% Understanding the behaviour of systems pharmacology % models: mathematical analysis of differential equations % Suruchi Bakshi, Elizabeth C. de Lange, Piet H. van der Graaf, Meindert % Danhof, and Lambertus A. Peletier % Evaluates null clines of the original pool model for a choice of % parameter values. Runs the original pool model for 2 different alpha % values in order to demonstrate the effect on movement of orbits % Generates figure 2a in the manuscript function y=snoeck() global alpha; t=linspace(0,5,1000); Gammav=t;Gammau=1+0*t; alpha=0.1; [t1,x1]=ode23s(@feedback,[0 100],[2.5 0]); [t2,x2]=ode23s(@feedback,[0 100],[0 2.5]); alpha=10; [t3,x3]=ode23s(@feedback,[0 100],[2.5 0]); [t4,x4]=ode23s(@feedback,[0 100],[0 2.5]); figure; set(gca,'Fontsize',18); hold on plot(x1(:,1),x1(:,2),'r',x3(:,1),x3(:,2),'m',t,Gammav,'b',Gammau,t,'g','LineWidth',2); xlabel('\it{u}'); ylabel('\it{v}'); axis([0 3 0.00 3]); text(0.43,0.8,'\it{\Gamma_v}','Fontsize',24); text(1.05,2,'\it{\Gamma_u}','Fontsize',24); text(1.5,0.33,'\it{\alpha}=10','Fontsize',24); text(2.4,1.7,'\it{\alpha}=0.1','Fontsize',24); set(gca,'XTick',[0:3],'YTick',[0:3]); function xdot = feedback(t,x) global alpha; xdot(1)= alpha*(1 - x(1)); xdot(2)= x(1) - x(2); xdot = xdot';