949 

600 

German Myocardial 
Infarction Family 
Studies II (GERMIFS II) 

1997-2002 29-90 [51.4, 7.5] 1907-1973 

Mean: 1948 

1124 

German Myocardial 
Infarction Family 
Studies III (GERMIFS 
III) 

NO REF [58.6, 8.7] ND 

Mean: NA 

1157 

Ludwigshafen Risk and 
Cardiovascular Health 
Study (LURIC 1) 

1997-2000 [61, 11.8] ND 

Mean: 1937 

 

Ludwigshafen Risk and 
Cardiovascular Health 
Study (LURIC 2) 

1997-2000 [63.7, 9.4] ND 

Mean: 1935 

 

MedStar 2004-2007 [48.9, 6.4] ND 

Mean: 1957 

 

Myocardial Infarction 
Genetics Consortium 
(MIGen) 

Baseline 
1997 
(MGH; 
Europe 
indeterminat
e?) 

<51 (male), <61 
(female); 

<45 (Italian 
subsample, both 
sexes) 

[42.4, 6.6] 

1937-undefined 

Mean: 1955 (MGH) 

2,967 (+3075 
control) 

(2,647 TAG) 

Ottawa Heart Genomics 
Study (OHGS) 

NA [48.7, 7.3] ND 

Mean: NA 

 

PennCATH 2009-2012 [52.7, 7.6] ND 

Mean: 1958 

 

Wellcome Trust Case 
Control Consortium 
(WTCCC) 

1996 29-96 1900-1967 

Mean: No  

4862 
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   descriptives  
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