% Understanding the behaviour of systems pharmacology % models: mathematical analysis of differential equations % Suruchi Bakshi, Elizabeth C. de Lange, Piet H. van der Graaf, Meindert % Danhof, and Lambertus A. Peletier % Run the pool model with PF with various constant concentrations of the % drug % Generates figure 4 in the manuscript function y=snoeck() global D; t=linspace(0,100,100000); kr=0.091;kel=2.2;ks=26;Smax=66;SC50=22; R0=ks/kel;ka=0.2; R0=ks/kel;P0=ks/kr; D=0; [t1,x1]=ode23s(@feedback,[0 10000],[P0 R0]); D=3; [t2,x2]=ode23s(@feedback,[0 10000],[P0 R0]); D=0.03; [t3,x3]=ode23s(@feedback,[0 10000],[P0 R0]); D=0.1; [t4,x4]=ode23s(@feedback,[0 10000],[P0 R0]); D=0.3; [t5,x5]=ode23s(@feedback,[0 10000],[P0 R0]); p_mesh = 0:1:400; r_mesh = 0:1:70; p_null = ks/kr.*ones(71,1); r_null = kr.*p_mesh./kel; figure(1); set(gca,'Fontsize',16); hold on; plot(t2,x2(:,2)/R0,'r',t2,x2(:,1)/P0,'b',t,1+0*t,'k--','LineWidth',2); xlabel('Time (h)'); ylabel('\it{R/R_0} & \it{P/P_0}'); axis([0 35 0 6]);% For dose = 3. figure(2); set(gca,'Fontsize',16); hold all; plot(p_null./P0,r_mesh./R0,':k'); plot(p_mesh./P0,r_null./R0,'--k'); plot(x2(:,1)./P0,x2(:,2)./R0,'r','Linewidth',2); ylabel('\it{R/R_{0}}'); xlabel('\it{P/P_{0}}'); figure(2); legend('\it{\Gamma_P}','\it{\Gamma_R}','Orbit') function xdot = feedback(t,x) global D; kr=0.091;kel=2.2;ks=26;Smax=66;SC50=22;R0=ks/kel;ka=0.2; s=D*exp(-ka*t); Emax=0; xdot(1)= ks - kr*(1+Smax*s/(SC50+s))*x(1); % Lactotroph PRL xdot(2)= kr*(1+Smax*s/(SC50+s))*x(1)- kel*x(2); % Plasma PRL xdot = xdot';