% Understanding the behaviour of systems pharmacology % models: mathematical analysis of differential equations % Suruchi Bakshi, Elizabeth C. de Lange, Piet H. van der Graaf, Meindert % Danhof, and Lambertus A. Peletier % Evaluates null clines of the original pool model for a choice of % parameter values. Runs the original pool model for various initial % conditions in order to plot the orbits on the phase-plane % Generates figure 1b in the manuscript function y=snoeck() global u0; t=linspace(0,5,1000); Gammav=t;Gammau=1+0*t; u0=0.4; [t1,x1]=ode23s(@feedback,[0 100],[u0 0]); u0=0.8; [t2,x2]=ode23s(@feedback,[0 100],[u0 0]); u0=1.5; [t3,x3]=ode23s(@feedback,[0 100],[u0 0]); u0=2; [t4,x4]=ode23s(@feedback,[0 100],[u0 0]); u0=2.5; [t5,x5]=ode23s(@feedback,[0 100],[u0 0]); u0=3; [t6,x6]=ode23s(@feedback,[0 100],[u0 0]); figure; set(gca,'Fontsize',18);hold on; plot(x1(:,1),x1(:,2),'r',x2(:,1),x2(:,2),'r',x3(:,1),x3(:,2),'r',x4(:,1),x4(:,2),'r',x5(:,1),x5(:,2),'r',x6(:,1),x6(:,2),'r',t,Gammav,'b',Gammau,t,'g','LineWidth',2); xlabel('\it{u}'); ylabel('\it{v}'); axis([0 3 0 3]); text(0.43,0.8,'\it{\Gamma_v}','Fontsize',22); text(1.05,2,'\it{\Gamma_u}','Fontsize',22); text(0.55,2.4,'I','Fontsize',22); text(1.7,2.4,'II','Fontsize',22); text(1.7,0.3,'III','Fontsize',22); text(0.5,0.3,'IV','Fontsize',22); %set(gca,'XTick',[0:3],'YTick',[0:3]); function xdot = feedback(t,x) global u0;alpha=0.2; xdot(1)= alpha*(1 - x(1)); xdot(2)= x(1) - x(2); xdot = xdot';