% Understanding the behaviour of systems pharmacology % models: mathematical analysis of differential equations % Suruchi Bakshi, Elizabeth C. de Lange, Piet H. van der Graaf, Meindert % Danhof, and Lambertus A. Peletier % Generates figure 7b in the manuscript clear all clc close all % Select the parameter to vary beta = 0.5:0.1:1.5; % Select parameter(s) to fix gamma = 1; % bifurcation parameter bp = beta./gamma; % Evaluate both steady states as functions of the bifurcation parameters v_ss_1 = ones(1,length(bp)); v_ss_2 = ones(1,length(bp)) + beta - gamma; % get index at which the bifurcation parameter is at the critical value ind = find(bp'==1); % Plot the bifurcation diagram - Figure 7b in the manuscript figure; set(gca,'Fontsize',15) plot(bp(1:ind), v_ss_1(1:ind)','b','Linewidth',2); hold on plot(bp(ind:end), v_ss_1(ind:end),'b--','Linewidth',2); plot(bp(1:ind), v_ss_2(1:ind),'r--','Linewidth',2); hold on plot(bp(ind:end), v_ss_2(ind:end),'r','Linewidth',2); %xlabel('\beta/\gamma') xlabel('\lambda') ylabel('steady states of \it{v}') legend('\it{v_{0}} - \rm{stable}','\it{v_{0}} - \rm{unstable}','\it{v_{1}} - \rm{unstable}','\it{v_{1}} - \rm{stable}') xlim([0.5 1.5]); ylim([0.5 1.5]) % Plot the bifurcation diagram without the stability properties figure; set(gca,'Fontsize',15) hold on plot(bp, v_ss_1','b','Linewidth',2); plot(bp, v_ss_2','r','Linewidth',2); %xlabel('\beta/\gamma') xlabel('\lambda') ylabel('steady states of \it{v}') legend('\it{v_{0}}','\it{v_{1}}') xlim([0.5 1.5]); ylim([0.5 1.5])