% Understanding the behaviour of systems pharmacology % models: mathematical analysis of differential equations % Suruchi Bakshi, Elizabeth C. de Lange, Piet H. van der Graaf, Meindert % Danhof, and Lambertus A. Peletier % Run the pool model with PF with a PK model of SC dosing from Kozielska et % al 2012. Generates figure 5 in the manuscript % This file needs pool_pf_odes.m to run clear all clc close all global ks kel kr ec50_de emax_de ec50_prl emax_prl bsl k_a Cl V1 V2 Cl12 % PD parameters ks = 35.7; kr = 0.57; kel = 5.72; ec50_prl = 12.4; emax_prl = 3.47; ec50_de = 0.08; emax_de = 25; bsl = ks/kel; % PK parameters k_a = 2.84; Cl = 1.62; V1 = 1.29; Cl12 = 0.0882; V2 = 0.169; dose = [0; 0.05; 0.1; 1; 2]; % Select various doses % Initial conditions cpl_ss = bsl; % the second steady state is = bsl + bsl*emax_prl - ec50_prl; cla_ss = ks/kr; % ks/kr + ks*emax_prl/kr - ec50_prl*kel/kr; a0 = dose; b0 = 0; c0 = 0; tspan = 40; figure(1); figure(1);subplot(1,2,1); set(gca,'Fontsize',16);hold all; figure(1);subplot(1,2,2); set(gca,'Fontsize',16);hold all; figure(2);set(gca,'Fontsize',16);hold all; figure(3);set(gca,'Fontsize',16);hold all; %figure(4);set(gca,'Fontsize',16);hold all; for i = 1:length(dose) % Solve the PK/PD model y0 = [a0(i); b0; c0; cla_ss+0.01;cpl_ss+0.01]; % starting a simulation at a value slightly greater than baseline steady state options = odeset('RelTol',1e-4,'AbsTol',1e-6); [t,y] = ode15s(@pool_pf_odes,[0 tspan],y0',options); % Plotting results figure(1);subplot(1,2,1); plot(t,y(:,4),'Linewidth',2); % Plots lactotroph PRL vs time figure(1);subplot(1,2,2); plot(t,y(:,5),'Linewidth',2); % Plots plasma PRL vs time figure(2); plot(t,y(:,5),'Linewidth',2); % Plots plasma PRL vs time figure(3); plot(t,y(:,2)./V1,'Linewidth',2); % Plots drug PK vs time %figure(4); plot(y(:,4),y(:,5),'Linewidth',2); end figure(1);subplot(1,2,1); ylabel('Lactotroph PRL \rm{[ng/ml]}'); xlabel('Time [hr]');legend('0','0.05','0.1','1','2'); figure(1);subplot(1,2,2); ylabel('Plasma PRL \rm{[ng/ml]}'); xlabel('Time [hr]');legend('0','0.05','0.1','1','2'); figure(2);ylabel('Plasma PRL \rm{[ng/ml]}'); xlabel('Time [hr]');legend('0 mg/kg','0.05 mg/kg','0.1 mg/kg','1 mg/kg','2 mg/kg'); figure(3);ylabel('Drug plasma PK \rm{[ng/ml]}'); xlabel('Time [hr]');legend('0 mg/kg','0.05 mg/kg','0.1 mg/kg','1 mg/kg','2 mg/kg'); figure(3); xlim([0 10]);