Cellular heterogeneity mediates inherent sensitivity-specificity tradeoff in cancer targeting by synthetic circuits

Mathieu Morel, Roman Shtrahman, Varda Rotter, Lior Nissim, Roy H. Bar-Ziv

Supporting Information

- 1. Materials and Methods
- 2. Four-color flow cytometry calibration
- 3. Input-Output (I/O) response function map of raw data and data corrected by constitutive Sirius expression
- 4. Gates profiles and sigmoidal fittings of parameters
- 5. Reproducibility of the SSX1-H2A1 5-WT design with WI38 cells T3 and Tneo
- 6. Infection efficiency over WI-38 cells
- 7. Receiver Operating Characteristic curves
- 8. Pixel analysis of fluorescence microscopy and effect of T3/T/NEO cells proximity
- 9. List of Plasmids used
- 10. Key sequences used in this study

1. Materials and Methods

Plasmid Construction. The constructs used in this work were built by conventional restriction enzyme cloning and/or Gibson assembly (1). The 3rd generation lentiviruses delivery plasmids (Plasmids 22-29) were constructed by Gibson assembly of the different sequences into the pFUGW-H1 empty vector (2) (Plasmid 30). Information about plasmids and key sequences used in this study are given in **Tables S4 and S6**. Full sequences and samples of plasmids can be provided upon request.

Cell Culture and Transfections. Human colorectal tumor cells HCT 116 were obtained from the American Type Culture Collection (ATCC[®] CCL-247[™]). Low-passage HEK293T human kidney fibroblasts and WI-38 lung cancer cells T/NEO and T3 cell lines were coming from the laboratory of Professor Varda Rotter. HCT 116 were maintained in RPMI-1640 medium (Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine serum (Life Technologies) and 2 mM L-glutamine (Biological Industries, Israel). HEK293T were maintained in Dulbecco's modified Eagle's medium (Biological Industries) supplemented with 10% FBS and 2 mM L-glutamine. WI-38 cells were maintained in Minimal Essential Medium supplemented with 10% FBS, 2 mM L-glutamine, 100 U/ml Penicillin-Streptomycin (Life Technologies) and 1mM Sodium Pyruvate (Biological Industries). All cell lines were grown at 37 °C in a 5% CO2 incubator.

HCT 116, WI-38 and HEK293T cells were transfected with FuGENE®HD Transfection Reagent (Promega, Fitchburg, Wisconsin) at a fixed ratio of 2 μ g DNA to 7 μ l of reagent, diluted in 100 μ l Opti-MEM (Life Technologies). Plasmids were mixed at a fixed amount of 0.5 μ g/plasmid and the empty vector pGEM-T-Easy (Promega) was used to reach 2 μ g DNA for transfection with less than 4 plasmids. Plasmids compositions for the different experiments are given in **Table S5.** Each transfection was made using 800,000 cells/well in a 6-well plate, and medium was replaced with fresh growth medium 24 h after transfection.

Lenti-Viral Infections. Stably infected cell lines were obtained using a third generation lenti-viral system (3). The pFUGW vector containing the sequence of interest (Plasmids 22 to 29) were cotransfected with the packaging vectors pCMV-dR8.91 (Plasmid 20) and pCMV-VSV-G (4) (Plasmid 21) into HEK293T cells (see above for transfection protocol). The growth medium was collected 48 hours after transfection, filtered with 0.22 µm filter (Millipore, Bedford, MA) and directly used to infect 800,000 target cells in single well of a 6-well plate, thus maintaining the same multiplicity of infection for each virus over all cell lines. Infection media was supplemented with 10 µg/ml polybrene. Each infection was performed with two lentiviruses simultaneously in a 1:1 volume ratio. Growth medium was replaced after 1 day and the infected cells were transferred to a 10 cm plate after 2 days. A second round of infections with two additional plasmids was performed with the same protocol to obtain WI-38 cell lines stably expressing our four constructs: cell-identification constitutive fluorescence, inputs and output of the desired DPI design (see **Table S5** for plasmids composition of each infected cell line). Infection efficiency was assessed by considering the expression level of the fluorescent reporter controlled by the constitutive promoter hUbC, mKate2 (5) for WI-38/T3 cells and CFP for WI-38/T/NEO (Fig. S7). T3 and T/NEO cells presented an infection efficiency of 96 ± 1.1 % and 98 ± 0.4 % respectively (mean ± s.d., 9 independent samples of 10 000 cells).We assumed an infection efficiency for the DPI circuit of approx. 88% and 94% for T3 and T/NEO respectively.

Flow Cytometry. HCT 116 cells were prepared for flow cytometry 48h after transfection. Cells were collected, centrifuged for 3 minutes at 3,000 rpm and the supernatant was discarded. The cells pellet was re-suspended in 600 to 900 µl PBS and immediately assayed with a LSRII flow cytometer (BD Biosciences, Franklin Lakes, NJ). A population of 100,000 cells, with positive Sirius (6) level compared to untransfected sample, was recorded per sample in each data set. Experiments were done independently three times with similar conditions and FACS settings (see SI appendix for optical and compensation settings). The 5-WT design was used in all experiments to ensure the reproducibility (**Fig. S4**). Datasets were analyzed using Matlab (The MathWorks, Natick, MA). As fluorescence distributions were roughly log-normal, we computed the median value over cells for simple quantification distributions. In figures, median data were averaged over multiple experiments with error bars representing the standard deviation. A more detailed description of how the Inputs/Output maps and gate profiles were build is given in **SI sections 3 and 4**.

Transfected or infected WI-38/T3 and WI-38/T/NEO cells were mixed at a 1/1 ratio and grown for 4 days. Cells were collected, centrifuged for 3 minutes at 3,000 rpm and the supernatant was discarded. The cell pellet was re-suspended in 500 μ I PBS and immediately assayed with the LSRII flow cytometer. At least 10,000 cells were recorded per sample in each data set. Experiments were done independently three times with similar conditions and FACS settings, for transfected cells (**Fig. S7**) and infected cells (**Fig. 5**).

Killing Assay of tumor-like cell culture. To generate the tumor-like cell culture assay for each DPI construct, we first deposited a 2 μ l sessile drop of T3 cells at 2.10⁵ cells/ml in a 8-wells Lab-Tek II chamber (Thermo Scientific, Waltham, MA) and allowing the cells to adhere for 15 mn in the incubator. T/NEO cells, 200 μ l at 5.10⁴ cells/ml, were then carefully added to the well. After 1 day, growth medium was changed for a fluorescence imaging medium: Leibowitz-15 without phenol red (Life Technologies) supplemented with 10 % FBS, 2mM L-glutamine, 100 U/ml Penicillin-Streptomycin and 1 mM Sodium Pyruvate. After 4 days, a final concentration of 10 μ M Ganciclovir (Sigma Aldrich, Saint Louis, MO) was added to the treated wells, and an equivalent volume of PBS to the control wells. After 24 hours, cells were washed once with PBS and imaging medium was replaced. The imaging medium was then replaced every 2 days. The Lab-Tek chambers were imaged daily from day 1 to 18. For some experiments additional images were also taken up to day 35.

Fluorescence Microscopy. Fluorescence images were acquired on an inverted microscope Axiovert 200M (Carl Zeiss GmbH, Germany) equipped with a Neo sCMOS camera (Andor, Belfast, Ireland). We used 10x or 20x magnification objectives to image HCT 116 and WI38 mixtures. A 2x magnification objective was used to image tumor-like cultures. The following filter sets were used to image CFP, YFP and mCher/mKate2 fluorescence respectively (central wavelength and bandwidth in nm for excitation and emission filters): Ex: 436 / 20 nm, Dichroic: 455 DRLP, Em: 480 / 40 nm; Ex: 500 / 20 nm, Dichroic: 515 DRLP, Em: 535 / 30 nm; and Ex: 560 / 40 nm, Dichroic: 585 DRLP, Em: 640 / 40 nm. Data were analyzed using ImageJ (NIH, Bethesda, MD) and Matlab (The MathWorks).

2. Four-color flow cytometry calibration

Each color was compensated with the respect to the others to avoid fluorescence crosstalk between channels. We used cell samples expressing a single fluorescent protein: Sirius, CFP, YFP and mCherry. In figure S1 we present the 6 bi-axial graphs after compensation on the Hoechst (Sirius), Pacific Blue (CFP), YFP and mCherry channels for the four colors samples (see Table S1 and S2 for optical and compensation settings, respectively).

Channel	Fluorescent Protein	Laser Excitation Wavelength	Long Pass Filter	Emission Filter (Band Pass)
Hoechst	Sirius	355 nm	-	BP 450/50
Pacific Blue	ECFP	407 nm	-	BP 470/15
YFP	EYFP	488 nm	505nm	BP 550/30
mCherry	mCherry, mKate2	561 nm	600nm	BP 610/20

Table S1: FACS fluorescence filters settings

Table S2: FACS fluorescence compensation setup. Compensation was done with BD FACSDiva(version no. 6.1.3; BD Biosciences) as detailed below.

Fluorochrome	-% Fluorochrome	Spectral Overlap
ECFP	YFP	0.10
mCherry	YFP	4.00
Sirius	YFP	0.00
YFP	ECFP	0.13
mCherry	ECFP	0.00
Sirius	ECFP	0.22
YFP	mCherry	0.10
ECFP	mCherry	0.15
Sirius	mCherry	0.10
YFP	Sirius	0.00
ECFP	Sirius	15.30
mCherry	Sirius	0.00

Fig. S1: Fluorescent signals crossovers following compensations for a typical FACS experiment.

pPGK-Sirius: Sirius fluorescence only, pPGK-Sirius (plasmid 01).
pSSX-AD-2A-CFP: CFP fluorescence only, pSSX1-NLS-VP16AD-DocS-2A-CFP (plasmid 05).
pSSX-BD-2A-mC: mCherry fluorescence only, pSSX1-Gal4BD-Coh2-2A-mCherry (plasmid 14).
pSSX-A2S : YFP fluorescence only, pSSX1-NLS-VP16AD-DocS (plasmid 02) + pSSX1-Gal4BD-Coh2 (plasmid 03) + p14x-UAS-YFP (plasmid 19).

3. Input-Output (I/O) response function map of raw data and data corrected by constitutive Sirius expression

We measured single cell fluorescence levels for the 3x3 promoter pairs (CycD1/CycD1, CycD1/SSX1, CycD1/H2A1, SSX1/CycD1, SSX1/SSX1, SSX1/H2A1, H2A1/CycD1, H2A1/SSX1 and H2A1/H2A1). For each promoter pair, 1x10⁵ cells were recorded using their Sirius levels as a reporter for positive transfection. We assumed that each Sirius-positive cell was co-transfected with the four plasmids with equal probability. Samples from 3 experiments were pooled together. To build the map, the 2D-input space was discretized in 48x48 squares following an hyperbolic sine scale. Output and constitutive values of cells in input regions containing more than 100 cells were averaged (**Fig. S2**). Matlab contour plot was used to render a smoother plot of the map.

In raw data, both constitutive and output signals were graded and increased concomitantly with the input level (**Fig. S2**). We assumed that the graded constitutive signal accounted for a cell-dependent link between the four reporters expression levels, probably due to variations in plasmid copy number after transfection, and variability in cell size or overall metabolism. To reduce this extrinsic noise at the single-cell level, inputs and output fluorescence values were divided by the Sirius fluorescence value and then multiplied by the mean Sirius value in the sample. Sirius level was kept as is. I/O maps were then plotted in the corrected inputs space with either corrected output or raw constitutive values (**Fig S3**). After correction of inputs and output by the constitutive level, the input space was indeed less stretched and the map of the constitutive signal was no more graded and more homogenous.

Depending on the promoter identity, similar input values can generate different YFP output, even after correcting for transfection variability. Because the measurements were done after 48hr, we hypothesize that variations in expression dynamics affect the promoter output. Synchrony in expression of the two inputs can result in higher output for a given apparent AD/BD value, as observed for symmetric promoter pairs SSX1/SSX1 and H2A1/H2A1. The input reporter proteins do not fully take this into account because they accumulate in the cytoplasm regardless of expression dynamics in the nucleus.

Fig. S2: Raw data of output levels for distinct promoter pairs. (a) YFP expression level (DPI output) for the 5-WT design. **(b)** Sirius expression level (constitutive) for the 5-WT design. Each promoter pair is plotted separately in the full input space (x=AD-CFP; y= BD-mCher). The median output is written in the bottom right corner. White or brown lines indicate the cell density, 70% of the cells are included within these regions. Three independent experiments on HCT 116 cells ($3x10^5$ cells per promoter pair).

Fig. S3: Data in corrected input space for distinct promoter pairs. (a) YFP expression level (DPI output) for the 5-WT design after correction (see text above). **(b)** Sirius expression level (constitutive) for the 5-WT design without correction. Each promoter pair is plotted in the corrected full input space (x=AD-CFP; y= BD-mCher). The median output is written in the bottom right corner. White or brown lines indicate the cell density, 70% of the cells are included within these regions. Three independent experiments on HCT 116 cells (3x10⁵ cells per promoter pair).

4. Gates profiles and sigmoidal fittings of parameters

To obtain output probability profiles for the activation gate for increasing concentration of activation domain AD (**Fig. 2E, left**) or concentration of binding domain BD (**Fig. 2E, right**) we selected cells with high BD or high AD values respectively (10^3 to 10^4 RFU). We then computed the output probability distribution at increasing input values with an arcsin spacing (for AD or BD, respectively). Distribution for all inputs were concatenated to obtain a matrix with output probability as column and for increasing input along rows. The probability of output was defined for each input range and not for the overall profile, the sum of probability being equal to 1 along each vertical line. A contour plot was used to smoothen the profile representation, but data used for further calculation were not modified.

For each input the median output was also computed to obtain the median profile, and we averaged the profiles of 3 independent experiments to obtain the final profiles shown in grey in **Fig. 2 E** (mean \pm s.d.). Activation gate parameters given in **Table S3** were obtained by sigmoidal fittings of the 3 experiments.

Response function maps for the different experiments with 5-WT (**Fig. S4**), as well as gate profiles for increasing sTF Binding Sites (**Fig. S5**) and for two-hybrid mutants (**Fig. S6**) are given below.

Table S3: Parameters of AND gates for the 5-WT design. Minima, maxima, activation thresholds and Hill coefficients were obtained from sigmoidal fittings of the median output, along the DocS-VP16AD-2A-CFP axis (AD) and along the Coh2-Gal4BD-2A-mCher axis (BD) :

 $O(I) = O_{max} \cdot \left(\frac{I^n}{I^n + Th^n}\right) + O_{min}$, with O the output intensity, I the input intensity, Th the gating threshold and n the Hill coefficient. Mean \pm s.d., 3 independent experiments.

Design	Output min (RFU)	Output max (RFU)	Threshold (RFU)	Hill coefficient
5-WT along AD	31.4 ± 10	3210 ± 238	510 ± 56	5.6 ± 1.1
5-WT along BD	-13.3 ± 13	3527 ± 206	574 ± 29	4.8 ± 1.2

Fig. S4 : Response function map of 5-WT design with HCT 116 cells for 3 different experiments. Corrected data from all the 3x3 promoter pairs presented in Fig. S2 were pooled together to build the Input/Output response function map (9.10⁵ cells per experiment).

Fig. S5 : **Response function maps and output probability profiles for increasing binding repeats and WT DocS/Coh2.** (a) I/O maps for 3-WT, 5-WT, 8-WT and 14-WT (9.10⁵ cells per map, single experiment). (b) Output probability profiles along the AD axis at fixed high BD (horizontal dashed box in a), for 3-WT, 5-WT, 8-WT and 14-WT. The red dashed box indicates the region used for reduced distribution in **Fig. 3F** (red box shown in **Fig. 3D**). In all the figures the grey line is the average median profile of 5-WT for 3 experiments, and is given as reference. (c) Output probability profiles along the BD axis at fixed high AD (vertical dashed box in a), for 3-WT, 5-WT, 8-WT and 14-WT. The blue dashed box indicates the region used for reduced distribution in **Fig. 3E** (blue box shown in **Fig. 3D**). In all the figures the grey line is the average median profile of 5-WT for 3 experiments, and is given as reference. (c) Output probability profiles along the BD axis at fixed high AD (vertical dashed box in a), for 3-WT, 5-WT, 8-WT and 14-WT. The blue dashed box indicates the region used for reduced distribution in **Fig. 3E** (blue box shown in **Fig. 3D**). In all the figures the grey line is the average median profile of 5-WT for 3 experiments, and is given as reference.

Fig. S6 : Response function maps and output probability profiles for 5 binding repeats with WT or weak affinity mutants of the DocS/Coh2. (a) I/O maps for 5-WT, 5-M15 and 5-M102 (9.10⁵ cells per map, single experiment). **(b)** Output probability profiles along the AD axis at fixed high BD (horizontal dashed box in a), for 5-WT, 5-M15 and 5-M102. In all the figure the grey line is the average median profile of 5-WT for 3 experiments, and is given as reference. **(c)** Output probability profiles along the BD axis at fixed high AD (vertical dashed box in a), for 5-WT, 5-M15 and 5-M102. In all the figure the grey line is the average median profile is the average median profile of 5-WT for 3 experiments, and is given as reference.

5. Reproducibility of the SSX1-H2A1 5-WT design with transfected WI38 cells:

6. Infection efficiency

Fig. S8 : Lentiviral infection efficiency on T3 and T/NEO cells. (a) Distribution of mKate2 fluorescence in T3 cells infected by pFUGW-UbC-mK2, pFUGW-SSX1-NLS-VP16AD-DocS, pFUGW-H2A1-Gal4BD-Coh2 and pFUGW-3x-UAS-TK1-2A-YFP. **(b)** Distribution of CFP fluorescence in T/NEO cells infected by pFUGW-UbC-CFP, pFUGW-SSX1-NLS-VP16AD-DocS, pFUGW-H2A1-Gal4BD-Coh2 and pFUGW-5x-UAS-TK1-2A-YFP.

7. Receiver Operating Characteristic curves

A Receiver Operating Characteristic curves (ROC) illustrates the performance of a binary classifier with an increasing discrimination threshold (here the killing threshold based on YFP output). True positive rate (namely sensitivity) is plotted as a function of false positive rate (namely 1-specificity) for all the possible value of killing threshold. The ROC curve of a non-discriminating classifier is a straight line from (0;0) to (1;1). A perfect classifier will have points on (0;1).

Fig. S9 : ROC curves for the different designs. Sensitivity and specificity of the design were calculated from FACS measurement of infected T3 and T/NEO cell mixtures, as shown in **Fig. 5E** (1.5 10⁴ cells per design, 3 independent experiments). Values of area under the ROC curves are given in the main text.

8. Pixel analysis of fluorescence microscopy and effect of T3 to T/NEO cells proximity

Killing assays with mixed culture of T/NEO and T3 cells resulted in an enhanced killing of T/NEO cells compared to tumor like culture (**Fig. S10a**). We monitored during one week in culture the constitutive (CFP and mKate2 fluorescence for T/Neo and T3 respectively, **Fig. S10b**) and output level (YFP fluorescence, **Fig. S10c**). Distributions of fluorescence are given in percent of pixels having a given values, extracted from 4 images (2 independent samples, approx. 2000 cells). Pixels were assigned to T/NEO or T3 based on their exclusive constitutive level: CFP > 200 & mKate2 < 150 for T/NEO pixels, and mKate2 > 150 & CFP < 200 for T3 pixels. In co-culture, distribution of output for T/NEO cells evolved with time and became comparable to the distribution observed with T3 cells after 7 days (solid lines in **c**). This effect was not observed when cells were cultured separately (dashed lines in **c**). Distributions of the constitutive signals remained roughly unchanged when cells were mixed (CFP for T/NEO and mKate2 for T3 in **b**).

Fig. S10 : Circuit output is increased in T/NEO cells in contact with T3 cells. a) Fluorescence images of mixed T/NEO - T3 co-culture. A 10 μ M GCV treatment is done at day 4 (**left**) and observed at day 11 (**right**). Scale bar 500 μ m. **b**) Distributions of pixel fluorescence for the constitutive CFP (T/NEO) and mKate2 (T3) at day 7. **c**) Distributions of pixel fluorescence for the output (YFP) for T/NEO (blue) and T3 cells (red) at day 1, 4 and 7.

9. List of Plasmids used

Table S4: Constructs names and short descriptions. Full sequences and samples of plasmids can beprovided upon request.

Plasmid 01 pPGK-Sirius Constitutive Sirius expression regulated by PGK promoter Plasmid 02 pSSX1-NLS-VP16AD-DocS Wild Type activation input regulated by SSX1 promoter – no reporter Plasmid 03 pSSX1-Gal48D-Coh2 Binding input regulated by SSX1 promoter – no reporter Plasmid 04 pCycD1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by CycD1promoter Plasmid 05 pSSX1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by SX1 promoter Plasmid 06 pH2A1-NLS-VP16AD-DocS1-2A-CFP Wild Type activation input and CFP regulated by CycD1promoter Plasmid 07 pCycD1-NLS-VP16AD-DocS1-2A-CFP Mutant activation input and CFP regulated by SX1 promoter Plasmid 08 pSSX1-NLS-VP16AD-DocS1-2A-CFP Mutant activation input and CFP regulated by SX1 promoter Plasmid 10 pCycD1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by SX1 promoter Plasmid 11 pSSX1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by SX1 promoter Plasmid 12 pH2A1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by SX1 promoter Plasmid 13 pCycD1-Gal4BD-Coh2-2A-mCherry Binding input and mCherry regulated by SX1 promoter Plasmid 14	Plasmid n°	Full name	Description
Plasmid 01 proximits PCK promoter Plasmid 02 pSSX1-NLS-VP16AD-DocS Wild Type activation input regulated by SSX1 promoter – no reporter Plasmid 03 pSSX1-Sal4BD-Coh2 Binding input regulated by SSX1 promoter – no reporter Plasmid 04 pCycD1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by SSX1 promoter Plasmid 05 pSSX1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by SSX1 promoter Plasmid 06 pH2A1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by CycD1promoter Plasmid 07 pCycD1-NLS-VP16AD-DocS15-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 08 pSSX1-NLS-VP16AD-DocS15-2A-CFP Mutant activation input and CFP regulated by SSX1 promoter Plasmid 09 pH2A1-NLS-VP16AD-DocS10-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 10 pCycD1-NLS-VP16AD-DocS10-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 12 pH2A1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 13 pCycD1-Gal4BD-Coh2-2A-mCherry Binding input and mCherry regulated by SSX1 promoter Plasmid 14 pSSX1-SVFP <td< td=""><td>Plasmid 01</td><td>nDGK-Sirius</td><td>Constitutive Sirius expression regulated by</td></td<>	Plasmid 01	nDGK-Sirius	Constitutive Sirius expression regulated by
Plasmid 02 pSSX1-NLS-VP16AD-DocS Wild Type activation input regulated by SSX1 promoter - no reporter Plasmid 03 pSSX1-Gal4BD-Coh2 Binding input regulated by SSX1 promoter - no reporter Plasmid 04 pCycD1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by CycD1promoter Plasmid 05 pSSX1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by SSX1 promoter Plasmid 06 pH2A1-NLS-VP16AD-DocS12-A-CFP Wild Type activation input and CFP regulated by CycD1promoter Plasmid 07 pCycD1-NLS-VP16AD-DocS15-2A-CFP Mutant activation input and CFP regulated by SSX1 promoter Plasmid 08 pSSX1-NLS-VP16AD-DocS15-2A-CFP Mutant activation input and CFP regulated by SSX1 promoter Plasmid 09 pH2A1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 10 pCycD1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by SSX1 promoter Plasmid 11 pSSX1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by CycD1 promoter Plasmid 12 pH2A1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by CycD1 promoter Plasmid 13 pCycD1-Gal4BD-Coh2-2A-mCherry Binding input and mCherry regulated by SSX1 promoter		pr 6k-5inus	PGK promoter
Plasmid 03 pSSX1-Gal4BD-Coh2 promoter - no reporter Plasmid 04 pCycD1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by SX1 promoter Plasmid 05 pSSX1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by SX1 promoter Plasmid 06 pH2A1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by SX1 promoter Plasmid 06 pH2A1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by CycD1promoter Plasmid 07 pCycD1-NLS-VP16AD-DocS15-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 08 pSSX1-NLS-VP16AD-DocS15-2A-CFP Mutant activation input and CFP regulated by SSX1 promoter Plasmid 10 pCycD1-NLS-VP16AD-DocS15-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 11 pSSX1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by SSX1 promoter Plasmid 11 pSSX1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by SSX1 promoter Plasmid 12 pH2A1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by SSX1 promoter Plasmid 13 pCycD1-Gal4BD-Coh2-2A-mCherry Binding input and mCherry regulated by CycD1 promoter Plasmid 14 pSSX1-Gal4BD-Coh2-2A-mCherry Binding input and mCherry regulated by SSX1 promoter Plasmid 15 pH2A1-Gal4BD-Coh2-2A-mCherry Bind	Plasmid 02	nSSX1-NJ S-VP16AD-DocS	Wild Type activation input regulated by SSX1
Plasmid 03 pSSX1-Gal4BD-Coh2 Binding input regulated by SSX1 promoter – no reporter Plasmid 04 pCycD1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by CycD1promoter Plasmid 05 pSSX1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by SSX1 promoter Plasmid 06 pH2A1-NLS-VP16AD-DocS12-2A-CFP Wild Type activation input and CFP regulated by CycD1promoter Plasmid 07 pCycD1-NLS-VP16AD-DocS15-2A-CFP Mutant activation input and CFP regulated by SSX1 promoter Plasmid 08 pSSX1-NLS-VP16AD-DocS15-2A-CFP Mutant activation input and CFP regulated by SSX1 promoter Plasmid 09 pH2A1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 10 pCycD1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by SSX1 promoter Plasmid 11 pSSX1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by H2A1promoter Plasmid 12 pH2A1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by H2A1promoter Plasmid 12 pH2A1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by H2A1promoter Plasmid 13 pCycD1-Gal4BD-Coh2-2A-mCherry Binding input and mCherry regulated by H2A1promoter <tr< td=""><td>11031110 02</td><td></td><td>promoter – no reporter</td></tr<>	11031110 02		promoter – no reporter
Plasmid 04 pCycD1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by CycD1promoter Plasmid 05 pSSX1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by SSX1 promoter Plasmid 06 pH2A1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by SSX1 promoter Plasmid 07 pCycD1-NLS-VP16AD-DocS15-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 08 pSSX1-NLS-VP16AD-DocS15-2A-CFP Mutant activation input and CFP regulated by SSX1 promoter Plasmid 09 pH2A1-NLS-VP16AD-DocS15-2A-CFP Mutant activation input and CFP regulated by SSX1 promoter Plasmid 10 pCycD1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 11 pSSX1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by SSX1 promoter Plasmid 12 pH2A1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 12 pH2A1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 13 pCycD1-Gal4BD-Coh2-2A-mCherry Binding input and mCherry regulated by SSX1 promoter Plasmid 14 pSSX1-Gal4BD-Coh2-2A-mCherry Binding input and mCherry regulated by SSX1 promoter Plasmid 15 pH2A1-Gal4BD-C	Plasmid 03	nSSX1-Gal4BD-Coh2	Binding input regulated by SSX1 promoter –
Plasmid 04pCycD1-NLS-VP16AD-DocS-2A-CFPWild Type activation input and CFP regulated by CycD1promoterPlasmid 05pSSX1-NLS-VP16AD-DocS-2A-CFPWild Type activation input and CFP regulated by SSX1 promoterPlasmid 06pH2A1-NLS-VP16AD-DocS12-A-CFPWild Type activation input and CFP regulated by H2A1promoterPlasmid 07pCycD1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 08pSSX1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 09pH2A1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by Mutant activation input and CFP regulated by CycD1promoterPlasmid 10pCycD1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 11pSSX1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 14pSSX1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 15pH2A1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP3 repeats outputPlasmid 20pCMV-VSV-GLentivirus envelope Addgene #2221Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #854Plasmid 22<	Thashind 05		no reporter
Plasmid 05 pcycD1 NLS-VP16AD-DocS-2A-CFP by CycD1promoter Plasmid 06 pH2A1-NLS-VP16AD-DocS-2A-CFP Wild Type activation input and CFP regulated by SSX1 promoter Plasmid 07 pCycD1-NLS-VP16AD-DocS15-2A-CFP Wild Type activation input and CFP regulated by CycD1promoter Plasmid 08 pSSX1-NLS-VP16AD-DocS15-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 09 pH2A1-NLS-VP16AD-DocS15-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 10 pCycD1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 11 pSSX1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 12 pH2A1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 12 pH2A1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 12 pH2A1-NLS-VP16AD-DocS102-2A-CFP Mutant activation input and CFP regulated by CycD1promoter Plasmid 13 pCycD1-Gal4BD-Coh2-2A-mCherry Binding input and mCherry regulated by SSX1 promoter Plasmid 14 pSSX1-Gal4BD-Coh2-2A-mCherry Binding input and mCherry regulated by H2A1 promoter Plasmid 15	Plasmid 04	nCvcD1-NI S-VP16AD-DocS-2A-CFP	Wild Type activation input and CFP regulated
Plasmid 05pSSX1-NLS-VP16AD-DocS-2A-CFPWild Type activation input and CFP regulated by SSX1 promoterPlasmid 06pH2A1-NLS-VP16AD-DocS-2A-CFPWild Type activation input and CFP regulated by H2A1promoterPlasmid 07pCycD1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 08pSSX1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 09pH2A1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by H2A1promoterPlasmid 10pCycD1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by H2A1promoterPlasmid 11pSSX1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by CycD1 promoterPlasmid 14pSSX1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5X-UAS-YFP3 repeats outputPlasmid 18pPK-VAS-YFP14 repeats outputPlasmid 20pCMV-VAR8.91Lentivirus proteins Addgene #8454Plasmid 21pCWV-VS-GLentivirus proteins Addgene #8454Plasmid 22pFUGW-NbLC-CFPConstitutive CFP (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD			by CycD1promoter
Plasmid 06pH2A1-NLS-VP16AD-DocS-2A-CFPby SSX1 promoterPlasmid 07pCycD1-NLS-VP16AD-DocS15-2A-CFPWild Type activation input and CFP regulated by CycD1promoterPlasmid 08pSSX1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 09pH2A1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 10pCycD1-NLS-VP16AD-DocS10-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 11pSSX1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by CycD1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by CycD1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by CycD1 promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 14pSSX1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 15pH2A1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP14 repeats outputPlasmid 18p8x-UAS-YFP14 repeats outputPlasmid 20pCMV-AR8.91Lentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus proteins Addgene #254Plasmid 22pFUGW-SX1-NLS-V	Plasmid 05	nSSX1-NLS-VP16AD-DocS-2A-CEP	Wild Type activation input and CFP regulated
Plasmid 06pH2A1-NLS-VP16AD-DocS-2A-CFPWild Type activation input and CFP regulated by H2A1promoterPlasmid 07pCycD1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 08pSSX1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by M2A1promoterPlasmid 09pH2A1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by 			by SSX1 promoter
Plasmid 07py H2A1promoterPlasmid 07pCycD1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 08pSSX1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 09pH2A1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by H2A1promoterPlasmid 10pCycD1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 11pSSX1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by CycD1 promoterPlasmid 14pSSX1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 15pH2A1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP8 repeats outputPlasmid 18p8x-UAS-YFP14 repeats outputPlasmid 20pCMV-AR8.91Lentivirus proteins Addgene #8454Plasmid 21pCWV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-H0bC-CRPConstitutive RKate2 (Lentivirus)Plasmid 23pFUGW-SX1-NLS-VP16AD-DocS102PromoterPlasmid 24pFUGW-SX1-NLS-VP16AD-DocS102PromoterPlasmid 25pFUGW-SX1-NLS-VP16AD-DocS102PromoterPlasmid 26 <t< td=""><td>Plasmid 06</td><td>pH2A1-NLS-VP16AD-DocS-2A-CEP</td><td>Wild Type activation input and CFP regulated</td></t<>	Plasmid 06	pH2A1-NLS-VP16AD-DocS-2A-CEP	Wild Type activation input and CFP regulated
Plasmid 07pCycD1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 08pSSX1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 09pH2A1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 10pCycD1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 11pSSX1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-CFPMutant activation input and CFP regulated by CycD1 promoterPlasmid 14pSSX1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by CycD1 promoterPlasmid 15pH2A1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP3 repeats outputPlasmid 18p8x-UAS-YFP14 repeats outputPlasmid 20pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-mKate2Constitutive CFP (Lentivirus)Plasmid 23pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by SSX1 promoterPlasmid 24pFUGW-SX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 25pFUGW-SX1-NLS-VP16AD-DocS102Pitareats output			by H2A1promoter
Plasmid 08pSX1-NLS-VP16AD-DocS15-2A-CFPCycD1promoterPlasmid 09pH2A1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by H2A1promoterPlasmid 10pCycD1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 11pSX1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SX1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SX1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SX1 promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-MCherryBinding input and mCherry regulated by SX1 promoterPlasmid 14pSSX1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by SX1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP5 repeats outputPlasmid 18p8x-UAS-YFP14 repeats outputPlasmid 20pCMV-AR8.91Lentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus proteins Addgene #8454Plasmid 22pFUGW-hUbC-CFPConstitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocS102WT activation input regulated by SSX1 promoterPlasmid 25pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by SSX1 promoterPlasmid 26pFUGW-SSX1-NLS-VP16AD-DocS102PromoterPlasmid 27pFUGW-SX1-NLS-VP16AD-DocS102 <td>Plasmid 07</td> <td>pCvcD1-NLS-VP16AD-DocS15-2A-CFP</td> <td>Mutant activation input and CFP regulated by</td>	Plasmid 07	pCvcD1-NLS-VP16AD-DocS15-2A-CFP	Mutant activation input and CFP regulated by
Plasmid 08pSSX1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 09pH2A1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by H2A1promoterPlasmid 10pCycD1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 11pSSX1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SX1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by M14tant activation input and CFP regulated by Mutant activation input and CFP regulated by M2A1promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by M2A1promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 14pSSX1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP8 repeats outputPlasmid 18p8x-UAS-YFP8 repeats outputPlasmid 20pCMV-VSV-GLentivirus proteins <u>Addgene #2221</u> Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #2454Plasmid 22pFUGW-hUbC-CFPConstitutive mKate2 (Lentivirus)Plasmid 23pFUGW-SSX1-NLS-VP16AD-DocS102WT activation input regulated by SSX1 promoterPlasmid 24pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by			CycD1promoter
Plasmid 09pH2A1-NLS-VP16AD-DocS15-2A-CFPSSX1 promoterPlasmid 10pCycD1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 11pSSX1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by Mutant activation input and CFP regulated by H2A1promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by H2A1promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-mCherry PSSX1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by CycD1 promoterPlasmid 14pSSX1-Gal4BD-Coh2 -2A-mCherry PH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherry PH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherry PH3amid 16Birding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP8 repeats outputPlasmid 20pCMV-VAS-YFP14 repeats outputPlasmid 21pCMV-VV-GLentivirus proteins Addgene #2221Plasmid 22pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 25pFUGW-H2A1-Gal4BD-Coh2Binding input reg	Plasmid 08	pSSX1-NLS-VP16AD-DocS15-2A-CFP	Mutant activation input and CFP regulated by
Plasmid 09pH2A1-NLS-VP16AD-DocS15-2A-CFPMutant activation input and CFP regulated by H2A1promoterPlasmid 10pCycD1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 11pSSX1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by Mutant activation input and CFP regulated by Mutant activation input and CFP regulated by CycD1promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 14pSSX1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by M2A1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP8 repeats outputPlasmid 18p8x-UAS-YFP14 repeats outputPlasmid 20pCMV-VSV-GLentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus proteins Addgene #8454Plasmid 22pFUGW-hUBC-CFPConstitutive CFP (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocS102WT activation input regulated by SSX1 promoterPlasmid 25pFUGW-SSX1-NLS-VP16AD-DocS102Binding input regulated by H2A1 promoterPlasmid 26pFUGW-SX1-NLS-VP16AD-DocS102Piraent activation input regulated by H2A1 promoterPlasmid 27pFUGW-SX1-NLS-VP16AD-DocS102Piraent activation input regulated by H2A1 promoterPlasmid		P	SSX1 promoter
H2A1promoterPlasmid 10pCycD1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 11pSSX1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by H2A1promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by CycD1 promoterPlasmid 14pSSX1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 15pH2A1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP5 repeats outputPlasmid 18p8x-UAS-YFP8 repeats outputPlasmid 20pCMV-AR8.91Lentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-MKate2WT activation input regulated by SSX1 promoterPlasmid 24pFUGW-SSX1-NLS-VP16AD-DocS102WT activation input regulated by SSX1 promoterPlasmid 25pFUGW-SX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 26pFUGW-SX1-NLS-VP16AD-DocS102Plasmid 27 PFUGW-SX1-NLS-VP16AD-DocS102Plasmid 27pFUGW-SX1-NLS-VP16AD-DocS102PromoterPlasmid 28pFUGW-SX1-ALS-AYFP3 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-SX1-ALS-AYFP<	Plasmid 09	pH2A1-NLS-VP16AD-DocS15-2A-CFP	Mutant activation input and CFP regulated by
Plasmid 10pCycD1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by CycD1promoterPlasmid 11pSSX1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by H2A1promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by CycD1 promoterPlasmid 14pSSX1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP5 repeats outputPlasmid 18p8x-UAS-YFP8 repeats outputPlasmid 20pCMV-VSV-GLentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus proteins Addgene #8454Plasmid 23pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocS102WT activation input regulated by SSX1 promoterPlasmid 25pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 26pFUGW-SSX1-NLS-VP16AD-DocS102Binding input regulated by SSX1 promoterPlasmid 27pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 28pFUGW-Sx-LAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFU			H2A1promoter
Plasmid 11pSSX1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by H2A1promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by CycD1 promoterPlasmid 14pSSX1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP5 repeats outputPlasmid 18p8x-UAS-YFP14 repeats outputPlasmid 19p14x-UAS-YFP14 repeats outputPlasmid 20pCMV-VSV-GLentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-MKate2Constitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-MKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocS102WT activation input regulated by SSX1 promoterPlasmid 25pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 27pFUGW-Sx-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-Sx-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-H1pFUGW-H1 PFUGW-H1PFUGW-H1 empty vector Addgene #25870 Constitutive sitius expression regulated by SFPlasmid 31pcDNA3-SiriusConstitutive approxes	Plasmid 10	pCycD1-NLS-VP16AD-DocS102-2A-CFP	Mutant activation input and CFP regulated by
Plasmid 11pSSX1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by SSX1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by H2A1promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by CycD1 promoterPlasmid 14pSSX1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP5 repeats outputPlasmid 18p8x-UAS-YFP14 repeats outputPlasmid 20pCMV-ΔR8.91Lentivirus proteinsPlasmid 21pCMV-VSV-GLentivirus proteinsPlasmid 22pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-MKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 25pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 26pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by SSX1 promoterPlasmid 29pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 31pcDNA3-SiriusConstitutive Sirus expression regulated by CMV promoter <td></td> <td></td> <td>CycD1promoter</td>			CycD1promoter
SSX1 promoterPlasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by H2A1promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by CycD1 promoterPlasmid 14pSSX1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP3 repeats outputPlasmid 18p8x-UAS-YFP8 repeats outputPlasmid 19p14x-UAS-YFP14 repeats outputPlasmid 20pCMV-VSV-GLentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-MKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocSWT activation input regulated by SSX1 promoterPlasmid 25pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by SSX1 promoterPlasmid 26pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by SSX1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-14x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by CMV promoter	Plasmid 11	pSSX1-NLS-VP16AD-DocS102-2A-CFP	Mutant activation input and CFP regulated by
Plasmid 12pH2A1-NLS-VP16AD-DocS102-2A-CFPMutant activation input and CFP regulated by H2A1promoterPlasmid 13pCycD1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by CycD1 promoterPlasmid 14pSSX1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP3 repeats outputPlasmid 18p8x-UAS-YFP14 repeats outputPlasmid 19p14x-UAS-YFP14 repeats outputPlasmid 20pCMV-ΔR8.91Lentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocS102WT activation input regulated by SSX1 promoterPlasmid 25pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 26pFUGW-SX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by Constitutive sirius expression regulated by			SSX1 promoter
Plasmid 13pCycD1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by CycD1 promoterPlasmid 14pSSX1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP3 repeats outputPlasmid 18p8x-UAS-YFP5 repeats outputPlasmid 19p14x-UAS-YFP14 repeats outputPlasmid 20pCMV-VAR8.91Lentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus proteins Addgene #454Plasmid 22pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocS102WT activation input regulated by SSX1 promoterPlasmid 25pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by SSX1 promoterPlasmid 26pFUGW-SX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 27pFUGW-SX1-NLS-VP16AD-DocS102PromoterPlasmid 28pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-14x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by Constitutive sirius expression regulated by CMV promoter Addrene#518570	Plasmid 12	pH2A1-NLS-VP16AD-DocS102-2A-CFP	Mutant activation input and CFP regulated by
Plasmid 13pCycD1-Gal4BD-Coh2-2A-mCherryBinding input and mCherry regulated by CycD1 promoterPlasmid 14pSSX1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP5 repeats outputPlasmid 18p8x-UAS-YFP8 repeats outputPlasmid 19p14x-UAS-YFP14 repeats outputPlasmid 20pCMV-AR8.91Lentivirus proteinsAddgene #2221Plasmid 21pCMV-VSV-GPlasmid 22pFUGW-hUbC-CFPConstitutive GFP (Lentivirus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocSWT activation input regulated by SSX1 promoterPlasmid 25pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by SSX1 promoterPlasmid 26pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-14x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by CMV promoter			H2A1promoter
Plasmid 14pSSX1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP5 repeats outputPlasmid 18p8x-UAS-YFP8 repeats outputPlasmid 19p14x-UAS-YFP14 repeats outputPlasmid 20pCMV-ΔR8.91Lentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-mKate2Constitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocS102WT activation input regulated by SSX1 promoterPlasmid 25pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 mpty vector Addgene #25870Plasmid 31pcDNA3-SiriusCMV promoter Sirius expression regulated by	Plasmid 13	pCycD1-Gal4BD-Coh2-2A-mCherry	Binding input and mCherry regulated by
Plasmid 14pSSX1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by SSX1 promoterPlasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP5 repeats outputPlasmid 18p8x-UAS-YFP8 repeats outputPlasmid 19p14x-UAS-YFP14 repeats outputPlasmid 20pCMV-AR8.91Lentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-rCFPConstitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocS102WT activation input regulated by SSX1 promoterPlasmid 25pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by			CycD1 promoter
Plasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and mCherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP5 repeats outputPlasmid 18p8x-UAS-YFP8 repeats outputPlasmid 19p14x-UAS-YFP14 repeats outputPlasmid 20pCMV-AR8.91Lentivirus proteinsAddgene #8454Plasmid 22pFUGW-hUbC-CFPPlasmid 23pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocSWT activation input regulated by SSX1 promoterPlasmid 25pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by	Plasmid 14	pSSX1-Gal4BD-Coh2 -2A-mCherry	Binding input and monerry regulated by SSX1
Plasmid 15pH2A1-Gal4BD-Coh2 -2A-mCherryBinding input and incherry regulated by H2A1 promoterPlasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP5 repeats outputPlasmid 18p8x-UAS-YFP8 repeats outputPlasmid 19p14x-UAS-YFP14 repeats outputPlasmid 20pCMV-ΔR8.91Lentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocS102WT activation input regulated by SSX1 promoterPlasmid 25pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1Plasmid 26pFUGW-SX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 26pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusCMV promoter Addgene #25870CMV promoter Addgene #25870CMV promoter Addgene #25870Plasmid 31pcDNA3-SiriusCMV promoter Addgene #25870			Promoter Diadiag is put and mCharmy regulated by U2A1
Plasmid 16p3x-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP5 repeats outputPlasmid 18p8x-UAS-YFP8 repeats outputPlasmid 19p14x-UAS-YFP14 repeats outputPlasmid 20pCMV-ΔR8.91Lentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocSWT activation input regulated by SSX1 promoterPlasmid 25pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by	Plasmid 15	pH2A1-Gal4BD-Coh2 -2A-mCherry	Binding input and monerry regulated by H2A1
Plasmid 16psx-UAS-YFP3 repeats outputPlasmid 17p5x-UAS-YFP5 repeats outputPlasmid 18p8x-UAS-YFP8 repeats outputPlasmid 19p14x-UAS-YFP14 repeats outputPlasmid 20pCMV-ΔR8.91Lentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocSWT activation input regulated by SSX1 promoterPlasmid 25pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 26pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-14x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by	Diaconid 16		2 reports output
Plasmid 17DSX-DAS-TFPS Tepeats OutputPlasmid 18p8x-UAS-YFP8 repeats outputPlasmid 19p14x-UAS-YFP14 repeats outputPlasmid 20pCMV-ΔR8.91Lentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocSWT activation input regulated by SSX1 promoterPlasmid 25pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 26pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by	Plasmid 17		
Plasmid 18pox-0AS-TFPa Tepeats outputPlasmid 19p14x-UAS-YFP14 repeats outputPlasmid 20pCMV-ΔR8.91Lentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocSWT activation input regulated by SSX1Plasmid 25pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1Plasmid 26pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by	Plasmid 19		8 repeats output
Plasmid 19p14x-0A3-TFP14 Tepeats outputPlasmid 20pCMV-ΔR8.91Lentivirus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocSWT activation input regulated by SSX1 promoterPlasmid 25pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 26pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by	Plasmid 10		14 repeats output
Plasmid 20pCMV-ZAR8.91Leftivitus proteins Addgene #2221Plasmid 21pCMV-VSV-GLentivirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocSWT activation input regulated by SSX1 promoterPlasmid 25pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 26pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by	Plasmid 20		Lontivirus protoins. Addgono #2221
Plasmid 21pCMV-VSV-GLefttvirus envelope Addgene #8454Plasmid 22pFUGW-hUbC-CFPConstitutive CFP (Lentivirus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocSWT activation input regulated by SSX1 promoterPlasmid 25pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 26pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by CMV promoter Addgene#51957	Plasmid 21		Lentivirus proteins <u>Addgene #2221</u>
Plasmid 22pFUGW-HOBC-CFPConstitutive CFP (Lefitivitus)Plasmid 23pFUGW-hUbC-mKate2Constitutive mKate2 (Lentivirus)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocSWT activation input regulated by SSX1 promoterPlasmid 25pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 26pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by CMV promoter Addgene#51957	Plasmid 22		Constitutive CED (Lontivirus)
Plasmid 23pFUGW-INDEC-INKATE2Constitutive inkate2 (Lefitivities)Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocSWT activation input regulated by SSX1 promoterPlasmid 25pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 26pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by CMV promoter Addgene#51957	Plasmid 22	pFUGW-NUDC-CFP	Constitutive CFP (Lefitivirus)
Plasmid 24pFUGW-SSX1-NLS-VP16AD-DocSW1 activation input regulated by SSX1 promoterPlasmid 25pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 26pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by CMV promoter Addgene#51957	Plasifilu 23	progw-nobe-mkatez	WT activation input regulated by SSV1
Plasmid 25pFUGW-SSX1-NLS-VP16AD-DocS102Mutant activation input regulated by SSX1 promoterPlasmid 26pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by CMV promoter Addgene#51957	Plasmid 24	pFUGW-SSX1-NLS-VP16AD-DocS	wir activation input regulated by SSX1
Plasmid 25pFUGW-SSX1-NLS-VP16AD-DocS102Inducant activation input regulated by SSX1 promoterPlasmid 26pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by CMV promoter Addgene#51957			Mutant activation input regulated by SSX1
Plasmid 26pFUGW-H2A1-Gal4BD-Coh2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by CMV promoter Addgene#51957	Plasmid 25	pFUGW-SSX1-NLS-VP16AD-DocS102	promotor
Plasmid 20pF0GW-H2A1-Gal4BD-Coll2Binding input regulated by H2A1 promoterPlasmid 27pFUGW-3x-UAS-TK1-2A-YFP3 repeats output with HSV-TK1 and YFPPlasmid 28pFUGW-5x-UAS-TK1-2A-YFP5 repeats output with HSV-TK1 and YFPPlasmid 29pFUGW-14x-UAS-TK1-2A-YFP14 repeats output with HSV-TK1 and YFPPlasmid 30pFUGW-H1pFUGW-H1 empty vector Addgene #25870Plasmid 31pcDNA3-SiriusConstitutive Sirius expression regulated by	Dlacmid 26	DELIGW H2A1 COLARD Cob2	Pinding input regulated by H2A1 promotor
Plasmid 27 pFUGW-5x-UAS-TK1-2A-TFP STepeads output with HSV-TK1 and TFP Plasmid 28 pFUGW-5x-UAS-TK1-2A-YFP 5 repeats output with HSV-TK1 and YFP Plasmid 29 pFUGW-14x-UAS-TK1-2A-YFP 14 repeats output with HSV-TK1 and YFP Plasmid 30 pFUGW-H1 pFUGW-H1 empty vector Addgene #25870 Plasmid 31 pcDNA3-Sirius Constitutive Sirius expression regulated by	Plasmid 27		3 repeats output with HSV-TK1 and VEP
Plasmid 20 pF0GW-3X-0AS-TK1-2A-TFP STepeats output with HSV-TK1 and TFP Plasmid 29 pFUGW-14x-UAS-TK1-2A-YFP 14 repeats output with HSV-TK1 and YFP Plasmid 30 pFUGW-H1 pFUGW-H1 empty vector Addgene #25870 Plasmid 31 pcDNA3-Sirius Constitutive Sirius expression regulated by	Plasmid 29		5 repeats output with HSV TK1 and YED
Plasmid 30 pFUGW-14X-0A3-IN1-2A-TFF 14 Tepeats output with HSV-TK1 and YFF Plasmid 30 pFUGW-H1 pFUGW-H1 empty vector Addgene #25870 Plasmid 31 pcDNA3-Sirius Constitutive Sirius expression regulated by CMV promoter Addgene#51957 CMV promoter Addgene#51957	Placmid 20		14 repeats output with HSV-TK1 and VED
Plasmid 31 pcDNA3-Sirius Constitutive Sirius expression regulated by CMV promoter Addgene#51957	Placmid 20	pi 00w-14x-0A3-1K1-2A-1FF	nELIGW-H1 empty vector Addgene #25870
Plasmid 31 pcDNA3-Sirius Constitutive Sirius expression regulated by CMV promoter Addgene#51957		pi 0010-111	Constitutive Sirius expression regulated by
	Plasmid 31	pcDNA3-Sirius	CMV promoter Addgepe#51957

				Inputs		Binding	
Figure	Cell type	Design	Plasmids #	Promoters	DocS	site	Output
•		•		(AD, BD)	derivative	repeats	•
	HCT 116	5-WT	1,4,13,17	CycD1, CycD1	WT	5	YFP
26.4	HCT 116	5-WT	1,4,15,17	CycD1, H2A1	WT	5	YFP
2 D, C	HCT 116	5-WT	1,6,13,17	H2A1, CycD1	WT	5	YFP
	HCT 116	5-WT	1,6,15,17	H2A1, H2A1	WT	5	YFP
	HCT 116	5-WT	1,4,13,17	CycD1, CycD1	WT	5	YFP
	HCT 116	5-WT	1,4,14,17	CycD1, SSX1	WT	5	YFP
	HCT 116	5-WT	1,4,15,17	CycD1, H2A1	WT	5	YFP
2 d, e	HCT 116	5-WT	1,5,13,17	SSX1, CycD1	WT	5	YFP
and	HCT 116	5-WT	1,5,14,17	SSX1, SSX1	WT	5	YFP
S2-4	HCT 116	5-WT	1,5,15,17	SSX1, H2A1	WT	5	YFP
	HCT 116	5-WT	1,6,13,17	H2A1, CycD1	WT	5	YFP
	HCT 116	5-WT	1,6,14,17	H2A1, SSX1	WT	5	YFP
	HCT 116	5-WT	1,6,15,17	H2A1, H2A1	WT	5	YFP
	HCT 116	3-WT	1,6,15,16	H2A1, H2A1	WT	3	YFP
3	HCT 116	5-WT	1,6,15,17	H2A1, H2A1	WT	5	YFP
a, b, c	HCT 116	8-WT	1,6,15,18	H2A1, H2A1	WT	8	YFP
	HCT 116	14-WT	1,6,15,19	H2A1, H2A1	WT	14	YFP
	HCT 116	3-WT	1,4,13,16	CycD1, CycD1	WT	3	YFP
	HCT 116	3-WT	1,4,14,16	CycD1, SSX1	WT	3	YFP
	HCT 116	3-WT	1,4,15,16	CycD1, H2A1	WT	3	YFP
	HCT 116	3-WT	1,5,13,16	SSX1, CycD1	WT	3	YFP
	HCT 116	3-WT	1,5,14,16	SSX1, SSX1	WT	3	YFP
	HCT 116	3-WT	1,5,15,16	SSX1, H2A1	WT	3	YFP
	HCT 116	3-WT	1,6,13,16	H2A1, CycD1	WT	3	YFP
	HCT 116	3-WT	1,6,14,16	H2A1, SSX1	WT	3	YFP
	HCT 116	3-WT	1,6,15,16	H2A1, H2A1	WT	3	YFP
	HCT 116	5-WT	1,4,13,17	CycD1, CycD1	WT	5	YFP
	HCT 116	5-WT	1,4,14,17	CycD1, SSX1	WT	5	YFP
3 d, e,	HCT 116	5-WT	1,4,15,17	CycD1, H2A1	WT	5	YFP
f and	HCT 116	5-WT	1,5,13,17	SSX1, CycD1	WT	5	YFP
S5	HCT 116	5-WT	1,5,14,17	SSX1, SSX1	WT	5	YFP
	HCT 116	5-WT	1,5,15,17	SSX1, H2A1	WT	5	YFP
	HCT 116	5-WT	1,6,13,17	H2A1, CycD1	WT	5	YFP
	HCT 116	5-WT	1,6,14,17	H2A1, SSX1	WT	5	YFP
	HCT 116	5-WT	1,6,15,17	H2A1, H2A1	WT	5	YFP
	HCT 116	8-WT	1,4,13,18	CycD1, CycD1	WT	8	YFP
	HCT 116	8-WT	1,4,14,18	CycD1, SSX1	WT	8	YFP
	HCT 116	8-WT	1,4,15,18	CycD1, H2A1	WT	8	YFP
	HCT 116	8-WT	1,5,13,18	SSX1, CycD1	WT	8	YFP
	HCT 116	8-WT	1,5,14,18	SSX1, SSX1	WT	8	YFP
	HCT 116	8-WT	1,5,15,18	SSX1, H2A1	WT	8	YFP
	HCT 116	8-WT	1,6,13,18	H2A1, CycD1	WT	8	YFP

Table S5: Plasmid used for experiments shown in the different figures

				Inputs	Docs	Binding	
Figure	Cell type	Design	Plasmids #	Promoters	dorivativo	site	Output
				(AD, BD)	derivative	repeats	
	HCT 116	8-WT	1,6,14,18	H2A1, SSX1	WT	8	YFP
	HCT 116	8-WT	1,6,15,18	H2A1, H2A1	WT	8	YFP
	HCT 116	14-WT	1,4,13,19	CycD1, CycD1	WT	14	YFP
	HCT 116	14-WT	1,4,14,19	CycD1, SSX1	WT	14	YFP
3 d, e,	HCT 116	14-WT	1,4,15,19	CycD1, H2A1	WT	14	YFP
f and	HCT 116	14-WT	1,5,13,19	SSX1, CycD1	WT	14	YFP
S5	HCT 116	14-WT	1,5,14,19	SSX1, SSX1	WT	14	YFP
	HCT 116	14-WT	1,5,15,19	SSX1, H2A1	WT	14	YFP
	HCT 116	14-WT	1,6,13,19	H2A1, CycD1	WT	14	YFP
	HCT 116	14-WT	1,6,14,19	H2A1, SSX1	WT	14	YFP
	HCT 116	14-WT	1,6,15,19	H2A1, H2A1	WT	14	YFP
	HCT 116	5-WT	1,6,15,17	H2A1, H2A1	WT	5	YFP
4 b	HCT 116	5-M15	1,9,15,17	H2A1, H2A1	M15	5	YFP
	HCT 116	5-M102	1,12,15,17	H2A1, H2A1	M102	5	YFP
	HCT 116	5-M102	1,10,13,17	CycD1, CycD1	M102	5	YFP
	HCT 116	5-M102	1,10,14,17	CycD1, SSX1	M102	5	YFP
	HCT 116	5-M102	1,10,15,17	CycD1, H2A1	M102	5	YFP
	HCT 116	5-M102	1,11,13,17	SSX1, CycD1	M102	5	YFP
4 c,d	HCT 116	5-M102	1,11,14,17	SSX1, SSX1	M102	5	YFP
	HCT 116	5-M102	1,11,15,17	SSX1, H2A1	M102	5	YFP
	HCT 116	5-M102	1,12,13,17	H2A1, CycD1	M102	5	YFP
	HCT 116	5-M102	1,12,14,17	H2A1, SSX1	M102	5	YFP
	HCT 116	5-M102	1,12,15,17	H2A1, H2A1	M102	5	YFP
	HCT 116	5-WT	1,4,13,17	CycD1, CycD1	WT	5	YFP
	HCT 116	5-WT	1,4,14,17	CycD1, SSX1	WT	5	YFP
	HCT 116	5-WT	1,4,15,17	CycD1, H2A1	WT	5	YFP
	HCT 116	5-WT	1,5,13,17	SSX1, CycD1	WT	5	YFP
	HCT 116	5-WT	1,5,14,17	SSX1, SSX1	WT	5	YFP
	HCT 116	5-WT	1,5,15,17	SSX1, H2A1	WT	5	YFP
	HCT 116	5-WT	1,6,13,17	H2A1, CycD1	WT	5	YFP
	HCT 116	5-WT	1,6,14,17	H2A1, SSX1	WT	5	YFP
	HCT 116	5-WT	1,6,15,17	H2A1, H2A1	WT	5	YFP
56	HCT 116	5-M15	1,7,13,17	CycD1, CycD1	M15	5	YFP
50	HCT 116	5-M15	1,7,14,17	CycD1, SSX1	M15	5	YFP
	HCT 116	5-M15	1,7,15,17	CycD1, H2A1	M15	5	YFP
	HCT 116	5-M15	1,8,13,17	SSX1, CycD1	M15	5	YFP
	HCT 116	5-M15	1,8,14,17	SSX1, SSX1	M15	5	YFP
	HCT 116	5-M15	1,8,15,17	SSX1, H2A1	M15	5	YFP
	HCT 116	5-M15	1,9,13,17	H2A1, CycD1	M15	5	YFP
	HCT 116	5-M15	1,9,14,17	H2A1, SSX1	M15	5	YFP
	HCT 116	5-M15	1,9,15,17	H2A1, H2A1	M15	5	YFP
	HCT 116	5-M102	1,10,13,17	CycD1, CycD1	M102	5	YFP
	HCT 116	5-M102	1,10,14,17	CycD1, SSX1	M102	5	YFP

				Inputs	DocS	Binding	
Figure	Cell type	Design	Plasmids #	Promoters	derivative	site	Output
				(AD, BD)	activative	repeats	
	HCT 116	5-M102	1,10,15,17	CycD1, H2A1	M102	5	YFP
	HCT 116	5-M102	1,11,13,17	SSX1, CycD1	M102	5	YFP
	HCT 116	5-M102	1,11,14,17	SSX1, SSX1	M102	5	YFP
S6	HCT 116	5-M102	1,11,15,17	SSX1, H2A1	M102	5	YFP
	HCT 116	5-M102	1,12,13,17	H2A1, CycD1	M102	5	YFP
	HCT 116	5-M102	1,12,14,17	H2A1, SSX1	M102	5	YFP
	HCT 116	5-M102	1,12,15,17	H2A1, H2A1	M102	5	YFP
S7	T/NEO - WI38	5-WT	1,5,15,31	SSX1, H2A1	WT	5	YFP
	T3-WI38	5-WT	1,5,15,31	SSX1, H2A1	WT	5	YFP
	T/NEO- WI38	5-M102	20,21,22,25,26 ,28	SSX1, H2A1	M102	5	TK1-HSV, YFP
	T/NEO - WI38	3-WT	20,21,22,24,26 ,27	SSX1, H2A1	WT	3	TK1-HSV, YFP
-	T/NEO- WI38	5-WT	20,21,22,24,26 ,28	SSX1, H2A1	WT	5	TK1-HSV, YFP
5	T3-WI38	5-M102	20,21,23,25,26 ,28	SSX1, H2A1	M102	5	TK1-HSV, YFP
	T3-WI38	3-WT	20,21,23,24,26	SSX1, H2A1	WT	3	TK1-HSV, YFP
	T3-WI38	5-WT	20,21,23,24,26 ,28	SSX1, H2A1	wт	5	TK1-HSV, YFP
	T/NEO- WI38	5-M102	20,21,22,25,26 ,28	SSX1, H2A1	M102	5	TK1-HSV, YFP
	T/NEO - WI38	3-WT	20,21,22,24,26 ,27	SSX1, H2A1	WT	3	TK1-HSV, YFP
	T/NEO- WI38	5-WT	20,21,22,24,26 ,28	SSX1, H2A1	WT	5	TK1-HSV, YFP
6	T/NEO - WI38	No output	20,21,22,24,26	SSX1, H2A1	WT	-	No
D	T3-WI38	5-M102	20,21,23,25,26 ,28	SSX1, H2A1	M102	5	TK1-HSV, YFP
	T3-WI38	3-WT	20,21,23,24,26 ,27	SSX1, H2A1	WT	3	TK1-HSV, YFP
	T3-WI38	5-WT	20,21,23,24,26 ,28	SSX1, H2A1	WT	5	TK1-HSV, YFP
	T3-WI38	No output	20,21,23,24,26	SSX1, H2A1	WT	-	No

10. Table S6: Key sequences used in this study

Name	Sequence
PGK	AATTCTACCGGGTAGGGGAGGCGCTTTTCCCAAGGCAGTCTGGAGCATGCGCTTTAGCA
promoter	GCCCCGCTGGGCACTTGGCGCTACACAAGTGGCCTCTGGCCTCGCACACATTCCACATCC
	ACCGGTAGGCGCCAACCGGCTCCGTTCTTTGGTGGCCCCTTCGCGCCACCTTCTACTCCTC
	CCCTAGTCAGGAAGTTCCCCCCGCCCCGCAGCTCGCGTCGTGCAGGACGTGACAAATGG
	AAGTAGCACGTCTCACTAGTCTCGTGCAGATGGACAGCACCGCTGAGCAATGGAAGCGG
	GTAGGCCTTTGGGGCAGCGGCCAATAGCAGCTTTGCTCCTTCGCTTTCTGGGCTCAGAGG
	CTGGGAAGGGGTGGGTCCGGGGGGGGGGGGGGGGGGGGG
	CGCCCGAAGGTCCTCCGGAGGCCCGGCATTCTGCACGCTTCAAAAGCGCACGTCTGCCGC
	GCTGTTCTCCTCTTCCTCCGGGCCTTTCGACCTGCA
hUbC	GCGCCGGGTTTTGGCGCCTCCCGCGGGCGCCCCCCTCCTC
promoter	AGACGAAGGGCGCAGGAGCGTTCCTGATCCTTCCGCCCGGACGCTCAGGACAGCGGCCC
	GCTGCTCATAAGACTCGGCCTTAGAACCCCAGTATCAGCAGAAGGACATTTTAGGACGGG
	ACTTGGGTGACTCTAGGGCACTGGTTTTCTTTCCAGAGAGCGGAACAGGCGAGGAAAAG
	TAGTCCCTTCTCGGCGATTCTGCGGAGGGATCTCCGTGGGGCGGTGAACGCCGATGATTA
	TATAAGGACGCGCCGGGTGTGGCACAGCTAGTTCCGTCGCAGCCGGGATTTGGGTCGCG
	GTTCTTGTTGTGGATCGCTGTGATCGTCACTTGGTGAGTTGCGGGCTGCTGGGCTGGCC
	GGGGCTTTCGTGGCCGCCGGGCCGCTCGGTGGGACGGAAGCGTGTGGAGAGACCGCCA
	AGGGCTGTAGTCTGGGTCCGCGAGCAAGGTTGCCCTGAACTGGGGGGTTGGGGGGGAGCG
	CACAAAATGGCGGCTGTTCCCGAGTCTTGAATGGAAGACGCTTGTAAGGCGGGCTGTGA
	GGTCGTTGAAACAAGGTGGGGGGGCATGGTGGGCGGCAAGAACCCAAGGTCTTGAGGCC
	TTCGCTAATGCGGGAAAGCTCTTATTCGGGTGAGATGGGCTGGGGCACCATCTGGGGAC
	CCTGACGTGAAGTTTGTCACTGACTGGAGAACTCGGGTTTGTCGTCTGGTTGCGGGGGC
	GGCAGTTATGCGGTGCCGTTGGGCAGTGCACCCGTACCTTTGGGAGCGCGCGC
	GTGTCGTGACGTCACCCGTTCTGTTGGCTTATAATGCAGGGTGGGGCCACCTGCCGGTAG
	GTGTGCGGTAGGCTTTTCTCCGTCGCAGGACGCAGGGTTCGGGCCTAGGGTAGGCTCTC
	CTGAATCGACAGGCGCCGGACCTCTGGTGAGGGGAGGGATAAGTGAGGCGTCAGTTTCT
	TTGGTCGGTTTTATGTACCTATCTTCTTAAGTAGCTGAAGCTCCGGTTTTGAACTATGCGCT
	CGGGGTTGGCGAGTGTGTTTTGTGAAGTTTTTTAGGCACCTTTTGAAATGTAATCATTTGG
	GTCAATATGTAATTTTCAGTGTTAGACTAGTAAAGCTTCTGCAGGTCGACTCTAGAAAATT
	GTCCGCTAAATTCTGGCCGTTTTTGGCTTTTTGTTAGAC
CyclinD1	GGAACCTTCGGTGGTCTTGTCCCAGGCAGAGGGGACTAATATTTCCAGCAATTTAATTTCT
promoter	TTTTTAATTAAAAAAAATGAGTCAGAATGGAGATCACTGTTTCTCAGCTTTCCATTCAGAG
	GTGTGTTTCTCCCGGTTAAATTGCCGGCACGGGAAGGGAGGG
	CCGCAAGGACCGACTGGTCAAGGTAGGAAGGCAGCCCGAAGAGTCTCCAGGCTAGAAG
	GACAAGATGAAGGAAATGCTGGCCACCATCTTGGGCTGCTGCTGGAATTTTCGGGCATTT
	ATTITATTITATTITTGAGCGAGCGCATGCTAAGCTGAAATCCCTTTAACTITTAGGGTTA
	CCCCCTTGGGCATTTGCAACGACGCCCCTGTGCGCCGGAATGAAACTTGCACAGGGGTTG
	TGTGCCCGGTCCTCCCCGTCCTTGCATGCTAAATTAGTTCTTGCAATTTACACGTGTTAATG
	AAAATGAAAGAAGATGCAGTCGCTGAGATTCTTTGGCCGTCTGTCCGCCCGTGGGTGCCC
	TCGTGGCGTTCTTGGAAATGCGCCCATTCTGCCGGCTTGGATATGGGGTGTCGCCGCGCC
	CCAGTCACCCCTTCTCGTGGTCTCCCCAGGCTGCGTGTGGCCTGCCGGCCTTCCTAGTTGT
	CCCCTACTGCAGAGCCACCTCCACCTCACCCCCTAAATCCCGGGGGACCCACTCGAGGCG
	GACGGGGGCCCCCTGCACCCCTCTTCCCTGGCGGGGAGAAAGGCTGCAGCGGGGCGATTT
	GLATITICIAIGAAAACCGGACTACAGGGGCAACTCCGCCGCAGGGCAGG
	TAACAACAGTAACGTCACACGGGGGCGCGCCCCTCAGC

SSX1	GGGTAGCCAGATCATGGCTCACTGCAACCTCGTACTCCTGGGCTCAAGCTATCCTCCTACC
promoter	TCAGCCTCCTGAGTAACGGACTACAGGCACACCACCCCCCCC
•	TTTGTAGAGAAAAGAGACAGGGTATTGCTCTGTTGCCCAGGGTGGGGTGCAGTGGCATG
	ATCATGGCTCACTGCAACCTCTGCCTCCCAGGTTCAAGTGATCCTCCAGCTGTGGCCTCCC
	TAAGTGCTGGGATTACAACCGTGAGCCGCCGCACCGGCCCAAATTTCTTACGTCACTACA
	GAGTTCCTAGGAAAAAATCCCATACCTGAAAAAGATAGAAACTGACAGGAAGGA
	GATGATGACCTGCTTCATATACACTCCTTATTAAAACTGGATAACAATGCACCACCGAGGA
	GGTGGGGAGGGATAGGAAAAATGAAAAGAGAAAATCAGCGCATGCGTACTCTGATTTG
	GGAAGACTCCAAAGAGAAAATCAGAGCATGCGTACTCTGAACTTGGAGTAGCCAATCCC
	AGGGGATGCTTTAGGCGGGAAAGTCAGAGTTTCTGCCTCCATTTTGAGAAGGTTCTGTCC
	CTAGAGCCTAGACTGATAGACCCCACATCAGCTTGGCTTGTCCCGCCTACTGTTCTGACTT
	CTGATTGGCCAGATGGAGTTCACTAACTGCCCTGATTGGTCCATCATCCTGGAGCAATGA
	CATTGCAGAATATTTTCTCCTCCTCCAGCCACACTTTGTCACCAACTGCTGCCAACTCGCCA
	CCACTGCTGCCGACCTCGCAACCACTGCTTTGTCTCTGGCGCGCCCCTCAGC
H2A1	GGTGAGTTAATAGCTCTGCGCGGAGGGAGGGGGATGGAGAGGGGGTCCTTGATCGCCTC
promoter	CCAACATTACTGAGCTACATCACCTGAGCAGTTTCTACCCCGATTTCTGTAACGAGCAGTT
	TTTCTCGTTCTGTGCCGGCGCGCGCGCGCGCACACACACA
	TCAGATTCGGCCGCACCCGGCAACCGCTAGGGTGCATGGAGACACATTAGGTTACATAAC
	CCTTCACCGTGTTCGAAACCCTTTCTTGATCGTGTGGGTGG
	TTCAGGACGCCGAGGAACGCCTCACTTGGAGCTGGTGTACTTGGTGACAGCCTTGGTGCC
	CTCGGACACGGCGTGCTTGGCCAGCTCGCCGGGCAGCAGCAGGCGAACGGCCGTCTGCA
	CTTCGCGGGACGTGATGGTGGAGCGCTTGTTGTAGTGTGCCAGGCGGGAGGCCTCGCTG
	GCGATGCGCTCGAAGATGTCATTGACGAAGGAGTTCATGATGCCCATGGCCTTGGACGA
	GATGCCGGTGTCGGGGTGCACCTGCTTCAGCACCTTGTACACGTAGATAGA
	CTTGCGGCCGCGCTTGCGCTTCTTGCCGTCCTTCTTCTGTGCCTTGGTGACAGCCTTTTTAG
	AACCCTTCTTGGGCGCAGGAGCCGATTTGGACGGGTCTGGCATGATGGCTGAGTCTCTCC
	AAACAGAAACGCGCGCGCGCCCCGGAGTAACTCTATTTGTACGTTTTGTATTCAAATGAAGG
	CTCAGGATTTGCTCACTTCTGATTGGATCAAACGTTGTTCTACGTCATCGCTGGGAAAGGA
	ATACGCAAATTAGGAGTGCCAGGTTCTTTTTCTGATTGGCTACCATAGCCATCCAATCGAA
	CGCCGCGGTCTAGCCTACCTCTGTACCATACATAAGGGCTCGCTGGCCTTCACTGCCCTCT
	TGTTTTTAGTCTCGCTTTTCGGTTGCCGTTGTCTTTTTCCTTGACTCGGAAGGCGCGCCCC
	TCAGC
VP16AD	TCGACGGCCCCCCGACCGATGTCAGCCTGGGGGACGAGCTCCACTTAGACGGCGAGGA
	CGTGGCGATGGCGCATGCCGACGCGCTAGACGATTTCGATCTGGACATGTTGGGGGACG
	GGGATTCCCCGGGTCCGGGA
Gal4BD	ATGAAGCTACTGTCTTCTATCGAACAAGCATGCGATATTTGCCGACTTAAAAAGCTCAAGT
	GCTCCAAAGAAAAACCGAAGTGCGCCAAGTGTCTGAAGAACAACTGGGAGTGTCGCTAC
	TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGGGCACATCTGACAGAAGTGGAATCAAG
	GCTAGAAAGACTGGAACAGCTATTTCTACTGATTTTTCCTCGAGAAGACCTTGACATGATT
	TTGAAAATGGATTCTTTACAGGATATAAAAGCATTGTTAACAGGATTATTTGTACAAGATA
	ATGTGAATAAAGATGCCGTCACAGATAGATTGGCTTCAGTGGAGACTGATATGCCTCTAA
	CATTGAGACAGCATAGAATAAGTGCGACATCATCATCGGAAGAGAGTAGTAACAAAGGT
	CAAAGACAGTTGACTGTATCG
DocS-WT	TCTACTAAATTATACGGCGACGTCAATGATGACGGAAAAGTTAACTCAACTGACGCTGTA
	GCATTGAAGAGATATGTTTTGAGATCAGGTATAAGCATCAACACTGACAATGCCGATTTG
	AATGAAGACGGCAGAGTTAATTCAACTGACTTAGGAATTTTGAAGAGATATATTCTCAAA
	GAAATAGATACATTGCCGTACAAGAAC
DocS15	TCTACTAAATTATACGGCGACGTCAATGATGACGGAAAAGTTAACTCAACTGACGCTGTA
	GCATTGAAGAGATATGTTTTGAGATCAGGTATAAGCATCAACACTGACAATGCCGCTTTG
	AATGAAGACGGCAGAGTTAATTCAACTGCCTTAGGAATTTTGAAGAGATATATTCTCAAA
	GAAATAGATACATTGCCGTACAAGAAC

DocS102	TCTACTAAATTATACGGCGACGTCAATGATGACGGAAAAGTTAACTCAACTGCCGCTGTA
	GCATTGAAGAGATATGTTTTGAGATCAGGTATAAGCATCAACACTGACAATGCCGATTTG
	AATGAAGACGGCAGAGTTAATTCAACTGCCTTAGGAATTTTGAAGAGATATATTCTCAAA
	GAAATAGATACATTGCCGTACAAGAAC
Coh2	GTGGTAGTAGAAATTGGCAAAGTTACGGGATCTGTTGGAACTACAGTTGAAATACCTGTA
	TATTTCAGAGGAGTTCCATCCAAAGGAATAGCAAACTGCGACTTTGTGTTCAGATATGAT
	CCGAATGTATTGGAAATTATAGGGATAGATCCCGGAGACATAATAGTTGACCCGAATCCT
	ACCAAGAGCTTTGATACTGCAATATATCCTGACAGAAAGATAATAGTATTCCTGTTTGCGG
	AAGACAGCGGAACAGGAGCGTATGCAATAACTAAAGACGGAGTATTTGCAAAAATAAGA
	GCAACTGTAAAATCAAGTGCTCCGGGCTATATTACTTTCGACGAAGTAGGTGGATTTGCA
	GATAATGACCTGGTAGAACAGAAGGTATCATTTATAGACGGTGGTGTTAACGTT
NLS	CCAAAAAGAAGAAGAAAGGTAGAT
2A peptide	GGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACC
	CTGGACCT
3xUAS	CGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGACTCGAGCGGAGTACTGTCCTCCG
promoter+	AAGACGCTAGCGGGGGGGCTATAAAAGGGGGGGGGGGGG
lateADEp	
5xUAS	CGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGACTCGAGCGGAGTACTGTCCTCCG
promoter+	ATCGGAGTACTGTCCTCCGCGAATTCCGGAGTACTGTCCTCCGAAGACGCTAGCGGGGG
lateADEp	GCTATAAAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
8xUAS	CGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGACTCGAGCGGAGTACTGTCCTCCG
promoter+	ATCGGAGTACTGTCCTCCGCGAATTCCGGAGTACTGTCCTCCGAAGACGCTAGACGGAGT
lateADEp	ACTGTCCTCCGAGCGGAGTACTGTCCTCCGACTCGAGCGGAGTACTGTCCTCCGGCTAGC
	GGGGGGCTATAAAAGGGGGGGGGGGGGGGGCGTTCGTCCTCACTCT
14xUAS	CGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGACTCGAGCGGAGTACTGTCCTCCG
promoter+	ATCGGAGTACTGTCCTCCGCGAATTCCGGAGTACTGTCCTCCGAAGACGCTAGACGGAGT
lateADEp	ACTGTCCTCCGAGCGGAGTACTGTCCTCCGACTCGAGCGGAGTACTGTCCTCCGGCTAGA
	CGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGACTCGAGCGGAGTACTGTCCTCCG
	GCTAGACGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGACTCGAGCGGAGTACTGT
	CCTCCGGCTAGCGGGGGGCTATAAAAGGGGGGGGGGGGG
lateADEp	GCTAGCGGGGGGCTATAAAAGGGGGGGGGGGGGGGCGTTCGTCCTCACTCT
TK1	ATGGCTTCGTACCCCTGCCATCAACACGCGTCTGCGTTCGACCAGGCTGCGCGTTCTCGC
	GGCCATAGCAACCGACGTACGGCGTTGCGCCCTCGCCGGCAGCAAGAAGCCACGGAAGT
	CCGCCTGGAGCAGAAAATGCCCACGCTACTGCGGGTTTATATAGACGGTCCTCACGGGAT
	GGGGAAAACCACCACCACGCAACTGCTGGTGGCCCTGGGTTCGCGCGACGATATCGTCT
	ACGTACCCGAGCCGATGACTTACTGGCAGGTGCTGGGGGGCTTCCGAGACAATCGCGAAC
	ATCTACACCACACACACCGCCTCGACCAGGGTGAGATATCGGCCGGGGACGCGGCGGT
	GGTAATGACAAGCGCCCAGATAACAATGGGCATGCCTTATGCCGTGACCGACGCCGTTCT
	GGCTCCTCATATCGGGGGGGGGGGGGGGGGGGGGGGGGG
	CATCTTCGACCGCCATCCCATCGCCGCCCTCCTGTGCTACCCGGCCGCGCGATACCTTATG
	GGCAGCATGACCCCCCAGGCCGTGCTGGCGTTCGTGGCCCTCATCCCGCCGACCTTGCCC
	GGCACAAACATCGTGTTGGGGGGCCCTTCCGGAGGACAGACA
	ACGCCAGCGCCCCGGCGAGCGGCTTGACCTGGCTATGCTGGCCGCGATTCGCCGCGTTTA
	CGGGCTGCTTGCCAATACGGTGCGGTATCTGCAGGGCGGCGGGGCGGGC
	TGGGGACAGCTTTCGGGGACGGCCGTGCCGCCCAGGGTGCCGAGCCCCAGAGCAACG
	CGGGCCCACGACCCCATATCGGGGACACGTTATTTACCCTGTTTCGGGCCCCCGAGTTGC
	TGGCCCCCAACGGCGACCTGTACAACGTGTTTGCCTGGGCCTTGGACGTCTTGGCCAAAC
	GCCTCCGTCCCATGCACGTCTTTATCCTGGATTACGACCAATCGCCCGCC
	ACGCCCTGCTGCAACTTACCTCCGGGATGGTCCAGACCCACGTCACCACCCCCGGCTCCAT
	ACCGACGATCTGCGACCTGGCGCGCACGTTTGCCC

Sirius	ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGG
	ACGGCGACGTAAACGGCCACAGGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCAC
	CTACGGCAAGCTGACCCTGAAGCTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCC
	CACCCTCGTGACCACCTGCAATTCGGCGTGCTGTGCTTCGCCCGCTACCCCGACCACATG
	AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGTACCATC
	TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACAC
	CCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGG
	GGCACAAGCTGGAGTACAACGGGATAAGCTCAAACGTATATATCACCGCCGACAAGCAG
	AAGAACGGCATCAAGGCCCACTTCAAGATCCGCCACAACATCGAGGACGGCGGCGTGCA
	GCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCCGCGA
	CAACCACTACCTGAGCGTCCAGTCCAAGCTGAGCAAAGACCCCCAACGAGAAGCGCGATC
	ACATGGTCCTGCTGGAGTCCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTG
	TACAAGTAA
CEP	ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGG
0.1	
VED	
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGTGCCCTGGAGCACCC
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGTGCCCTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGTGCCCTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGTGCCCTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAATGGCAGCGTGTACAA
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGTGCCCTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCGGCCAAGAATC
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGTGCCCTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCAGGACACC TGGAGTTCAATTTCACCCCCCACTGCCTGTACATCTGGGGCGATCAGGCCAAGAATC
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGTGCCCTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCTGGGCAAGAATC TGGAGTTCAATTTCACCCCCCACTGCCTGTACATCTGGGGCGATCAGGCCAATCACGGCC TGAAGAGCGCCTTCAAGATCTGCCAGGATCGCCGGCGATCAGGCCAATCACGGCC
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGTGCCCTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCAGGACACC TGGAGTTCAATTTCACCCCCCACTGCCTGTACATCTGGGGCGATCAGGCCAATCACGGCC TGAAGAGCGCCTTCAAGATCTGCCAGAGATCGCCGGCGAGCAAGGCCATCACGGCC TGAAGAGCGCCTTCAAGATCTGCCACGAGATCGCCGGCAGCAAGGGCGATTTCATCGTG GCCGATCACACCCAGATGAATACCCCCATCGGCGGCGGCGCCCCGTGCACGTGCCCGAGTAC
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGTGCCTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCAGGACAGCATCAC TGGAGTTCAATTTCACCCCCCACTGCCTGTACATCTGGGGCGATCAGGCCAATCACGGCC TGAAGAGCGCCTTCAAGATCGCCACGAGATCGCCGGCGATCAGGCCAATCACGGCC TGAAGAGCGCCTTCAAGATCTGCCACGAGATCGCCGGCGACCAAGGGCGATTTCATCGTG GCCGATCACACCCAGATGAATACCCCCATCGGCGGCGGCCCCGTGCACGTGCCCGAGTAC CACCACATGAGCTAACACGTGAAGCTGAGCAAGGATGTGACCGATCACCGCGATAATAT
YFP	ATGAGCAGCGCCCCGCCCGCGCGCACGCCCCGCCCCGCC
YFP	ATGAGCAGCGCCCCGCCCGCGCGCGCCCCGCGCCCCGCGCCCCGCGC
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGTGCCCTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCTGGGCAAGAATC TGGAGTTCAATTTCACGCCCCACTGCCTGTACATCTGGGGCGATCAGGCCAATCACGGCC TGAAGAGCGCCTTCAAGATCGCCACGAGATCGCCGGCAGCAAGGGCGATTTCATCGTG GCCGATCACACCCAGATGAATACCCCCCATCGGCGGCGGCCCCGTGCACGTGCCCGAGTAC CACCACATGAGCTACCACGTGAAGCTGAGCAAGGATGTGACCGATCACCGCGATAATAT GAGCCTGACGGAGACCGTGCGCGCCGTGGATTGCCGCAAGACCTACCT
YFP mCherry	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGTGCCCTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCTGGGCAAGAATC TGGAGTTCAATTTCACCCCCCACTGCCTGTACATCTGGGGCGATCAGGCCAATCACGGCC TGAAGAGCGCCTTCAAGATCGCCAGAGATCGCCGGCAGCAAGGGCGATTTCATCGTG GCCGATCACACCCAGATGAATACCCCCATCGGCGGCGGCCCCGTGCACGTGCCCGAGTAC CACCACATGAGCTACCACGTGAAGCTGAGCAAGGATGTGACCGATCACCGCGATAATAT GAGCCTGACGGAGACCGTGCGCGCGCGCGCAGCAAGGACCTACCT
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGCGGTAGTGCCCGTGCCCTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCTGGGCAAGATC TGGAGTTCAATTTCACCCCCCACTGCCTGTACATCTGGGGCGATCAGGCCAATCACGGCC TGAAGAGCGCCTTCAAGATCGCCAGGGATCGCCGGCAGCAAGGGCGATTCATCGTG GCCGATCACACCCAGATGAATACCCCCATCGGCGGCGGCCCCGTGCACGGCGATCATCACGGCC TGAAGAGCGCCTTCAAGATCTGCCACGAGATCGCCGGCAGCAAGGGCGATTTCATCGTG GCCGATCACACCCAGATGAATACCCCCATCGGCGGCGGCCCCGTGCACGTGCCCGAGTAC CACCACATGAGCTACCACGTGAAGCTGAGCAAGGATGTGACCGATCACCGCGATAATAT GAGCCTGACGAGACCGTGCGCGCCGTGGATTGCCGCAAGACCTACCT
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGTGCCCTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCTGGGCAAGAATC TGGAGTTCAATTTCACCCCCCACTGCCTGTACATCTGGGGCGATCAGGCCAATCACGGCC TGAAGAGCGCCTTCAAGATCTGCCACGAGATCGCCGGCAGCAAGGGCGATTTCATCGTG GCCGATCACACCCAGATGAATACCCCCATCGGCGGCGGCCCCGTGCACGTGCCCGAGTAC CACCACATGAGCTACCACGTGAAGCTGAAGCTGAGCAAGGATGTGACCGATCACCGCGATAATAT GAGCCTGACGGAGACCGTGCGCGCCGTGGATTGCCGCAAGACCTACCT
YFP	ATGAGCAGCGGCGCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGGCGATGCCCAGGCCCC TGGTGACCACCCTGACCTACGGCGCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCTGGGCAAGAATC TGGAGTTCAATTTCACACCCCCACTGCCTGTACATCTGGGGCGATCAGGCCAAGAATC TGGAGTTCAATTTCACCCCCCACTGCCTGTACATCTGGGGCGACAGGCCAATCACGGCC TGAAGAGCGCCTTCAAGATCGCCACGAGATCGCCGGCAGCAAGGGCGATTCATCGTG GCCGATCACACCCAGATGAATACCCCCATCGGCGGCGGCCCCGTGCACGTGCCCGAGTAC CACCACATGAGCTACCACGTGAAGCTGAGCAAGGATGTGACCGATCACCGCGATAATAT GAGCCTGACGGAGACCGTGCGCGCCCCGTGGATTGCCGCAAGACCTACCT
YFP	ATGAGCAGCGGCGCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGGCGTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCTGGGCAAGAATC TGGAGTTCAATTTCACCCCCCACTGCCTGTACATCTGGGGCGATCAGGCCAATCACGGCC TGAAGAGCGCCTTCAAGATCGCCACGAGCTGCACGAGCGCAGCAAGAATC CGCGATCACACCCAGATCGCCACGAGATCGCCGGCAGCAAGGGCGATTCATCGTG GCCGATCACACCCAGATGAATACCCCCATCGGCGGCGGCCCCGTGCACGTGCCCGAGTAC CACCACATGAGCTACCACGTGAAGCTGAGCAAGGATGTGACCGATCACCGCGATAATAT GAGCCTGACGGAGACCGTGCGCGCGCGCAGCAAGGAGGCCACGTGCCCGAGAA GGTGCACATGGAGGCGAGGAGGATAACATGGCCACGAGACCTACCT
YFP	ATGAGCAGCGGCGCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGCCCGTGGCCCTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCTGGGCAAGAATC TGGAGTTCAATTTCACCCCCCACTGCCTGTACATCTGGGGCGATCAGGCCAATCACGGCC TGAAGAGCGCCTTCAAGATCGCCACGAGATCGCCGGCAGCAAGGACCTTCATCGTG GCCGATCACACCCAGATGAATACCCCCACGAGATCGCCGGCAGCAAGGGCGATTTCATCGTG GCCGATCACACCCAGATGAATACCCCCATCGGCGGCGGCCCCGTGCACGTGCCCGAGTAC CACCACATGAGCTACCACGTGAAGCTGAGCAAGGATGTGACCGATCACCGCGATAATAT GAGCCTGACGGAGACCGTGCGCGCCGTGGATTGCCGCAAGACCTACCT
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGGCGATGTGCCCGTGCCCTGGAGCACCC TGGTGACCACCCTGACCTACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCTGGGCAAGAATC TGGAGTTCAATTTCACGCCCCACTGCCTGTACATCTGGGGCGATCAGGCCAATCACGGCC TGAAGAGCGCCTTCAAGATCTGCCACGAGATCGCCGGCAGCGATCAGGCCAATCACGGCC TGAAGAGCGCCTTCAAGATCTGCCACGAGATCGCCGGCAGCAAGGGCGATTTCATCGTG GCCGATCACACCCAGATGAATACCCCCATCGGCGGCGGCCCCGTGCACGTGCCCGAGTAC CACCACATGAGCTACCACGTGAAGCTGAGCAAGGATGTGACCGATCACCGCGATAATAT GAGCCTGACGGAGACCGTGCGCGCGCGTGGATTGCCGCAAGACCTACCT
YFP	ATGAGCAGCGGCGCCCTGCTGTTCCACGGCAAGATCCCCTACGTGGAGAGAGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGGGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGCGGTAAGGGCCCCTGGAGCACCCC TGGTGACCACCCTGACGTCACGGCGCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCCGCGCCGAGGTGACCTTCGAGAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCTGGGCAAGAATC TGGAGTTCAATTTCAACCCCCACTGCCTGTACATCTGGGGCGACCAGGGCCAACAATCACGGCC TGAAGAGCGCCTTCAAGAATCGCCACGAGATCGCCGGCAGCAAGGACCC TGAAGAGCGCCTTCAAGATCTGCCACGAGATCGCCGGCAGCAAGGGCCAATCACGGCC TGAAGAGCGCCTTCAAGATCTGCCACGAGATCGCCGGCAGCAAGGGCCGATTACATCGTG GCCGATCACACCCAGATGAATACCCCCATCGGCGGCGGCCCCGTGCACGTGCCCGAGTAC CACCACATGAGCTACCACGTGAAGCTGAGCAAGGATGTGACCGATCACCGCGATAATAT GAGCCTGACGGAGACCGTGCGCGCGCGGCACCAGGGCCACGAGGCCGAGGCCACG ATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAA GGTGCACATGGAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAA GGTGCACATGGAGGGCGAGGCACCAGACCGCCAAGGTCGACGAGGCGAGGGCGAGG GGCCGCCCCTACGAAGGGCCACGACGCCACGAGTTCATGAGGAGGCGAAGGGCGAGG GGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGCAAGGTGACCAAGGGCGAGGGCGAG GGCCGCCCCTACGAGGGCACCCAGACTGCACGGCGACGAGGCCACG AGGACGGCGAGTTCATCTACAAGGGCGAGGCGGCGCGGC
YFP	ATGAGCAGCGGCGCCTGCTGTTCCACGGCAAGATCCCCTACGTGGTGGAGATGGAGGG CGATGTGGATGGCCACACCTTCAGCATCCGCGGTAAGGGCTACGGCGATGCCAGCGTGG GCAAGGTGGATGCCCAGTTCATCTGCACCACCGCGGATGTGCCCGGGCCCCGAGGCACCC TGGTGACCACCCTGACCTACGGCCCCAGTGCTTCGCCAAGTACGGCCCCGAGCTGAAG GATTTCTACAAGAGCTGCATGCCCGATGGCTACGTGCAGGAGCGCACCATCACCTTCGAG GGCGATGGCAATTTCAAGACCGCGCCGAGGTGACCTTCGAGAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGGCTTCAAGAAGGATGGCCACGTGCTGGGCAAGAATC TGGAGTTCAATTTCACGCCCGCGCGGAGGTGACCTTCGAGAATGGCAGCGTGTACAA TCGCGTGAAGCTGAATGGCCAGGCCTCCAGGAGCACGGCGCACCATCACGGCC TGAAGAGCGCCTTCAAGATCGCCACGAGGCTTCAAGAAGGGCGAATCACGGCC TGAAGAGCGCCTTCAAGATCTGCCACGAGGATCGCCGGCAGCACGTGCCCGAGTAC CACCACATGAGCCACCAGAGATCGCCGGCGGCGCCCCGTGCACGTGCCCGAGTAC CACCACATGAGCTACCACGTGAAGCTGAGCAAGGATGTGACCGATCACCGCGATAATAT GAGCCTGACGGAGACCGTGCGCCGCTGGAATGGCCACGAGCACGGCGCCCCTG ATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAA GGTGCACATGGAGGCCACCAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAA GGTGCACATGGAGGGCCACCAGACCGCCAAGGTTGAAGGTGACCAAGGGCGAGGGCGAG GGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGCGAGGGCGAG GGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGCGAGGGCGAG GGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGCGAGGGCGAG GCCCGCCGCGACATCCTGTCCCCTCAGTTCATGTACGGCTTCAAGGGGGAGGCGAG GGCCGCCGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGGCGAGGAG GGCCGGCGAGTTCATCTACAAGGTGAAGCTGGCGCGCCACAACTTCCCCTCCGACGGA GGCCGCCCTAAGAAGACCATCGGGCGGCGGCGGCGGCGCCCCAACCTTCCCCTCCGACGGC CCCGTAATGCAGAAGAACACTGGGCGGGCGGCGGCGCGCGC

mKate2	ATGGTGTCTAAGGGCGAAGAGCTGATTAAGGAGAACATGCACATGAAGCTGTACATGGA
	GGGCACCGTGAACAACCACCACTTCAAGTGCACATCCGAGGGCGAAGGCAAGCCCTACG
	AGGGCACCCAGACCATGAGAATCAAGGTGGTCGAGGGCGGCCCTCTCCCCTTCGCCTTC
	GACATCCTGGCTACCAGCTTCATGTACGGCAGCAAAACCTTCATCAACCACACCAGGGC
	ATCCCCGACTTCTTTAAGCAGTCCTTCCCTGAGGGCTTCACATGGGAGAGAGTCACCACAT
	ACGAAGACGGGGGGCGTGCTGACCGCTACCCAGGACACCAGCCTCCAGGACGGCTGCCTC
	ATCTACAACGTCAAGATCAGAGGGGTGAACTTCCCATCCAACGGCCCTGTGATGCAGAAG
	AAAACACTCGGCTGGGAGGCCTCCACCGAGATGCTGTACCCCGCTGACGGCGGCCTGGA
	AGGCAGAAGCGACATGGCCCTGAAGCTCGTGGGCGGGGGCCACCTGATCTGCAACTTGA
	AGACCACATACAGATCCAAGAAACCCGCTAAGAACCTCAAGATGCCCGGCGTCTACTATG
	TGGACAGAAGACTGGAAAGAATCAAGGAGGCCGACAAAGAGACCTACGTCGAGCAGCA
	CGAGGTGGCTGTGGCCAGATACTGCGACCTCCCTAGCAAACTGGGGCACAAACTTAATTG
	A

SI REFERENCES:

- 1. Gibson DG, et al. (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. *Science* 329(5987):52–6.
- 2. Fasano CA, et al. (2007) shRNA Knockdown of Bmi-1 Reveals a Critical Role for p21-Rb Pathway in NSC Self-Renewal during Development. *Cell Stem Cell* 1(1):87–99.
- 3. Dull T, et al. (1998) A third-generation lentivirus vector with a conditional packaging system. *J Virol* 72(11):8463–8471.
- 4. Stewart SA, et al. (2003) Lentivirus-delivered stable gene silencing by RNAi in primary cells. *RNA* 9(4):493–501.
- 5. Kelmanson I (2009) Enhanced red and far-red fluorescent proteins for in vivo imaging. *Nat Meth* 6(5).
- 6. Tomosugi W, et al. (2009) An ultramarine fluorescent protein with increased photostability and pH insensitivity. *Nat Methods* 6(5):351–353.