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S1 Theoretical constraints on the molecular mechanism underlying the adder
principle

The adder principle states that a cell adds a constant volume between birth to division notwithstanding
its size at birth [1–3]. In order to investigate what molecular mechanisms could realize this behavior, we
consider a hybrid system framework shown in Fig. S1. The model here consists of a state variable, ∆V ,
which denotes the volume added to a cell’s volume at birth. The dynamics of ∆V is given by the following
ordinary differential equation:

∆̇V = α(∆V +Vb), (S1.1)

where Vb is the volume of a cell at birth, and α represents the growth rate. Furthermore, we assume that the
division occurs at an added volume dependent rate h(∆V ). Upon division, the added volume ∆V resets to
zero whereas the cell volume at birth resets to (Vb +∆V )/2.

ΔV̇= 𝛼 Δ𝑉+𝑉𝑏

ℎ Δ𝑉	

Δ𝑉 → 0
𝑉𝑏 → 𝑉𝑏 +Δ𝑉 /2

Figure S1: Description of the cell division process as a stochastic hybrid system. The added volume ∆V
evolves as per a deterministic dynamics until the division event takes place. The hazard rate for division is
h(∆V ). Upon division, the added volume ∆V and the cell volume at birth Vb reset to 0 and (Vb +∆V )/2,
respectively.

Using the infinitismal generator of a stochastic hybrid system, one can write the time evolution of ex-
pected added volume 〈∆V 〉 as [4]:

d
dt
〈∆V 〉=

〈
α (∆V +Vb)−h(∆V )∆V

〉
. (S1.2)

Using an mean-field approximation, the above equation can be written as

d
dt
〈∆V 〉 ≈ α (〈∆V 〉+Vb)−h(∆V )〈∆V 〉 , (S1.3)
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In steady state, a solution of equation (S1.3) which has 〈∆V 〉 independent of Vb is only possible if the hazard
rate has following form:

h(∆V ) = 0 for ∆V < ∆V , (S1.4)

h(∆V ) = ∞ for ∆V > ∆V , (S1.5)

where ∆V denotes the volume that a cell attempts to add. In other words, any mechanism which actively
senses the added volume has to trigger the division the moment it reaches the prescribed threshold. In the
main text, we propose a timekeeper protein to trigger the division. Assuming a deterministic production of
the timekeeper protein, results here imply that the division rate follows

h(x) = 0 for x < X , (S1.6)

h(x) = ∞ for x > X , (S1.7)

where x represents the protein level, and X is the prescribed protein copy number threshold for division.
This constraint on the division rate was realized by computing the division time as the first-passage time in
the main text. Also note that as the main paper describes, the timekeeper protein based mechanism led to
realization of the adder model in distribution sense. Therefore the theoretical constraint in equations (S1.6)-
(S1.7) is both necessary and sufficient to realize the adder principle of cell size control.

S2 Distribution of FPT given cell volume at birth

As described in the main text (equation (4)), the distribution of the minimum number of burst (transcription)
events N required for x(t) to reach the threshold X is computed by using

Prob(N ≤ n) = Prob

(
n

∑
i=1

Bi ≥ X

)
. (S2.1)

Given a specific form for the distribution of Bi, the corresponding distribution for N can be obtained using
equation (S2.1) (two specific examples are discussed later in this section).

Having determined the number of bursts needed for cell division, we next focus on the timing of burst
events which is determined by the burst arrival rate. Here since the burst arrival rate is time varying (due
to dependence on cell volume), the arrival process an inhomogeneous Poisson process. Prior work on
inhomogeneous Poisson processes has shown that the distribution for the timing of the nth event is given
by [5, 6]

fTn(t) =
(R(t))n−1

(n−1)!
r(t)exp(−R(t)), R(t) :=

∫ t

0
r(s)ds =

kmV0

α

(
eαt −1

)
. (S2.2)

Note that FPT is the same as the time at which the Nth burst event occurs. Thus, the probability density
function of FPT is obtained as

fFPT (t) =
∞

∑
n=1

fTn (t) fN(n) =
∞

∑
n=1

(R(t))n−1

(n−1)!
r(t)exp(−R(t)) fN(n) (S2.3)

and is dependent on the newborn cell size V0 through the function R(t) defined in (S2.2). Next, using the
relation in (S2.1), we quantify the distribution N from the distribution of protein burst size Bi.
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Probability mass function of N for common burst size distributions

We present the form of distribution of N for two relevant cases here: when the protein burst size is one with
probability one, and when the protein burst size is geometric [7–12]. For the case when the burst size Bi is
one with probability one, exactly X events are required for the protein level x(t) to reach X for the first time.
That is, we have

fN(n) = δ (n−X), (S2.4)

where δ (n−X) is the Kronecker’s delta which is one when n = X and zero otherwise.
When the burst size Bi follows a geometric distribution [7–12], the calculation of the minimum number

of transcription events N for this distribution has been previously done in our works [13,14]. The probability
mass function of N is given by

fN(n) =
(

n+X−2
n−1

)(
1

b+1

)n−1( b
b+1

)X

. (S2.5)

Here b represents the mean protein burst size. Further, the first three statistical moments of N given by the
above probability mass function are

〈N〉= X
b
+1, (S2.6)〈

N2〉= b2 +3bX +X +X2

b2 , (S2.7)〈
N3〉= b3 +7b2X +6bX(X +1)+X

(
X2 +3X +2

)
b3 . (S2.8)

These formulas are used in the next section to compute the moments of the volume added between birth
to division.

S3 Distribution of volume added ∆V

Let Vb denote the volume of a newborn cell. Assuming birth of a cell at t = 0, the volume after at a time t is
given by V (t) = Vb exp(αt). We assume that the cell divides at the first-passage time whose distribution is
given by equation (S2.3). Representing the volume added to the cell’s volume at birth until division by ∆V ,
we have

∆V =Vb
(
eαFPT −1

)
. (S3.1)

The cumulative distribution function of ∆V can be computed as

Prob{∆V ≤ v}= Prob
{

Vb
(
eαFPT −1

)
≤ v
}

(S3.2)

= Prob
{

FPT ≤ 1
α

ln
(

v
Vb

+1
)}

(S3.3)

=
∫ 1

α
ln
(

v
Vb

+1
)

0
fFPT (t)dt. (S3.4)

Differentiating the above expression results in the probability density function of ∆V as follows

f∆V (v) =
d
dv

(Prob{∆V ≤ v}) (S3.5)

=
d
dv

∫ 1
α

ln
(

v
Vb

+1
)

0
fFPT (t)dt (S3.6)

= fFPT

(
1
α

ln
(

v
Vb

+1
))

d
dv

(
1
α

ln
(

v
Vb

+1
))

. (S3.7)
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Note that
d
dv

(
1
α

ln
(

v
Vb

+1
))

=
1

α (Vb + v)
. Also

R
(

1
α

ln
(

v
Vb

+1
))

=
kmv
α

, r
(

1
α

ln
(

v
Vb

+1
))

= km (v+Vb) .

Hence we can write the probability density of ∆V as

f∆V (v) =
1

α (Vb + v)

∞

∑
n=1

(
kmv
α

)n−1

(n−1)!
km (Vb + v)exp

(
−kmv

α

)
fN(n) (S3.8)

=
∞

∑
n=1

(
kmv
α

)n−1

(n−1)!
km

α
exp
(
−kmv

α

)
fN(n). (S3.9)

Notice that this distribution is an Erlang distribution conditioned to the random variable N.

Moments of ∆V

Mean ∆V Since the distribution of ∆V is conditional Erlang, we have the following expression for mean
∆V .

〈∆V 〉=
∞

∑
n=1

n
km/α

fN(n) =
α

km
〈N〉 . (S3.10)

Second order moment The second order moment of ∆V is given by〈
∆V 2〉= ∞

∑
n=1

n2 +n

(km/α)2 fN(n) =
α2

k2
m

(〈
N2〉+ 〈N〉) . (S3.11)

Third order moment The third order moment of ∆V is given by〈
∆V 3〉= ∞

∑
n=1

n3 +3n2 +2n

(km/α)3 fN(n) =
α3

k3
m

(〈
N3〉+3

〈
N2〉+2〈N〉

)
. (S3.12)

When the burst size is one with probability one, we have N = X with probability one. The formulas of
mean, CV 2 and skewness of ∆V simplify to

〈∆V 〉= αX
km

, CV 2
∆V =

1
X
, skew∆V =

2√
X
. (S3.13)

When the burst size is geometric, we employ the expressions of moments of N from section S1 to get the
following expressions:

〈∆V 〉= α

km

(
X
b
+1
)
, (S3.14)

CV 2
∆V =

var(∆V )

〈∆V 〉2
=

b2 +2bX +X
(b+X)2 , (S3.15)

skew(∆V ) =
2
(
b3 +3b2X +3bX +X

)
(b2 +2bX +X)3/2 . (S3.16)

We also note that that the skewness of ∆V is positive in both cases considered above which is consistent
with previous results [1].
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Scale invariance of the distribution of ∆V

It has been shown in [3] that the distributions of the added volume ∆V in different growth conditions collapse
when rescaled by respective 〈∆V 〉. Mathematically, we want to show that the probability density function
f∆V (v) has the following form:

f∆V (v) =
1
〈∆V 〉

g
(

v
〈∆V 〉

)
, (S3.17)

where g(.) is an arbitrary normalized function [3, Supplementary Information equation 36]. For the distri-
bution in equation (S3.9), we consider

g(w) =
∞

∑
n=1

(w〈N〉)n−1

(n−1)!
〈N〉exp(−w〈N〉) fN(n), (S3.18)

where 〈N〉 is the expected value of the minimum number of transcription events required for the protein to
cross the threshold X . Also, it is related with 〈∆V 〉 as described in equation (S3.10).

For the function g given in equation (S3.18), we have

1
〈∆V 〉

g
(

v
〈∆V 〉

)
=

1
〈∆V 〉

∞

∑
n=1

(
v〈N〉
〈∆V 〉

)n−1

(n−1)!
〈N〉exp

(
−v〈N〉
〈∆V 〉

)
fN(n) (S3.19)

=
∞

∑
n=1

(
kmv
α

)n−1

(n−1)!
km

α
exp
(
−kmv

α

)
fN(n) (S3.20)

= f∆V (v). (S3.21)

This establishes the scale invariance of the distribution f∆V (v).
One consequence of the scale invariance property of f∆V (v) is that the normalized moments

〈
∆V j

〉
/〈∆V 〉 j

are independent of the growth conditions [3, Supplementary Information]. This can be checked as follows.
The jth order conditional moment of ∆V (conditioned with respect to N) is given by jth order moment

of an Erlang distribution. Thus

〈
∆V j|N = n

〉
=

(
α

km

) j

(n(n+1)(n+2) · · ·(n+ j−1)) (S3.22)

=⇒
〈
∆V j〉= ( α

km

) j

〈N(N +1)(N +2) · · ·(N + j−1)〉 . (S3.23)

Therefore using equation (S3.10), we have〈
∆V j

〉
〈∆V 〉 j =

〈(N(N +1)(N +2) · · ·(N + j−1))〉
〈N〉 j (S3.24)

which is independent of the growth rate.
This fact can be used to show that statistical measures such as noise (CV 2) and skewness are independent

of the growth rate. Take CV 2 for instance. It is defined as

CV 2
∆V =

〈
∆V 2

〉
〈∆V 〉2

−1. (S3.25)
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By the scale invariance property,
〈
∆V 2

〉
/〈∆V 〉2 is independent of the growth rate α . Thus, the noise CV 2 is

also independent of α . Similarly, skewness is given by

skew∆V =

〈
∆V 3〉−3〈∆V 〉var(∆V )−〈∆V 〉3

(var(∆V ))3/2 (S3.26)

=

〈∆V 3〉
〈∆V 〉3

−3
(
〈∆V 2〉
〈∆V 〉2

−1
)
−1(

〈∆V 2〉
〈∆V 〉2

−1
)3/2 , (S3.27)

which is again independent of α by the scale invariance property.

S3-a Model analysis when the timekeeper protein is accumulated between two initiation
events

In the previous model formulation, we consider that the timekeeper protein is accumulated between cell
birth to division. Here we analyze the model when the accumulation is between two other events in cell
cycle (namely initiation of DNA replication), and the corresponding division for an initiation event takes
place after a constant time delay T .

Assume a cell with volume Vinit right after an initiation event. At this point, the timekeeper molecules
are degraded (or deactivated), and new set of timekeeper proteins are synthesized (or activated) for the next
initiation event. These proteins are synthesized at a rate kmVinit exp(αt), and the threshold required to be
achieved for the next initiation events is θX where θ is the number of origins of replication right after the
previous initiation event. For time being, we will ignore any division events until the next initiation event.

Following the calculations used to derive equation (S3.9), one can write the distribution of the volume
added until the next initiation event as

f∆V (v) =
∞

∑
n=1

(
kmv
α

)n−1

(n−1)!
km

α
exp
(
−kmv

α

)
fN(n), (S3.28)

where the distribution of the number of transcription events fN(n) is now given by

fN(n) = δ (n−θX) (for deterministic burst), (S3.29)

fN(n) =
(

n+θX−2
n−1

)(
1

b+1

)n−1( b
b+1

)θX

(for geometric burst). (S3.30)

One can write the average volume per origin of replication added between the initiation events are

〈∆V 〉= 1
θ

αθX
km

=
αX
km

(for deterministic burst), (S3.31)

〈∆V 〉= 1
θ

α

km

(
θX
b

+1
)
=

α

km

(
X
b
+

1
θ

)
(for geometric burst). (S3.32)

Note that for a deterministic burst, the average volume added per origin of replication is same as the volume
added between birth and division for the previous model. For geometric burst case, the added volumes are
approximately same.

Recall that we had ignored division events between two initiation events for above analysis. If there is
a division event between two initiation events, both the origins of replication and the timekeeper proteins
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accumulated since previous initiation event can be assumed to divide equally into the daughter cells. Con-
sequently, for each daughter cell, the threshold for next initiation event will become approximately half of
what it was for the mother cell. Thus, one can ignore the division event and consider the total volume as one
cell until the next initiation event takes place. One can, of course, expect stochastic effects in the partitioning
of protein molecules but inclusion of them should not change the average behavior discussed here.

S4 Distribution of newborn cell size Vb

In this section, we determine the distribution of newborn cell size Vb, and discuss its scale invariance prop-
erty. For this purpose, we consider a newborn cell whose volume is V0 and observe its volume after subse-
quent cell cycles. Let Vp denote the cell volume after p≥ 1 cell cycles, then we have

Vp = 2−pV0 +2−p
p

∑
i=1

2i−1
∆Vi, (S4.1)

where ∆Vi denotes the volume added during the ith cell cycle. The random variables ∆Vi, i ∈ {1,2, . . . , p}
are independent and identically distributed, and their distribution is same as that of ∆V as given by equa-
tion (S3.9). At each division, the cell is assumed to divide symmetrically.

The steady-state distribution of Vp, i.e., when p→ ∞ would give the distribution of Vb. Note that the
contribution from the initial cell volume V0 in equation (S4.1) decays exponentially. Therefore, we can make
a first approximation as

Vp ≈ 2−p
p

∑
i=1

2i−1
∆Vi. (S4.2)

In essence, Vp is a weighted sum of independent and identically distributed random variables ∆Vi. As the
following holds for the weights in above sum in equation (S4.2)

p

∑
i=1

(2i−p−1)m =
(1−2−p)

m

2m−1
< 1, ∀m ∈ {1,2,3, . . .}, (S4.3)

one can use standard probability theory arguments to show that the distribution of Vp converges. In fact,
for the weights we have in equation (S4.2), the mean and variance of Vp respectively converge to 〈∆V 〉, and(〈

∆V 2
〉
−〈∆V 〉2

)
/3 as p→ ∞.

Furthermore, we can also find the expression of the probability density function of Vp by making use of
probability density function of random variables ∆Vi in equation (S3.9). It is easy to show that the random
variables ∆V i := 2i−p−1∆Vi have the following family of distribution

f
∆V i

(v) =
∞

∑
n=1

(
2p−i+1kmv

α

)n−1

(n−1)!
2p−i+1km

α
exp
(
−2p−i+1kmv

α

)
fN(n), i = 1,2, . . . , p. (S4.4)

Note that the random variables ∆V i are independent but not identical anymore. However, they still fol-
low conditional Erlang distributions same as ∆Vi and therefore inherit the scale invariance property. The
distribution of sum of above Erlang random variables can be written in the following compact form [15,16]

fVp(v) =
∞

∑
n=1

Cn,p

p

∑
i=1

Qi(v)e−2p−i+1 km
α

v fN(n), (S4.5)

where

Cn,p =

(
2p−i+1 km

α

)n

, (S4.6)
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and Qi(v), for a given N = n, is a polynomial in v of degree n−1 with following form:

Qi(v) =
n

∑
j=1

ai, j,n,pv j−1, (S4.7)

with the coefficients ai, j,n,p computed as

ai, j,n,p =
(−1)n− j

( j−1)!
× ∑

s1+s2+...+sp=n− j
si=0

p

∏
l=1
l 6=i

(
n+ sl−1

sl

)
2(−l+1)n

(2−l+1−2−i+1)
n+sl

(
2pkm

α

)sl
. (S4.8)

One can note that fVp(v) has polynomial terms involving the coefficients 2p−i+1 which are multiplied by
exponential terms involving −2p−i+1. Therefore the probability density will converge as p becomes large
though it is difficult to find the final expression to which fVp(v) converges.

Scale invariance of cell size at birth and division

The scale invariance property of fVb(v) can be established using equation (S4.2) using the Laplace transform
of the probability density of random variables ∆Vi [3, Supplementary Information]. Denoting the Laplace
transform operator by L , we can write

LVp(s) =
p

∏
i=1

L
∆V i

(s). (S4.9)

Because each of ∆V i is scale invariant, scale invariance of fVp(v) for all p ∈ {1,2, . . .} holds. Thus the scale
invariance of the distribution of Vb also follows.

The cell-size at division is given by Vb+∆V . Since both Vb and ∆V are scale invariat, this results in scale
invariance of distribution of cell-size at division.

S5 Distribution of division times

Recall that the distribution in equation (S2.3) assumes a given newborn cell volume Vb. We can uncondition
it with respect to distribution of Vb to obtain the distribution of division times (denoted by fτd (t))

fτd (t) =
∫

∞

0
fFPT (t |v) fVb (v)dv, (S5.1)

where fVb(v) is the probability distribution of cell volumes at birth.
As fVb(v) has an expression given by equation (S4.5) as p→ ∞, we can use it to obtain expression of

fτd (t). Using this relation, the division time distribution is given by

fτd (t)

=
∞

∑
n=1

∞

∑
l=1

p

∑
i=1

l

∑
j=1

fN(n) fN(l)Cl,pai, j,l,p

(
km
α

)n−1
kmeαt (eαt −1)n−1

(n−1)!

∫
∞

0
vn+ j−1 exp

(
−kmv

α

(
eαt −1+2p−i+1))dv

(S5.2)

=
∞

∑
n=1

∞

∑
l=1

p

∑
i=1

l

∑
j=1

fN(n) fN(l)Cl,pai, j,l,pα j+1(n+ j−1)!

k j
m(n−1)!

(
eαt (eαt −1)n−1

(eαt +2p−i+1−1)n+ j

)
. (S5.3)
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From equations (S4.6) and (S4.8), one can note that the parameter α appears in Cl,p as α−l , and in ai, j,l,p
as α l− j. Therefore, we can write the above expression in

fτd (t) =
∞

∑
n=1

∞

∑
l=1

p

∑
i=1

l

∑
j=1

fN(n) fN(l)C
′
l,pa

′
i, j,l,pα(n+ j−1)!

k j+1
m (n−1)!

(
eαt (eαt −1)n−1

(eαt +2p−i+1−1)n+ j

)
, (S5.4)

where C
′
l,p = α lCl,p, and a

′
i, j,l,p = α l− jai, j,l,p.

To show scale invariance of the distribution upon scaling by its mean, we compute the mean division as
follows.

〈τd〉=
∞

∑
n=1

∞

∑
l=1

p

∑
i=1

l

∑
j=1

fN(n) fN(l)C
′
l,pa

′
i, j,l,pα(n+ j−1)!

k j+1
m (n−1)!

n−1

∑
s=0

(
n−1

s

)∫
∞

0

teαt
(
−2p−i+1

)s

(eαt +2p−i+1−1)s+1 (S5.5)

=
1
α

∞

∑
n=1

∞

∑
l=1

p

∑
i=1

l

∑
j=1

fN(n) fN(l)C
′
l,pa

′
i, j,l,p(n+ j−1)!

k j+1
m (n−1)!

×
n−1

∑
s=0

(
n−1

s

)
1

( j+ s)2 2F1( j+ s, j+ s; j+ s+1;1−2i−p−1), (S5.6)

where 2F1 represents the hypergeometric function. The second step above was solved using Mathematica
software after changing the dummy variable of the integral via substitution z = eαt +2p−i+1−1. Note that
the mean division time can be written as

〈τd〉=
A
α
, (S5.7)

for a constant A which basically represents the complex expression in equation (S5.6).
The scale invariant of fτd (t) can be shown by constructing a function g(w) as

g(w) = A
∞

∑
n=1

∞

∑
l=1

p

∑
i=1

l

∑
j=1

fN(n) fN(l)C
′
l,pa

′
i, j,l,p(n+ j−1)!

k j+1
m (n−1)!

n−1

∑
s=0

(
n−1

s

)
eAw
(
−2p−i+1

)s

(eAw +2p−i+1−1)s+1 . (S5.8)

In this case, we have

1
〈τd〉

g
(

t
〈τd〉

)
=

∞

∑
n=1

∞

∑
l=1

p

∑
i=1

l

∑
j=1

fN(n) fN(l)C
′
l,pa

′
i, j,l,pα(n+ j−1)!

k j+1
m (n−1)!

(
eαt (eαt −1)n−1

(eαt +2p−i+1−1)n+ j

)
. (S5.9)

Remark: While we showed the scale invariance property of the distribution of τd from above analysis, the
expressions here are quite convoluted. In order to approximate the moments of division time, we go back
to equation (S5.1), and use an approximate expression for fVb(v). One way of approximating Vb would be
to use a large finite value of p. However, that doesn’t simplify the expression of fτd (t). We therefore use
fVb(v)≈ f∆V (v). Even though this is a bad approximation (recall the discussion in section S4 that only their
means are same), we use it because we know that probability density of Vb would also have a Erlang like
expression. Using this approximation yields

fτd (t)≈ kmeαt
∞

∑
n=1

∞

∑
l=1

fN(n) fN(l)
(

km
α

)n+l−1
(eαt −1)n−1

(n−1)!(l−1)!

∫
∞

0
vn+l−1 exp

(
−kmv

α
eαt
)

dv (S5.10)

=
∞

∑
n=1

∞

∑
l=1

fN(n) fN(l)(n+ l−1)!
(n−1)!(l−1)!

α
(eαt −1)n−1

(eαt)n+l−1 (S5.11)

=
∞

∑
n=1

∞

∑
l=1

fN(n) fN(l)(n+ l−1)!
(n−1)!(l−1)!

α

n−1

∑
i=0

(
n−1

i

)
(−1)i e−αt(l+i). (S5.12)
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Figure S2: Values of the constant K1 for different values of protein threshold X , and mean burst sizes b.

Moments of division time τd can be written as

〈
τ

j
d

〉
≈ j!

α j

∞

∑
n=1

∞

∑
l=1

fN(n) fN(l)(n+ l−1)!
(n−1)!(l−1)!

n−1

∑
i=0

(
n−1

i

)
(−1)i

(i+ l) j+1 (S5.13)

=
K j

α j , (S5.14)

where constants K j are shorthand for the summation terms.
As expected from a deterministic analysis, and approximate computations performed in [3], the constant

K1 should be approximately equal to log2. We found that K1 ≈ 0.7≈ log2 for the two distributions of burst
size Bi (deterministic, and geometric) used in this manuscript, and several values of threshold X . Some of
these values are shown in Figure S2.

S6 Moments of cell-division time given newborn cell size

In this section, we provide details on how FPT (cell division time) moments depend on cell size at birth Vb.
The result pertaining dependence of mean FPT on Vb is provided here. How change in Vb affects the noise
in FPT has been described in the main text (Figure 2).

Mean cell-division time as a function of newborn cell size

The expression for FPT probability density in equation (S2.3) can be used to numerically compute the mean
FPT as Vb is varied. The model predicts that the mean division time decreases as the newborn cell volume
is increased. This behavior is consistent with previous understanding of negative correlation between cell
division time and newborn cell size [2, 3].
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Figure S3: The division time decreases as the cell size at birth increases. The plot shows the division time
(mean FPT ) given a newborn volume computed numerically for each value of initial cell volume Vb. The
protein production is assumed to be in geometric bursts and the model parameters used are km = 0.13 min−1,
X = 65 molecules, α = 0.03 min−1, and b = 5 molecules.

Inference of model parameters

Here we discuss how model parameters, namely, transcription rate (km), the threshold (X), and the protein
burst size (b) used to draw Figure 2a in the main text were inferred. We used the moments of the added
volume ∆V to estimated the model parameters from experimental data. The reason behind this is that exact
expressions of the moments of added volume are available (equations (S3.10)–(S3.12)). To compute the
estimates, we use the nonlinear constrained optimization solver (fmincon) available in MatLab r with 0.01
as initial parameter value for km, X , and b. The estimated values for the transcription rate km, protein
threshold X , and mean burst size b were 0.13, 65.0, and 5.0, respectively.

Data processing to obtain Fig. 2b

Since the initial size of the cell is a real random variable, we used a binning strategy to get cell cycle
time statistics (noise) given different newborn sizes. We organized the newborn cell sizes into four bins:
1−2.8 µm, 2.8−4.5 µm, 4.5−6.3 µm, and 6.3−8 µm. For each bin, we computed confidence intervals of
the noise in cell cycle time using bootstrapping. The results show significant increments in the noise of cell
cycle time (no overlapping confidence intervals) as the mean initial size in the bin increases. This behavior
is also seen if the number of bins is varied from four to six, or eight. However, we only show the four-bins
case in the manuscript because larger number of bins introduces larger errors bars (confidence interval width
four times larger that the median cell cycle time noise) in the smallest/largest bins because of small number
of cells in them.
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