Supplementary Note 1: Pharmacokinetics (module I)

In this note the utilized pharmacokinetic models and their parameterizations are outlined. At the end, we derive concentration time profiles for the intracellularly active NRTI-TP moieties, which can serve as an input for the molecular mechanisms of action model (module II, Supplementary Note 2). Note that we modelled typical 5

patient profiles, but extensions to virtual patient populations derived from POP-PK models are straight forward.

Pharmacokinetics of TDF, FTC and 3TC and their active anabolites SN1

The pharmacokinetics of TDF, FTC and 3TC can be modelled by the following set of ODEs^{1,2}:

$$\frac{dC_1(t)}{dt} = \frac{F_{\text{bio}} \cdot k_a \cdot D(t)}{V_1} - C_1(t) \cdot k_e - k_{12} \cdot C_1(t) + k_{21} \cdot C_2(t)$$
(SN1.1)

$$\frac{dC_2(t)}{dt} = k_{12} \cdot C_1(t) - k_{21} \cdot C_2(t)$$
(SN1.2)

$$\frac{dC_{\text{cell}}(t)}{dt} = \frac{V_{\text{max}} \cdot C_1(t)}{K_{\text{M}} + C_1(t)} - k_{\text{out}} \cdot C_{\text{cell}}(t)$$
(SN1.3)

where C_1 and C_2 represent the concentration of the circulating form of the respective NRTI (TFV, 3TC or FTC) in 9

the central compartment (= blood plasma) and in the peripheral compartment in units μ M. F_{bio} and V_1 represent 10

the respective oral bio-availability and the volume of the central compartment in liters. The terms k_a and k_e denote 11 the absorption and elimination rate constant for the central compartment in units 1/h. Similarly, k_{12} and k_{21} are the

12

influx and the apparent outflux rate constants to/from the peripheral compartment respectively (in 1/h). The term 13

 C_{cell} denotes the intracellular concentration of the active agent of NRTI within the target cell. The term V_{max} is the 14 maximum velocity (μ M/h) and K_M (μ M) the Michaelis-Menten constant for uptake and intracellular anabolism.

15 All parameters are taken from², where an extensive derivation and validation is provided. The parameters are 16

summarized in Table SN1.1. 17

The amount of drug (in μ mol) in the dosing compartment D(t) is modeled according to 18

$$D(t) = D(\tau_{i-1}) \cdot e^{-ka \cdot t} + I(t) \cdot \operatorname{dose}(\tau_i), \qquad (SN1.4)$$

where $D(\tau_{i-1})$ denotes the amount of the NRTI prodrug in the dosing compartment at the last dosing event τ_{i-1} . 19

The term I(t) denotes a delta dirac or impulse function, which takes the value 1 at the discrete dosing event $t = \tau_i$ 20

and is otherwise zero. 21

	Param.	3TC	FTC	TDF	Unit
ſ	$F_{\rm bio}$	0.86^{+}	0.93#	0.32*	-
	k_a	0.945 [§]	0.542	1‡	1/h
	V_1	61.252	43.823	110.31+	L
	k_e	0.3347	0.409	0.1234+	1/h
	k_{12}	0.0605	0.113	0.2926+	1/h
	k_{21}	0.0594	0.082	0.1537^{+}	1/h
	$V_{\rm max}$	0.5819	0.6191	0.0032+	μ M· 1/h
	$K_{\rm M}$	3.3977	0.9464	0.1020^{+}	μM
	kout	0.0315	0.0176	0.006+	1/h

Table SN1.1: Pharmacokinetic (population) parameters. Excerpt from². [†]fixed value taken from³. The [#]fixed value taken from⁴. ^{*}fixed value from⁵. \$fixed value taken from⁶. *fixed value from⁷. *The plasma and intracellular pharmacokinetics parameters for TDF are derived from the previous work¹.

22 **References**

- [1] Sulav Duwal, Christof Schütte, and Max von Kleist. Pharmacokinetics and pharmacodynamics of the reverse transcriptase inhibitor tenofovir and prophylactic efficacy against HIV-1 infection. *PLoS One*, 7(7):e40382, 2012.
- [2] Sulav Duwal and Max von Kleist. Top-down and bottom-up modeling in system pharmacology to understand clinical efficacy: An example with NRTIs of HIV-1. *European Journal of Pharmaceutical Sciences*, Jan 2016.
- [3] G. J. Yuen, D. M. Morris, P. K. Mydlow, et al. Pharmacokinetics, absolute bioavailability, and absorption
 characteristics of lamivudine. *J Clin Pharmacol*, 35(12):1174–1180, Dec 1995.
- ³⁰ [4] Krysten A. Modrzejewski and Ronald A. Herman. Emtricitabine: a once-daily nucleoside reverse transcriptase ³¹ inhibitor. *Ann Pharmacother*, 38(6):1006–1014, Jun 2004.
- P. Barditch-Crovo, S. G. Deeks, A. Collier, et al. Phase I/II trial of the pharmacokinetics, safety, and antiretroviral activity of tenofovir disoproxil fumarate in human immunodeficiency virus-infected adults. *Antimicrob Agents Chemother*, 45(10):2733–2739, Oct 2001.
- [6] Johanna Linnankoski, Johanna M. Mäkelä, Veli-Pekka Ranta, Arto Urtti, and Marjo Yliperttula. Computational prediction of oral drug absorption based on absorption rate constants in humans. *J Med Chem*, 49(12):3674–3681, Jun 2006.
- [7] Marie-Claude Gagnieu, Mirna El Barkil, Jean-Michel Livrozet, et al. Population pharmacokinetics of tenofovir
 in AIDS patients. *J Clin Pharmacol*, 48(11):1282–1288, Nov 2008.