
Supplementary Note 4:1

Virus exposure (module IV)2

In this note we derive a statistical model coupling donor viral loads to viral transmission, following different modes-3

of-transmission (e.g. homosexual- & heterosexual intercourse) and estimate the effect of PrEP after realistic viral4

exposures, after integration with module III (Supplementary Note 3).5

SN4 Statistical Model of Viral Exposure6

Sexual transmission is the main mode of HIV-1 infection. A number of studies have shown that the main factor7

that affects the probability of infection per coitus is the viral load in donor1,2. In absence of a complete cure and8

an effective vaccine against HIV-1, novel prevention strategies such as treatment as prevention (TasP) and pre-9

exposure prophylaxis (PrEP) have been devised to contain the ongoing spread of HIV-1. Treatment for prevention10

targets HIV-1 infected individual (potential donors), whereas PrEP aims at the uninfected individuals with a con-11

siderable risk of acquiring HIV-1, e.g. sero-discordant couples, MSM (men who have sex with men), sex workers,12

etc. In this note, we present a mathematical model linking the viral load in the donor with the number of virus13

being transmitted to the recipient. The presented model can be used to assess and analyze the effects of different14

strategies (e.g. TasP or PrEP).15

SN4.1 Relation between number of transmitted viruses and donor viral load16

We assume that the number of viruses transmitted and reaching a target cell environment n is related to the virus17

load in the donor k through a binomial model with success rate r (probability of successfully transmitting a donor18

virus to the recipient).19

n ∼ B( f (k), r), (SN4.1)

where the term f (k) is a power function of the viral load k in the donor, i.e.20

f (k) = ||km||, (SN4.2)

where m is an exponent of the viral load k and || · || is the next integer function.21

The probability of transmitting n viruses to the recipient when the viral load in the donor is k is then:22

P(V0 = n|VL = k) =

(

||km||

n

)

· rn · (1 − r)(||km ||−n) (SN4.3)

Function f (k) in eq. (SN4.2) is motivated by observations from Hughes et al.2 and Wilson et al.3. The au-23

thors observed a linear relationship between the log (viral load) in the transmitter/donor and the log (infection24

probability) in the P(inf) << 1 regime. A detailed derivation is given in subsection SN4.4.2.25

SN4.2 Distribution of viral load in potential donors/transmitters26

A number of studies have reported that the viral load in untreated HIV-1 infected individuals is log-normal dis-27

tributed1,4, i.e.:28

k ∼ logN(µ, σ), (SN4.4)

enabling us to devise a function, which computes the probability of a viral load k in a potential transmitter,29

P(VL = k) = g(k, µ, σ). (SN4.5)
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SN4.3 Mean infection probabilities30

The mean probability of infection per coitus is the weighted average infection probability over all potential trans-31

mitters and their respective viral loads at the time of contact:32

P̄(inf) =

∫ ∞

k=0

P(VL = k) · P(inf |VL = k) (SN4.6)

where the term P(VL = k) is the probability that a donor has viral load k and the term P(inf |VL = k) is the33

probability of infection per coitus conditional that a donor has viral load k.34

We assume that the number of viruses transmitted to the recipient is drawn from a binomial distribution,35

depending on the viral load in the donor (see above). The term P(inf |VL = k) can be decomposed into36

P(inf |VL = k) = P(V0 = n|VL = k) · P(inf |V0 = n), (SN4.7)

where the term P(V0 = n|VL = k) represents the probability that n transmitted viruses enter a target cell com-37

partment in the recipient conditioned that the donor/transmitter had viral load k. The term P(inf |V0 = n) denotes38

the conditional probability that infection is established in the recipient after n viruses had been transmitted (see39

Supplementary Note 3). Taken together, we get40

P̄(inf) =

∫ ∞

k=0

P(VL = k) ·





∞∑

n=0

P(V0 = n|VL = k) · P(inf |V0 = n)



 (SN4.8)

Using eqs. (SN3.14) (Supplementary Note 3) and eqs. (SN4.3),(SN4.5), the mean infection probability per41

coitus can be rewritten as42

P̄(inf) =

∫ ∞

k=0

g(k, µ, σ) ·





∞∑

n=0

(

||km||

n

)

· rn · (1 − r)(||km||−n) · (1 − (1 − α)n)



 (SN4.9)

In summary, the equation above for the mean infection probability per coitus P̄(inf) summarized the effects of:43

1. the viral load in the donor/transmitter,44

2. the number of transmitted viruses reaching a target cell compartment in the recipient,45

3. the infection probability when n viruses have been transmitted.46

This equation can therefore be used to assess the epidemiological effectiveness of methods that reduce viral load,47

e.g. treatment as prevention (TasP, item 1.), circumcision and condom use as means to reduce the number of viruses48

being transmitted (item 2.) and pre-exposure prophylaxis (PrEP, item 3.).49

SN4.4 Parametrization50

Eq. (SN4.9) requires a number of variables:51

• the infection probability given a single transmitted virus in the recipient (α) which has been derived in52

Supplementary Note 3,53

• the mean (µ) and standard deviation (σ) of the log10 viral load in the donor/transmitter population,54

• the exponent (m) and the success rate (r) for the binomial distribution (number of transmitted viruses).55

Next, we will explain the parametrization step by step.56
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Figure SN4.1: Comparison of observed vs. predicted distribution of log10 viral load (copies per ml blood) for the German Sero-

converter data 5

SN4.4.1 Virus load distribution in potential transmitters57

In order to infer the distribution of a viral loads in treatment naive potential HIV-1 transmitters, we analyzed viral58

load data from recently infected treatment-naive individuals (German HIV-1 sero-converter study and acute sero-59

converters, N = 1213)5,6. Since viral transmission occurs preferentially shortly after infection6, this particular60

population will provide the best possible source of relevant information regarding viral load distribution at the time61

of transmission. Figure 2A (main manuscript) shows the histogram of log10 viral load data with a superimposed62

red line representing the probability of viral load assuming normal distribution with mean µ = 4.51 and standard63

deviation σ = 0.98. Figure SN4.1 shows a QQ plot with observed probability of viral load in x axis and predicted64

probability of viral load in y axis. Both figures shows that the viral load is log-normal distributed. Further, the65

estimated mean and standard deviation from our data set (German Sero-converter study) are also in good agreement66

with the RAKAI study1 (see Table SN4.1).67

Distribution parameters RAKAI study German sero-converter data

Mean (µ) 4.02 4.51

Sigma (σ) 0.76 0.98

Table SN4.1: Comparison of log10 viral load distribution between German Seroconverter data and RAKAI study (Uganda) 1
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SN4.4.2 Derivation of power function f (k) and parametrization68

We will briefly explain the rationale behind the choice of f (k) as a power function of the viral load in the transmit-69

ter/donor. The function f relates the viral load in the transmitter/donor to the number of viruses that reach a target70

cell compartment in the recipient. Since it is impossible to assess the number of transmitted viruses (that reach a71

target cell compartment), instead we will use function f together with eq. (SN3.14) (Supplementary Note 3) to72

determine the relation between the viral load in the donor and the infection probability (see eq. SN4.7).73

Previously, a number of studies have shown a linear relationship between the log10 of probability of infection for74

a viral load and log10 of viral load in donor2,3, which is however only valid in the P(inf) << 1 regime. In the75

aforementioned regime we will see that this approximation is in line with our previous observations (eq. (SN4.3)).76

First, we will simplify eq. (SN4.7):77

P(inf|VL = k) =

∞∑

n=0

P(V0 = n|VL = k) · P(inf|V0 = n)

=

∞∑

n=0

P(V0 = n|VL = k) ·
(

1 − (1 − α)n) using eqs (SN3.14),(SN3.27)

= P(V0 = 0|VL = k) ·
(

1 − (1 − α)0
)

︸                                      ︷︷                                      ︸

=0

+

∞∑

n=1

P(V0 = n|VL = k) ·
(

1 − (1 − α)n) (SN4.10)

=

∞∑

n=1

P(V0 = n|VL = k) ·
(

1 − (1 − α)n). (SN4.11)

As n → ∞, we have
(

1 − (1 − α)n
)

→ 1. In the following, we will subsume all terms where at least one virus is78

transmitted. Therefore, we can replace the sum79

P(inf|VL = k) =

∞∑

n=1

P(V0 = n|VL = k) ·
(

1 − (1 − α)n)

=
(

1 − P(V0 = 0|VL = k)
)

·φ (SN4.12)

= 1 − P(V0 = 0|VL = k) − χ (SN4.13)

≈ 1 − P(V0 = 0|VL = k) (SN4.14)

with 0 < φ ≤ 1 and 0 ≤ χ < P(V0 = 0|VL = k). The equation states that in the P(inf) << 1 regime the infection80

probability is roughly given by the probability that at least one virus is being transmitted to the recipient. We then81

get82

P(inf |VL = k) ≈ 1 − P(V0 = 0|VL = k) = 1 −

(

f (k)

0

)

· r0 · (1 − r) f (k)−0 using eq. (SN4.3)

= 1 −
f (k)!

0! · f (k)!
︸     ︷︷     ︸

=1

· r0

︸︷︷︸

=1

·(1 − r) f (k)

= 1 − (1 − r) f (k)
. (SN4.15)

For r · f (k) << 1 (the expected number of transmitted viruses is small/on average less than 1), the taylor83

approximation 1 − (1 − r) f (k) ≈ r · f (k) can be applied84

P(inf |VL = k) ≈ r · f (k) (SN4.16)

Taking the logarithm on both sides85

log10

(

P(inf |VL = k)
)

≈ log10

(

r · f (k)
)

= log10(r) + log10

(

f (k)
)

= log10(r) + log10

(

(k)m)

using eq. (SN4.2)

= log10(r) + m · log10(k). (SN4.17)
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The equation above justifies (under the assumptions made) the linear relationship between the log10 probability86

of infection and the log10 of viral load in the donor/transmitter that has previously been stated2,1, i.e. each log1087

increase in the donor viral load increases the probability of infection in the P(inf) << 1 regime. In the following,88

we fixed the slope m to the value log10(2.45) reported by Wilson et al.3.89

Up to now, we have explained the parametrization of all variables in the eq. (SN4.9) except for the success rate90

r in eq. SN4.3 (proportion of donor/transmitter viruses that enter a target cell environment in the recipient).91

The mean infection probabilities per coitus P̄(inf) for different modes of transmission are known from various stud-92

ies, see e.g.7 and can be used together with the derived formulas to estimate this parameter. Thus, in eq. (SN4.9)93

we fixed all the parameters except r and estimated r for different modes of transmission using least squares mini-94

mization. Table SN4.2 shows the estimates of r for different modes of transmission.95

Mode of intercourse Mean probability of infection per coitus (P̄(inf)) estimated success rate r

homosexual 0.03 3.7136× 10−3

heterosexual 0.003 3.6266× 10−4

Table SN4.2: Estimation of r for different modes of transmission. Mean probability of infection per coitus P̄(inf) were taken from Royce et

al. 7,8,9

.

The following Table lists all parameter values used in the eq. (SN4.9) to estimate the mean infection probability96

per coitus.97

Parameter Value Ref.

infect. prob. for single virus (α) 0.0996 10

mean log10 viral load in donor (µ) 4.51 5

standard deviation of log10 viral load in donor (σ) 0.98 5

exponent (m) 0.3892 1

success rate for homosexual intercourse (r) 3.7136× 10−3 -

success rate for heterosexual intercourse (r) 3.6266× 10−4 -

Table SN4.3: Parameters values for eq. (SN4.9).
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SN4.5 Relation between donor virus load and infection probability (no treatment)98
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Figure SN4.2: Relation between of infection probability number of transmitted viruses n and virus load in donor for different modes

of transmission. Left: Infection probability depending on the number of transmitted viruses in the absence of PrEP ∅. Both axes are in

logarithmic scale. Right: Dependence of the infection probability per coitus on the viral load in a donor for different modes of transmission.

The green and blue lines represent unprotected homosexual- and heterosexual intercourse respectively. The horizontal black dashed line marks

the infection probability of 1.

Fig.SN4.2(left) shows the relation between the infection probability and the number of transmitted viruses99

reaching a target-cell compartment to the recipient. The infection probability given a single virus α is computed in100

Supplementary Note 3 and equal to 0.0996 i.e roughly 10 %. Using the Eqn (SN3.14), the infection probabilities101

for n > 1 number of transmitted virus can be computed. The figure shows a linear relation between the logarithm of102

the infection probability and the logarithm of the number of transmitted viruses until ≈20 viruses are transmitted.103

Thereafter the infection probability saturates and approaches 1.104

Fig.SN4.2 (right) shows the dependence of the infection probability per coitus on the viral load in a donor for105

different modes of sexual transmission (blue = homosexual and orange = heterosexual). For both transmission106

modes, the logarithm of the infection probability is linearly related to the logarithm of the viral load in donors,107

however for the homosexual transmission mode the infection probability approaches the probability of 1 after a108

donor viral load of roughly 108 copies/ml. Moreover, the infection probability is higher for the homosexual- than109

for the heterosexual transmission mode.110
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