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Supplementary methods 

 

Equilibrium for the Griffin model 

Heterogeneity in exposure 

In the model of Griffin et al., the EIR varies between people according to a random variable   which 

does not change during their lifetime: if the mean EIR for adults in the population is 
0 , then the EIR 

for an adult with heterogeneity level   is 0  [1].   has probability density ( )h   with a mean of 

1, taken to be a log-normal distribution. To model this heterogeneity distribution using a 

compartmental model, model states are stratified into n  exposure categories. Let 
1,..., nx x  and 

1,..., nw w  be the Gauss-Hermite integration points and weights for integrating a function multiplied 

by a standard normal probability density [2]. A proportion jw  of the population are in exposure 

category j  and the relative biting rate in this category is  

  2
/ 2expj jx     

When finding the equilibrium human model states for a given mean EIR 0 , the equilibrium is 

calculated for EIRs 
1 0 0,..., n     and then the weighted average of each model state is found using 

the weights 1,..., nw w . So for simplicity the remainder of the description of how to find the 

equilibrium human states does not explicitly mention this heterogeneity in exposure, i.e. it is 

conditional on an EIR 0j    for some 1,...,j n . 
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Ageing 

Ageing is modelled using age groups with exponential transitions between each group. There is a 

constant death rate  , balanced by the birth rate. Suppose that there are N  age groups , 1[ )i ia a  for 

  1, ,i N   with 
1 0a   and 

1Na    , and that each contains a proportion of the population 
i . 

The width can vary, so that for example there are finer groups at young ages, to more accurately 

describe the peak in incidence of disease. Then the rate of exiting age group i  to the next age group 

is 
11/ ( ), 1,..., 1; 0i i i Nr a a i N r     . Defining 

0r   and 
0 1  , 
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This has equilibrium solution (the exact equilibrium for this model with compartmental age groups): 
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If the mean EIR for adults is  , then the EIR and force of infection in age group i  are  

,i i i i ib      

where i  is the relative biting rate by age and ib  is the probability of infection. 

Immunity functions 

Partial immunity which reduces the probability of infection, of clinical malaria and of parasites being 

detected is modelled using an empirical function for each kind of immunity. These functions increase 

with exposure and decay in the absence of exposure. For each immunity function I , the partial 

differential equation over time and age has the form 

F
I I

I d
t a


 
 

 
 

F  is a quantity that depends on exposure and d  is a parameter, with both F and d  being 

different for each type of immunity. Full details are given in [1]. 



When ageing is modelled using discrete groups, 
iI  is the mean value of I  in age group i . Ignoring 

F  and d  at first, for a small time step Δ, defining 
0I to be the value of I  at birth, and assuming 

that the age distribution is in equilibrium: 
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Hence the dynamics due to ageing are: 

 1( )i
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Adding the increase with exposure and subsequent waning, we have  
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and in equilibrium 
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For anti-infection immunity 
BI  , F  depends on the EIR: 
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While for acquired clinical immunity CAI  and anti-parasite immunity DI , F  depends on the force 

of infection: 

,
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,B Cu u  and Du  are parameters determining the maximum rate at which immunity can be acquired. 

For anti-infection immunity, acquired clinical immunity and anti-parasite immunity the value at birth 

is 0. Maternal clinical immunity decays from birth, i.e. there is no increase with exposure, 0F  .  

So to find the equilibrium human model states conditional on a given EIR, the procedure is to first 

find the equilibrium immunity to infection by age, from which the probability of infection ib  and 

hence the force of infection by age can be found. Then the probability of clinical malaria by age 



group can be found, denoted by 
i , as can the probability of detection of asymptomatic infections, 

iq . Each of these three probabilities (
ib , 

i  and 
iq ) is a transformation of the corresponding 

immunity function as detailed in [1]. 

Equilibrium infection states 

There are six human infection states: susceptible ( S ), treated clinical disease (T ), untreated clinical 

disease ( D ), asymptomatic infection which may be detected by microscopy ( A ), sub-patent 

infection (U ) and protected by a period of prophylaxis from prior treatment ( P ).  

The equations for the infection states in age group i  are: 
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and defining 
1 1 1 1 1 11and 0S T D A U P           . 

Tf is the proportion of symptomatic 

infections that are effectively treated. , , ,D T UAr r r r  and Pr  are the recovery rates from the 

respective infection states. 



Put i i i iY S A U   . Then  
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where 

 Y i i i ir       

In equilibrium 
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The total proportion in age group i  is 

i i i i iY T D P      



Rearranging this gives 
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which can be used to find 
iT , 

iD , and 
iP . Then the remaining states can be found: 
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Force of infection on mosquitoes 

Once the equilibrium infection states by age and heterogeneity level have been found, the force of 

infection on mosquitoes 
M  can be calculated. The model states now include the subscript j  for 

the heterogeneity classes and denote the proportion within each heterogeneity class in each model 

state and age group, so that summed over ages and model states they add up to 1 within each 

heterogeneity class. 
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
  is the rate at which people are bitten in age group i , heterogeneity level j , with 0  

the overall mean biting rate. Each c  is the probability of infecting a susceptible mosquito when in 

the corresponding infection state. Aijc  depends on immunity, as a transformation of ijq , the 

probability that an infection will be detected , with 
I  an additional parameter: 
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Onward infectiousness with no immunity  

The formula in equation (4) of the main text for 0R  for the Griffin model does not account for the 

fact that people age during an infection, and so the rate at which they are bitten by mosquitoes 

changes. Let ( )c t  be the expected infectiousness at time t  after blood-stage infection appears. 

Accounting for ageing during an infection gives: 
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Ed  is the duration of the latent infection stage and lt  is the time lag from asexual parasite states to 

the onwards infectiousness resulting from those states. Gametocytes are not explicitly modelled, 

and lt  is taken as a fixed duration rather than a distribution. 

In the formula in the main text, B  is approximated by  
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This is accurate to within around 1% of its correct value with the fitted model parameters.  

To evaluate B  exactly, as was done for the results in the main text, ( )c t  can be expressed as the 

sum over the different infection states of the probability of being in that state at time t  after blood-

stage infection occurs multiplied by the infectiousness if in that state: 

 

 

,

, , ,

, ,

( ) ( )

(1 ) ( ) ( ) ( )

(1 ) ( ) ( )

T T T T

T D D D D A A D U U

A A A A U U

c t f p t c

f p t c p t c p t c

p t c p t c







 

   

 

 

, ( )D Ap t  is the probability of being in state A  at time t  after blood-stage infection occurs, if a 

person initially entered state D , and similarly for the other possible combinations of states. With no 

immunity, A Dc c .  



These probabilities are: 
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( )c t  can be written in the following form: 

( ) k t

k

k

c t e
 

  

Hence B  can be found by integrating each exponential term twice: 
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