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SUMMARY

Sensoryneuronsarecustomarily characterizedbyone
or more linearly weighted receptive fields describing
sensitivity in sensory space and time. We show that
in auditory cortical and thalamic neurons, the weight
of each receptive field elementdependson thepattern
of sound fallingwithin a local neighborhood surround-
ing it in time and frequency. Accounting for this
change in effective receptive fieldwith spectrotempo-
ral context improves predictions of both cortical and
thalamic responses to stationary complex sounds.
Although context dependence varies among neurons
and across brain areas, there are strong shared quali-
tative characteristics. In a spectrotemporally rich
soundscape, sound elements modulate neuronal
responsiveness more effectively when they coincide
with sounds at other frequencies, and less effectively
when they are preceded by sounds at similar fre-
quencies. This local-context-driven lability in the
representation of complex sounds—a modulation of
‘‘input-specific gain’’ rather than ‘‘output gain’’—may
be a widespread motif in sensory processing.

INTRODUCTION

For decades, the linearly weighted receptive field has been used

to describe sensory neural responses to complex stimuli. Neu-

rons in the central auditory system integrate sound over time

and frequency, making the linear model of choice the spectro-

temporal receptive field or STRF (e.g., Aertsen et al., 1980; Eg-

germont et al., 1983; Eggermont 1993; deCharms et al., 1998;

Depireux et al., 2001). Features of the STRF have been used

to investigate neural representations in different brain areas
Neuron 91, 467–481
This is an open access article und
(Nelken et al., 1997; Miller et al., 2002; Escabi and Schreiner

2002; Linden et al., 2003; Woolley et al., 2005), and changes

in the shape or overall gain of the STRF have been used to

examine how auditory encoding varies with stimulus type (Gill

et al., 2006), sound density (Blake and Merzenich 2002; Valen-

tine and Eggermont 2004), spectrotemporal contrast (Rabino-

witz et al., 2011; Rabinowitz et al., 2012), and behavioral

task (Fritz et al., 2003, 2007; David et al., 2012). One or

more STRF-like weighted fields also lie at the heart of linear-

nonlinear (LN) cascades, including generalized linear point-pro-

cess models (Chornoboy et al., 1988) and linear-nonlinear-Pois-

son models estimated by spike-triggered characterization,

maximally informative dimensions and similar methods (Figures

1A–1C; for reviews, see Schwartz et al., 2006; Paninski et al.,

2007; Sharpee, 2013).

Despite its wide use, the STRF is known to be an incomplete

description of neural responses. Linear STRF predictions cap-

ture less than half of the reliable response variance to a complex

stimulus in the primary auditory cortex, even without adaptive or

task-dependent changes (Sahani and Linden, 2003; Machens

et al., 2004). More fundamentally, the crucial assumption of

linear weighting—that the sensitivity of the neuron to a local

element of the stimulus is independent of the rest of the stim-

ulus—is challenged by many reports of nonlinear combination

sensitivity. Such nonlinearities include ‘‘forward suppression’’

of the response to the second tone in a pair (Brosch and

Schreiner, 1997; Wehr and Zador, 2005), more complex combi-

nation effects for spectrally offset tone pairs (Kadia and Wang,

2003; Sadagopan and Wang, 2009), quadratic sensitivity to the

distribution of spectral energy in random-spectrum noise (Yu

and Young, 2000; Young and Calhoun, 2005), and nonlinear

sensitivity to parts extracted from simple vocalizations (Bar-Yo-

sef et al., 2002; Bar-Yosef and Nelken, 2007).

How do these, and perhaps other, nonlinearities combine over

frequency and time to shape responses to complex sounds

at different stages of auditory processing? Are time-frequency

sensitivities modified substantially by these nonlinear local
, July 20, 2016 ª 2016 The Authors. Published by Elsevier Inc. 467
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interactions?Ormight the local contextual nonlinearities average

away to leave a broadly linear response that is qualitatively, if not

quantatively, well described by the STRF?

To address these questions, we extended the multilinear

model of Ahrens et al. (2008a) to study the impact of local acous-

tic context on cortical and thalamic responses.

RESULTS

Modeling Local Contextual Input-Specific Gain
We modeled responses of neurons in the auditory cortex and

thalamus to statistically stationary, spectrotemporally rich, dy-

namic random chord (DRC) stimuli using a multilinear approach

in which local acoustic context could modify the sensitivity of

the neuron to sound level (Figure 1D). The model, as we applied

it, combines two matrices of weights. The first is an STRF-like

principal receptive field (PRF; wtf) with weights defined in abso-

lute frequency and time-lag preceding the response. These

weights represent the spectrotemporal sensitivities of the

neuron in the absence of local contextual influences. In princi-

ple, they would correspond to responses evoked by brief iso-

lated tones with no acoustic energy at nearby frequencies and

times—although they were fit using responses to the rich DRC

stimulus. These PRF sensitivities are multiplicatively modulated

through the action of the second matrix, a contextual gain field

(CGF; wtf) with weights defined in terms of relative offsets of

time ðtÞ and frequency ðfÞ. The CGF defines an acoustic neigh-

borhood or local context around each time-frequency element

or ‘‘tile’’ of the discretised stimulus spectrogram. The pattern

of energy that falls within that neighborhood is weighted by

the entries of the CGF and summed, and this term then multi-

plies the effect of the energy within the anchoring time-
Figure 1. Local Context Shapes Input-Specific Gain

(A–D) Cartoon illustrations of receptive field integration mechanisms.

(A) In the most basic scheme, input stimuli (gray-level spectrogram) are integrate

apply to each specific input (not shown) or to the integrated weights (light green

(B) Multidimensional LNP models include a small number of differently weighted

nonlinearity (green). Methods such as MID and STC are designed to characterize

(C) Normalization, or other variable global gain, involves the output of one field (b

normalization field may extend well beyond the integration field, so that the effect

transformation (light green) may act before or after gain modulation (light blue).

(D) In the phenomenon described here, local context (blue) around each input

different context and thus a potentially different gain. Gain-modulated inputs are i

(E) The CGF model. The contextual input-specific gain model incorporates tw

describes the basic sensitivity of the neuron to spectrotemporal energy

The Contextual Gain Field (CGF; wtf) describes how each sensitivity is mod

two stages. First, the stimulus spectrogram is convolved with the CGF in b

spectrotemporal point (upper green arrow). The local stimulus power is then s

PRF, are summed to model the neural response (lower green arrow). The me

cortical neuron is shown (gray bars) along with the rates predicted by the CGF

in prediction (black triangles) show that local contextual gain effects both

sensitivities.

(F–J) Local input-specificity of contextual gain effects. The relationships be

at two spectrotemporal locations within the unit’s PRF far enough apart

(F) are shown without reference to local context (gray open circles and das

window around that spectrotemporal location fell within a low, middle or h

according to ‘‘distant’’ contextual energy — i.e., integrated energy around the

indicate standard error in the mean; lines are fit to the empirical data. Th

spectrotemporal context (black bars with asterisks indicate significance), bu

location.
frequency tile on the neural response (Figure 1E), providing

‘‘input-specific gain.’’

Thus, for a sound with spectrotemporal energy at time t in

frequency channel f given by sðt; fÞ, the modeled firing rate br at
time i was expressed by the equation

brðiÞ= c+
XJ

j = 0

XK

k = 1
wtf

j + 1;ksði � j; kÞ
�
�
1+

XM

m= 0

XN

n=�N
wtf

m+ 1;n+N+ 1sði � j �m; k + nÞ
�
;

(1)

where the constant c sets a baseline firing rate. The zero-offset

CGF weight wtf
1;N+1 (note the unconventional summation limits

for the indicesm and n) was fixed to 0 so that no time-frequency

energy contributed to its own context, preserving a linear model

response to isolated tones.

The CGF in this model sets a different context-dependent gain

at each spectrotemporal tile of the stimulus. This input-specific

gain enhances or suppresses the PRF-mediated effect of the

stimulus but, provided that the term in parentheses in Equation 1

remains positive, maintains its sign. Thus, the sign of a CGF

weight, unlike that of a PRF or STRF weight, does not directly

indicate whether sound energy excites or inhibits the neuron.

Instead, a positive CGF weight at a particular time-frequency

offset indicates that if an input within the PRF were paired with

energy only at this relative offset, then the gain with which the

PRF-input influenced firing is boosted above 1; thus, for a posi-

tive PRF weight firing would be further enhanced, whereas for

negative PRF weights, activity would be more suppressed. The

obverse holds if the CGF weight is negative; gain is reduced

and so the input within the PRF would drive less excitation if

positive, and less inhibition if negative. In a complex stimulus,
d by a single set of fixed weights (orange). Pointwise nonlinear transforms may

).

overlapping integration fields, with outputs combined by a multi-imensional

such models.

lue) modulating the gain of the integrated response to the other (orange). The

ive gain reflects global statistical properties of the stimulus. A further nonlinear

shapes the gain of response to that specific input. Each input experiences a

ntegrated (green), with a possible further nonlinear transformation (light green).

o sets of time-freqency weights. The Principal Receptive Field (PRF; wtf)

at all frequencies within a short time window, analogous to the STRF.

ified by its local acoustic context. The model can be viewed as acting in

oth time and frequency to estimate the local input-specific gain at each

caled by the corresponding gain and these scaled values, weighted by the

asured response (peri-stimulus-time histogram or PSTH) for one example

model (bright green) and an unmodified STRF (dull gray-green). Differences

increase and decrease firing rates relative to the STRF model of static

tween the measured responses of one example unit and the sound level

in time and frequency to be subject to different local sound contexts

hed lines); sorted by whether the integrated contextual energy in a local

igh quantile (G and H, colored circles and lines); or, as a control, sorted

other of the two input locations (I and J, colored circles and lines). Error bars

e slopes of the input-response relationships differ when sorted by local

t not when sorted by contextual energy at the spectrotemporally distant
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the influence of energy at all offsets around each input in the PRF

is linearly combined through the CGF to yield a single gain for

that specific input, and the gain-modulated inputs are linearly

combined through the PRF to model the neuronal firing rate.

We fit the CGF model to DRC-evoked responses recorded

extracellularly from neurons in the auditory cortex and thalamus

of anaesthetised CBA/Ca mice. The final analysis database

included 64 prolonged continuous recordings from auditory cor-

tex and 101 from auditory thalamus. Cortical recordings corre-

sponded to a subset of the DRC stimulus recordings previously

used for STRF analysis by Linden et al. (2003); see Experimental

Procedures for details.

Input Gain Is Specific to Local Context
We found that local context played a substantial role in shaping

input-specific gain. To illustrate the effect, we chose two

spectrotemporal positions within the responsive region of an

example unit’s STRF, separated by about an octave to mini-

mize overlap in local context (Figure 1F). Plots of the average

response as a function of the sound level at each of these

two positions revealed roughly linear relationships, the (positive)

slopes of which were essentially unregularised estimates of the

corresponding (excitatory) STRF weights (Figure 1G–1J, ‘‘no

context,’’ gray). We then asked whether the slope of this rela-

tionship at each time and frequency could be modulated by

acoustic context either immediately surrounding the specific

chosen time-frequency input or distant from it. We calculated,

moment by moment, the integrated sound energy within a local

window surrounding each of the chosen time-frequency points,

weighted using a CGF estimated by a cross-validation proce-

dure (see Supplemental Experimental Procedures 2). When

the integrated energy at position 1 was within the bottom third

of its range (‘‘context low,’’ blue) the slope of the stimulus-

response relationship fell to almost 0; if in the middle third

(‘‘context mid,’’ magenta) the slope was roughly the same as

when context was ignored; and if in the highest third (‘‘context

high,’’ red) the gain was boosted substantially (Figure 1G) and

significantly (permutation tests: low to mid, p= 0:20; mid to

high, p= 0:027; low to high, p= 0:0030). The same trend was

evident in the relationships between the response and the

sound level at position 2, when grouped by the integrated

contextual energy at position 2 (Figure 1H; low to mid,

p= 0:073; mid to high, p= 0:38; low to high, p= 0:041). How-

ever, the slope of the response to sound level at input 1 did

not vary with the context at position 2 (Figure 1I; low to mid,

p= 0:90; mid to high, p= 0:35; low to high, p= 0:81), nor vice

versa (Figure 1J; low to mid, p= 0:63; mid to high, p= 0:12;

low to high, p= 0:21).

Thus, only local, not distant, acoustic context affected the gain

with which a specific time-frequency input drove firing. This

observation is inconsistent with a single STRF-like integration

field followed by a static output nonlinearity (Figure 1A) or modu-

lated by a single global gain factor (Figure 1C). It also argues

against the sufficiency of a low-dimensional LN model (Fig-

ure 1B), as the input-specific context could only be captured

by a separate linear filter around each input. However it does

not necessarily require that each local context filter is a trans-

lated copy of the same CGF weights. This assumed structure
470 Neuron 91, 467–481, July 20, 2016
(Equation 1) was tested by explicit comparison to alternative

nonlinear models described later.

Contextual Input-Specific Gain Shapes Cortical and
Thalamic Responses
Before evaluating the CGF model against nonlinear alternatives,

we measured the contribution of contextual input-specific gain

modulation to neuronal output by quantifying predictive accu-

racy relative to the linear STRF model. In doing so, it was neces-

sary to rule out the possibility that any improved prediction came

from ‘‘overfitting’’ of the additional parameters of the CGF. We

used two approaches.

First, we compared the generalization performance of the

CGF and STRF models in individual neurons, cross-validating

by repeatedly fitting each model to one section of response

(‘‘training data’’) and evaluating performance on another (‘‘test

data’’). The added CGF parameters always enable an apparently

better fit to the training data. However, if local context were un-

important, then improvement would come only from overfitting

to random fluctuations, and would not extend to the unrelated

fluctuations of the test data. Indeed, the overfit model parame-

ters would generate perturbed predictions, lowering cross-vali-

dation accuracy below that of the STRF. In fact, we found the

opposite: the CGF model outperformed the linear STRF model

in cross-validation for almost every neuron (Figure 2A), suggest-

ing that local contextual modulation of input-specific gain does

indeed reliably shape responses to complex sounds.

Second, we followed Sahani and Linden (2003) to obtain popu-

lation-level predictive performance estimates for both models.

When expressed as a proportion of the estimated stimulus-

dependent signal power (see Supplemental Experimental Proce-

dures 3), performance on both training data and test data—as-

sessed by cross-validation—depended systematically on the

amount of variability or ‘‘noise’’ in the recording (Figures 2B and

2C). Each of these relationships could be extrapolated to yield

‘‘zero-noise’’ predictive power limits, effectively averaging across

the population while discounting the variable impact of noise on

each unit. On the training data, the extrapolated value eliminates

contributions from overfitting to random fluctuations but may still

reflect overfitting to the details of the particular stimulus segment

used for training. The equivalent value on test data alsominimizes

the impact of random fluctuations on model fits but retains any

generalization penalty resulting from estimation of the model

parameters from finite data. Thus, the two extrapolated limits

bracket the true average predictive power of the model class.

Both training and test extrapolated values were consistently

higher for the CGF model than for a linear STRF model ([test,

training] values were as follows: cortex CGF = [0.37, 0.79],

STRF = [0.31, 0.51]; thalamus CGF = [0.52, 0.83], STRF =

[0.48, 0.68]; see Figures 2B and 2C). Taking the midpoints of

these ranges, we find that modeling the variation in contextual

input-specific gain provides a 41% boost in predictive power

over the linear STRF relationship in cortex, and a 16% boost in

thalamus.

CGF Model Outperforms Related Second-Order Models
In designing the CGF model to capture the phenomenon

of contextual input-specific gain modulation as simply and
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B Figure 2. Contextual Input-Specific Gain

Shapes Both Cortical and Thalamic Re-

sponses

(A) Scatterplot of generalization performance for

the CGF and STRF models in cortex and thalamus

measured by cross-validation; inset shows histo-

gram of differences in favor of the CGF model (left)

or STRF model (right). Black dashed lines indicate

equal performance. The CGF model almost al-

ways generalizes more accurately than the STRF,

showing that contextual input-specific gain plays a

substantial role in shaping responses in both brain

structures.

(B and C) Predictive power extrapolations for CGF

model (bright colors) and STRF model (dull, greyed

colors) in cortex (B) and thalamus (C). Filled circles

and solid lines indicate generalization performance

on test data, assessed by cross-validation; open

circles and dashed lines show predictive perfor-

mance on training data. In the zero-noise limit,

extrapolated intercepts (indicated on the left) are

all higher for the CGF model. See Supplemental

Experimental Procedures for further explanation.

(D) Effective input-specific gains and predictive

advantage. Each dot and horizontal bar indicates

the median and interquartile range of the distribu-

tion of effective input-specific gains across all

points in the stimulus for one neuron, obtained by

convolving the spectrogram of the DRC stimulus

with the neuron’s CGF (see also Figure 3). Median

input-specific gains tend to be substantially smaller

than 1 and interquartile ranges are often large,

indicating that effects of local acoustic context are

predominantly suppressive but can vary substan-

tially across spectrotemporal points within the DRC

stimulus.
tractably as possible, we made three key simplifying assump-

tions: first that energy in the local context is integrated linearly

within the CGF, second that the output of this CGF-weighted

sum linearly affects the input gain, and third that the CGFweights

are the same at each point in the PRF. The result is the multipli-

cative model of Equation 1, in which the dependence of the firing

rate on the sound energy is quadratic. This model thus repre-

sents a constrained second-order Volterra expansion, in which

the linear kernel is the PRF, and the quadratic kernel is formed

from suitably selected products of weights in the PRF and

CGF. Using the same CGF weights at each PRF input reduces

the total number of parameters that must be fit (1,046) far below

that needed to descibe an unconstrained second-order Volterra

expansion using the same window size as the PRF (just under

52,000). Prohibitive volumes of physiological data would have

been required to fit the unconstrained model.

The single-CGF assumption was supported by the observa-

tion that in a dual-CGF version of the model, with potentially

different CGFs fit to two pre-selected portions of the PRF—for

example, to the excitatory and inhibitory regions—the two learnt

CGFs were consistently similar (Figure S2). The dual-CGFmodel

is also a second-order Volterra model but enforces slightly less

severe constraints on the quadratic kernel than the single-CGF

model. Despite the added degrees of freedom, the dual model

added no further generalization ability.
The CGF formulation was also supported by comparison to a

‘‘low-dimensional’’ quadratic model, similar to that described by

Park et al. (2013), in which the second-order kernel matrix is

approximated by a sum of vector outer products. The dimen-

sionality is given by the number of products in this sum. A one-

or two-dimensional quadratic model has comparable degrees

of freedom to the CGF model, but quite different constraints;

indeed, it can be viewed as a low-dimensional LN model (Fig-

ure 1B) with a second-order polynomial nonlinearity (Supple-

mental Experimental Procedures 4). Neither one-dimensional

nor two-dimensional quadratic models generalized as well as

the CGF model, as measured by cross-validation (Figure S3).

Indeed, the one-dimensional model also fit the training data

less well, despite havingmore than twice the degrees of freedom

(720 versus 324). Thus the LN structure of the outer-product

quadratic form is not as well suited to capture the stimulus-

evoked response even in training data. To outperform the CGF

model on the training data it was necessary to include at least

two outer products in the quadratic kernel, adding more than

four times as many parameters as in the CGF model—and this

two-dimensional quadratic model did not generalize as well

as the CGF model, even after regularization. Noise-discounted

extrapolated population values of predictive power for the

one-dimensional and two-dimensional quadratic models were

([test, training] values) as follows: cortex 1D quadratic = [0.34,
Neuron 91, 467–481, July 20, 2016 471
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E

Figure 3. Variation in Contextual Input-Spe-

cific Gain across Spectrotemporal Points

within a Complex Stimulus

(A) Two-second-long segment of the DRC

stimulus.

(B–E) CGFs (left) for four example cortical neurons

are convolved with the spectrogram of the DRC

stimulus to reveal effective input-specific gains

(right) that vary substantially from cell to cell, fre-

quency to frequency and moment to moment

within the stimulus.
0.64]; thalamus 1Dquadratic = [0.49, 0.75]; cortex 2Dquadratic =

[0.33, 0.98]; thalamus 2D quadratic = [0.51, 0.99].

Thus, we conclude that the CGF parameterization of the

second-order Volterra kernel provides a particularly biologically

relevant—and analytically tractable—description of nonlinear

constraints on auditory cortical processing.

Input-Specific Gain Modulation Is Substantial and
Predominantly Suppressive
The substantial impact of immediate acoustic context on cortical

and thalamic responses was also evident in the moment-by-

moment variation of input-specific gains inferred by the CGF

model (Figures 2D and 3). We convolved the spectrogram of

the DRC with each neuron’s CGF, obtaining an estimate of the

‘‘effective input-specific gain’’ set by the local acoustic context

at each point in the stimulus. A constant gain of 1 would imply

a linear response; effective gains greater than 1 occur at points

in the spectrogram where the neuron’s sensitivity is boosted

by local acoustic context; and values below 1 occur where sensi-

tivity is locally suppressed. The effective input-specific gain for

each neuron varied substantially from moment to moment and

frequency to frequency (for examples, see Figure 3), typically

ranging between slightly facilitatory and substantially suppres-

sive. Furthermore, differences in CGFs meant that the detailed

pattern of gains differed from cell to cell.

To quantify the overall impact and variability of input-specific

gain modulation, we computed the quartile points of the distribu-
472 Neuron 91, 467–481, July 20, 2016
tion of effective gains across the DRC

stimulus, both for each neuron individu-

ally and for pooled neuronal populations.

Gains varied substantially, with large in-

terquartile ranges for most neurons (Fig-

ure 2D) and both cortical and thalamic

populations (0.37 and 0.39, respectively).

Many of these interquartile gain ranges

did not include 1 (for 50/64 cortical neu-

rons and 46/101 thalamic neurons), indi-

cating a pervasive and systematic impact

of immediate context. In the pooled distri-

butions, the median input-specific gain

was significantly smaller than 1 (0.73

in cortex and 0.86 in thalamus; p< ma-

chine precision), indicating a predomi-

nantly suppressive effect. Furthermore,

the predictive advantage of the CGF
model over the STRF model increased both as the inter-quartile

range of effective input-specific gains increased (i.e., as gain var-

ied more widely over the course of the stimulus; Spearman’s

rðN= 165Þ = 0:31, p= 7:2310�5), and as the median input-specific

gain decreased (i.e., as contextual suppression increased;

rðN= 165Þ = � 0:62, p= 1:6310�14).

Two Key Features of Input-Specific Gain Modulation in
Cortex and Thalamus
The structures of the CGF and PRF fit to a neuron’s response

reveal how input-specific gain depends on local context, and

how it interacts with spectrotemporal integration in the neuron.

PRFs differed from STRFs in a predictable manner (Figure S4;

Supplemental Experimental Procedures 5), and comparisons

of either PRF or STRF structure between cortex and thalamus

yielded results similar to previous reports for STRFs (e.g., longer

receptive field durations in cortex than thalamus; Miller et al.,

2002). Our focus here is on novel findings revealed by the CGFs.

CGFs in both cortex and thalamus displayed consistent

features, albeit with different timescales at the two stages of

auditory processing. Most cells (examples in Figure 4A) ex-

hibited a suppressive region of negative CGF weights centered

at a zero frequency offset, and extending over much of

the CGF time window. Thus, preceding sound energy at a similar

frequency tended to dampen the impact of a component sound,

reducing excitation or inhibition as the component fell within

the positive or negative part of the PRF, respectively. This



Figure 4. Structure of Input-Specific Gain Modulation in the Cortex and Thalamus

(A) Example CGF and PRF pairs for four neural recordings in cortex (left) and four recordings in thalamus (right). CGFs (top) range over relative time t and relative

frequency f. Weights represent the change in gain induced if one of the loudest tones of the DRC stimulus were to fall at the corresponding location, and are

shown on common scale (left). PRFs (bottom) range over time t prior to the modeled response and acoustic frequency f (log-spaced). Stimulus modulation of

firing differs substantially across neurons, so PRFs are separately (and symmetrically) scaled to the maximum change in firing rate shown above each one.

(B–E) Mean CGFs and average profiles in cortex (green) and thalamus (magenta). The central panel (C) shows the spectrotemporal pattern of the mean

CGF weights in both structures. The average spectral profiles (B), spectral profiles at 0 delay (D) and average temporal profiles (E) of both means are shown

superimposed, with error bars indicating the SE of the estimated population means.
suppressive effect lasted longer in cortex than in thalamus. Also

visible in the example CGFs is a halo of gain-enhancing regions

around the suppressive center. At long time delays, the struc-

ture of these gain-enhancing regions varied considerably from

neuron to neuron. However, there appeared to be a consistent

enhancement associated with simultaneous or near-simulta-

neous sound energy at both positive and negative frequency

offsets.

Since the CGF ranges over relative time and frequency offset

(t and f) it is possible to examine the common stucture of

contextual effects by averaging the CGFs of a population of neu-

rons. The two phenomena visible in the examples—delayed

suppression and near-simultaneous enhancement—are also

evident in the mean CGFs for both cortex and thalamus (Fig-

ure 4C), and in the one-dimensional profiles averaged over all t

(Figure 4B), restricted to t = 0 (Figure 4D), and averaged over

all f (Figure 4E). Similar results were obtainedwhen the averages
were restricted to subsets of neurons grouped by best frequency

as estimated from the PRF or STRF (data not shown), demon-

strating that the mean CGFs are representative of neurons tuned

to all points of the frequency spectrum.

Delayed input-specific gain suppression was centered around

a frequency offset of zero in both areas (Figure 4B), but peaked at

a greater delay (60–80 ms compared to 40 ms) and extended to

longer temporal offsets (160 ms compared to 100 ms) in cortex

than in thalamus (Figure 4E). While reminiscent of forward sup-

pression of responses to repeated tones, the modulatory rather

than inhibitory effect of the CGF also implies suppression of

inhibitory gains, which mght sometimes lead to enhanced re-

sponses in complex stimuli. Indeed, the dual-CGF model (Fig-

ure S2) confirmed that the contextual influence on inhibitory

and excitatory PRF inputs showed similar suppression.

Gain enhancement resulted from sound energy that fell at

short time offsets within the CGFwindow and outside the central
Neuron 91, 467–481, July 20, 2016 473



suppressive region (Figure 4D). In the cortex this facilitation was

clearly strongest and most consistent at time offsets <40 ms,

and peaked at frequency offsets of about a half-octave in

either direction (Figure 4D). The same short-time effect was

also evident in thalamus; indeed, the mean CGF profile at zero

time-offset was remarkably similar to that observed in cortex

(Figure 4D), with off-frequency peaks approximately a half-

octave away from the center. It is difficult to tell from the mean

CGFs alone whether these off-frequency peaks reflect a mecha-

nism of gain facilitation specific to half-octave frequency inter-

vals, or whether they emerge from the interplay of two seperate

mechanisms: broadband near-simultaneous enhancement

centered at zero frequency offset, and narrowband delayed sup-

pression that cancels the enhancement at small frequency and

time offsets. However, the observation that similar side-peaks

appeared in individual CGFs (Figure 4A) implies that the structure

observed in the means does not arise from broad facilitation and

narrow suppression contributed by different neurons.

Individual CGFs often showed both narrowband delayed sup-

pression and broadband near-simultaneous enhancement (Fig-

ure 4A), suggesting that CGFs are not time-frequency separable.

Indeed, predictive power was almost always higher for insepa-

rable-CGF models than for separable-CGF models (Figure S1),

despite the expectation that the many more parameters of the

inseparable-CGF model would increase susceptibility to overfit-

ting and thereby undermine generalization performance.

Two Key CGF Features Each Have Significant Impact on
Neural Responses
We wondered whether the key features that had appeared reli-

ably in themeanCGFswere each essential for shaping the neural

responses, or whether their effects might be substituted by

parameters elsewhere in the CGF or PRF. To find out, we refit

‘‘elided’’ versions of themodel, where the range ofweights corre-

sponding to one of the featureswas set to zero and the remaining

parameters refit to test whether they could compensate for the

elision. Generalization performance was compared to that of

the full CGF by cross-validation. If the feature removed is not

essential, then the elided model should achieve the same gener-

alization performance as the full model despite the feature’s

absence. Indeed, with fewer parameters and therefore less risk

of overfitting it might generalize more accurately than the full

CGF. Conversely, if the generalization accuracy after elision is

systematically lower, then the impact of the removedCGF feature

could not bematched bymodifyingweights in the rest of theCGF

or PRF, and so the feature itself must be essential.

We found that models in which either of the two key CGF fea-

tures were elided did indeed provide a poorer fit to the data than

the unconstrained model (Figure 5). In particular, excluding CGF

weights with frequency offsets within 1/3 octave and time offsets

between 20 and 120 ms, where delayed suppression is most

evident, reduced model predictive power significantly (average

difference in cross-validated predictive performance between

elided and full CGF models �0:030±0:003 in cortex and

�0:027±0:002 in thalamus; Figures 5A and 5D). By contrast,

elision of a similarly sized CGF region at much longer delays

had no discernable effect at the population level. Eliding

CGF weights at all frequency offsets and delays <40 ms, where
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enhancement is evident, also impaired model fits system-

atically (change in average cross-validated predictive power

�0:017±0:002 in cortex and �0:022±0:002 in thalamus; Fig-

ures 5B and 5E). When the elided near-simultaneous region

was restricted to short-delay CGFweightswith frequency offsets

greater than one-third octave, the impact on model predictions

was lessened, but remained significant (Figures 5C and 5F).

Again, in both cases, elision of a congruent section at much

longer delays induced no discernable change in model perfor-

mance. Thus, both broadband near-simultaneous facilitation

and narrowband delayed suppression play significant and inde-

pendent roles in shaping input-specific gain.

Detailed CGF Structure Differs between Individual
Neurons
Despite their consistent features (Figure 4), the CGFs estimated

for individual recordings were not identical. Moreover, at least

in the cortex, this neuron-to-neuron variation appeared to

contribute to the improved predictive power of the CGF model.

Models with neuron-specific CGFs performed at least as well

in cross-validation as models with a fixed CGF (Figure S5)—

especially for recordings with the lowest normalized noise po-

wer. Had neuron-to-neuron variation in the estimated CGF struc-

ture arisen solely through noise, the individual CGFs would have

overfit and the models performed more poorly.

We investigated the primary modes of variability around the

mean by applying principal components analysis (PCA) to the

CGFs within the cortical and thalamic populations. PCA decom-

poses the scatter of amultidimensional dataset into components

alongwhich the variability is uncorrelated, andwhich can then be

ranked by the amount of variance that each contributes. In both

cortex and thalamus, the scatter around the mean CGF was

concentrated in a relatively small number of principal compo-

nents. In particular, the first two or three principal components

(PCs) stood out from the remaining modes (Figures 6A and

6D). Together, the first three PCs described 62% and 61% of

the variance in the cortical and thalamic CGFs, respectively (Fig-

ures 6B and 6E).

The structure of these first modes of variability for the cortical

and thalamic populations is shown in Figures 6C and 6F. In both

cases, the dominant effect observed in the first PC was to modu-

late the overall depth of delayed suppression, either increasing or

reducing it as the loadingon thePCvaried frompositive tonegative

acrosscells. In thecortex, therewasalsosomesuggestion that the

strength of this suppression was anti-correlated with broadband

simultaneous facilitation, while in the thalamus the two effects

were uncorrelated. The second principal mode of scatter in both

structures, which carried at least half asmuch variance as the first

in both cases, appeared tomodulate the effect on contextual gain

of tones at short delays and nearby frequencies. The thirdmodeof

scatter was of greater significance in the thalamus (compare Fig-

ures 6A and 6D) and reflected variability in the broadband near-

simultaneous modulation of input-specific gain.

The subspace defined by the two (in cortex) or three (in thal-

amus) leading modes of scatter around the population mean

CGFs also captured around 80% of the sum of squared weights

in the means themselves (Figures 6B and 6E, open circles). This

observation (and, indeed, the examples of Figure 4A) suggests



Figure 5. Generalization Disadvantage for Models with Key Features of CGF Elided

(A–C) Cortex; (D–F) thalamus. Each panel contrasts the effects of eliding parameters in two identically sized sections of the CGF (gray rectangles): one corre-

sponding to a CGF feature that appeared to consistently shape input-specific gain, the other a control section where CGF weights were inconsistent or small.

Weights in the elided regions were fixed at zero, and the model was re-fit to optimize the remaining model parameters. Histograms show distribution across

neurons of differences in cross-validation predictive performance (generalization accuracy) relative to the unelided CGF model; p value indicates significance

threshold at which the hypothesis that median change in performance equals or exceeds zero can be rejected (one-tailed sign test, uncorrected; N = 64 in cortex

and 101 in thalamus). Scatter plots compare generalization accuracy of the two elided models neuron-by-neuron; p value indicates threshold for rejection of the

hypothesis thatmedian difference for feature elisionminus control elision equals or exceeds zero (one-tailed sign test, uncorrected). Across the neural population,

elision of key CGF features always resulted in poorer generalization accuracy than that achieved by the full (unelided) model. By contrast, control elisions had

significantly less impact; the hypothesis that control elisions produced no reduction in predictive performance could not be rejected in any case after correction

for multiple comparisons.
that contextual gain modulation involves the interplay of two (or

perhaps three) different functional mechanisms contributing in

varying degrees to each neuron’s individual contextual gain field,

and therefore that themeanCGFsofFigure 4C reflect theaverage

impact of each of these mechanisms across the population.

Detailed CGF Structure Differs betweenA1 andAAF, but
Not between vMGB and mMGB
Our cortical dataset comprised 31 recordings from primary audi-

tory cortex (A1) and 33 from anterior auditory field (AAF), local-

ized physiologically by a reversal of tonotopy (Stiebler et al.,

1997; Linden et al., 2003; Guo et al., 2012; Issa et al., 2014).

Both A1 and AAF are ‘‘core’’ auditory fields that receive strong

thalamic input (Lee et al., 2004; Hackett et al., 2011). Previous

studies have revealed differences between A1 and AAF in the

temporal extent of STRFs (Linden et al., 2003); these results

were confirmed here for PRFs (data not shown). We found that

nonlinear context effects also differed between the two cortical
areas. Mean CGFs for both A1 and AAF (Figures 7A–7D) ex-

hibited the two key features seen in the overall mean. However,

the delayed suppression region of theCGF peaked at smaller de-

lays (60 ms versus 80–100 ms) and was shorter overall (140 ms

versus 160–180 ms) in AAF than in A1 (Figure 7C). Spectral

profiles for near-simultaneous gain enhancement were similar

in shape in A1 and AAF, although the magnitude of the effect ap-

peared stronger in A1, and facilitatory side peaks fell at slightly

larger frequency offsets in AAF (Figure 7D).

In contrast, we found no significant differences in detailed CGF

structure between two thalamic subdivisions. Our set of 101

thalamic recordings included 51 from the ventral subdivision of

the medial geniculate body (vMGB) and 34 from the medial

subdivision (mMGB); subdivision assignments were deter-

mined histologically through reconstruction of recording sites in

sections stained for cytochrome oxidase (Anderson and Linden

2011). (We did not obtain enough recordings from the third major

subdivision, the dorsalMGB, to justify including those recordings
Neuron 91, 467–481, July 20, 2016 475



A

C

E

G H

F

D

B

Figure 7. Contextual Input-Specific Gain Compared between Two

Cortical Fields and Two Thalamic Subdivisions
(A andB)MeanCGFs of neurons in cortical areas A1 and AAF. Overall structure

is similar in both areas, but the delayed suppression region is shifted toward

shorter delays in AAF.

(C) Mean temporal CGF profiles averaged over frequency offset for both areas

(error bars show standard errors in the mean). The shorter delay and shorter

duration of the suppressive contextual gain effect within AAF is clearly evident.

(D) Mean spectral CGF profiles at zero time lag (error bars show standard

errors in the mean). The general shape of the spectral interaction is similar in

the two cortical areas, although side peaks in AAF fall at slightly larger fre-

quency offsets, perhaps as a result of the stronger short-delay suppression in

AAF.

(E–H) Similar figures show contextual gain effects in the ventral and medial

subdivisions of MGB. No substantial differences are observed between these

two thalamic subdivisions.
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Figure 6. Variability in CGF Structure across Neurons

(A–C) PCA of CGFs in the cortex.

(A) The absolute variance (i.e., average squared D gain) captured by each of

the first 32 PCs. (PC numbers are plotted logarithmically.)

(B) Filled symbols: fractional variance in the CGFs captured by the leading

PCs, as a function of number of PCs considered. Open symbols: fractional

sum of squares of themean cortical CGF that projects into the space spanned

by the leading PCs, demonstrating how well the variance is aligned with the

mean.

(C) The three leading PCs in order from left to right.

(D–F) PCA of CGFs in the thalamus. Subpanels correspond to (A)–(C).
in the analysis.) The average CGFs in vMGB and mMGB were

very similar (Figures 7E and 7F), with overlapping temporal (Fig-

ure 7G) and spectral (Figure 7H) profiles. The absence of clear dif-

ferences in contextual input-specific gain modulation between

these two thalamic subdivisions suggests that differences seen

in the cortical field averages might arise intracortically.

DISCUSSION

Contextual Modulation of Sensory Coding
The neural representation of sensory information is modified by

context in many ways. Previous reports have focused on how
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sensory representations depend on long-term or global stimulus

properties or statistics (e.g., Heeger, 1992; Carandini et al., 1997;

Schwartz and Simoncelli, 2001; Blake andMerzenich, 2002; Val-

entine and Eggermont, 2004; Gill et al., 2006; Bar-Yosef and



Nelken, 2007; Rabinowitz et al., 2011; Rabinowitz et al., 2012;

Mesgarani et al., 2014), or on behavioral or attentional context

(e.g., Fritz et al., 2003, 2007; Atiani et al., 2009; David et al.,

2012). By contrast, the current results highlight the dependence

of spectrotemporal input-specific gain on fluctuations in immedi-

ate local sensory context, even within a statistically stationary

stimulus and in an anaesthetised animal.

Changes in global stimulus statistics are necessarily associ-

ated with changes in the statistics of local context, and so local

modulation may contribute to apparently global effects. For

example, the apparent adaptation of STRFs to spectrotemporal

density or modulation (Blake and Merzenich, 2002; Valentine

and Eggermont, 2004; Gill et al., 2006) may arise in part

because denser stimuli drive greater local suppression of

input-specific gain across the receptive field (see also Ahrens

et al., 2008a; Supplemental Experimental Procedures 5). Simi-

larly, the apparent boost of STRF weights near the spectral

edges of a band-limited DRC stimulus, as seen in cat auditory

cortex (Gourévitch et al., 2009), may reflect the absence of sup-

pressive drive coming from the part of the CGF around those

inputs that falls outside the pass-band of the stimulus. Interac-

tions between contextual input-specific gain modulation and

linear STRF estimates may be larger and more idiosyncratic

with more structured stimuli, including natural sounds—or

even artificial stimuli with nonindependent energy distributions

such as spectrotemporal ripples—as nonlinear spectrotemporal

contextual effects are then less likely to average away (even if the

stimulus set is uncorrelated overall; Christianson et al., 2008).

The local context dependence of input-specific gain may also

contribute to some forms of stimulus-specific adaptation (SSA)

to tones (Ulanovsky et al., 2003; Ulanovsky et al., 2004; Ander-

son et al., 2009; Antunes et al., 2010), a phenomenon usually

interpreted as arising from long-term stimulus predictability.

Although SSA in the cortex and thalamus may persist for a sec-

ond or more, SSA to tones is strongest at shorter time intervals

and develops after only one or two tone repetitions (Ulanovsky

et al., 2004; Antunes et al., 2010; Bäuerle et al., 2011). Such

rapid stimulus-specific suppression in tone sequences is consis-

tent with the input-specific narrowband delayed suppression

observed here with complex stimuli (see also Ulanovsky et al.,

2004; Mill et al., 2011; Nelken, 2014).

Response Nonlinearities
As in many studies of the visual (reviewed by Schwartz et al.,

2006; Sharpee, 2013) and somatosensory (e.g., Maravall et al.,

2013) systems, responses to complex auditory stimuli have

widely been modeled as nonlinear functions of the output of

one or a few linear STRF-like filter(s) (Figures 1A and 1B). This

approach encompasses models of contrast gain control (Rabi-

nowitz et al., 2011, 2012); LN models derived by spike-triggered

covariance (STC), Maximally Informative Dimensions (MID),

and similar methods (Atencio et al., 2008, 2009, 2012; Sharpee,

2013); LNLN cascade models of excitatory and inhibitory

interaction (Schinkel-Bielefeld et al., 2012); and models of

noise-invariant cortical responses combining activity-dependent

subtractive depression and multiplicative gain control (Mesgar-

ani et al., 2014). These models all start with fixed input fields,

with non-linearities acting only after integration. Similarly, studies
of adaptive coding (Brenner et al., 2000; Fairhall et al., 2001;Mar-

avall et al., 2007; Mease et al., 2013) have considered context-

dependent changes in a single, global, input gain factor (often

determined by long-term temporal contrast) that applies after

integration but before further nonlinear transformations (Fig-

ure 1C). Neither approach captures the input-specific gain mod-

ulation described here, in which different context-sensitive input

gains act at different points in spectrotemporal space before

integration. It is likely that both input and output nonlinearities,

as well as spike-dependent temporal interactions (Chornoboy

et al., 1988; Ahrens et al., 2008b), combine to shape responses

in auditory and in other sensory systems.

The closest analogs to the present results use second-order

Volterra or similar models to characterize either spectral or tem-

poral nonlinearities (in cortex: Pienkowski and Eggermont, 2010;

Pienkowski et al., 2009; David and Shamma, 2013; see also Yu

and Young, 2000, in cochlear nucleus). Indeed, the CGF model

is a second-order Volterra expansion of spectrotemporal nonli-

nearites, with a constrained quadratic interaction that both pro-

vides a ready interpretation of the nonlinearity in terms of modu-

latory local context effects and keeps the number of parameters

within a range that is feasible to fit with limited experimental data.

The present study also builds upon previous work by the some of

the current authors (Ahrens et al., 2008a), which introduced the

multilinear estimation framework and demonstrated the impor-

tance of modeling input nonlinearities for accurate prediction

of cortical responses to complex sounds. However, these previ-

ous studies did not investigate the impact of the full, inseparable,

spectrotemporal context—nor compare contextual influence

across brain areas. The inseparable spectrotemporal structure

of CGFs revealed by the extended model developed here has

important implications for understanding auditory processing

of complex sounds.

Implications for Auditory Perception and Neural
Processing
Narrowband Delayed Suppression

Narrowband delayed suppression in cortical and thalamic CGFs

is likely to relate to both the psychophysical phenomenon of for-

ward masking and the physiological phenomenon of forward

suppression. In both humans and mice, psychophysical sensi-

tivity to the second of two sounds with similar frequencies is

reduced for more than 100 ms after the offset of the first sound

(Jesteadt et al., 1982; Walton et al., 1995), consistent with the

duration of narrowband suppression seen here in mouse cortex

and thalamus. A similar (and putatively related) forward suppres-

sion is often observed in central auditory responses to tone pairs

(Calford and Semple, 1995; Brosch and Schreiner, 1997; Wehr

and Zador, 2005); and although tones played against a silent

background may also sometimes facilitate later responses

(Brosch et al., 1999; Brosch and Schreiner, 2000; Wehr and Za-

dor, 2005), forward suppression appears to dominate in complex

continuous sounds (e.g., in awake ferrets; David and Shamma,

2013), consistent with our CGF observations.

Forward suppression could arise from direct linear (subtrac-

tive) inhibition, output gain (divisive) inhibition, or modulation

of input gain. Although measures of suppression in previous

studies might include contributions from all three mechanisms,
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the duration of suppressive effects in awake and anaesthetised

animals of many species is similar to that of the contextual influ-

ences seen here (Creutzfeldt et al., 1980; Scholl et al., 2010; Da-

vid and Shamma, 2013). Furthermore, forward suppression in

tone pairs appears to outlast inhibitory currents in the target

cell (Wehr and Zador 2005) and is specific to particular input

synapses (Scholl et al., 2010). Thus, narrowband delayed sup-

pression in the CGF could be an analog, in neural responses to

complex sounds, of this input-specific nonlinear component of

forward suppression in responses to tones. Such suppression

could arise from either synaptic depression or spike-rate adap-

tation along the auditory pathway. These adaptive mechanisms

acting at subthalamic stages of auditory processing (including in

the inferior colliculus) might drive narrowband suppression at the

shortest timescales in both cortex and thalamus, while differ-

ences between cortex and thalamus (and between A1 and

AAF) in suppression at longer timescales might reflect the

cascaded contributions of thalamocortical and intracortical

adaptation. Similar adaptive cascades have been hypothesized

to underlie the hierarchical emergence of deviance sensitivity in

the central auditory system at much longer timescales (Mill et al.,

2011).

Broadband Near-Simultaneous Enhancement

The nonlinear augmentation of both excitatory and inhibitory

input gain by broadband near-simultaneous sound energy may

be a neural correlate of perceptual sensitivity to common onsets.

Simultaneous onsets at different frequencies are salient even in a

complex sound environment, and guide both auditory stream

segregation and object identification (Bregman, 1994; Shamma

et al., 2011). While this perceptual phenomenon has long been

recognized (Bregman, 1994), a systematic neural correlate has

been elusive. Responses to simultaneous tone pairs or com-

plexes display a variety of cell-specific facilitatory and suppres-

sive effects in the auditory cortex (Shamma et al., 1993; Calford

and Semple, 1995; Sutter et al., 1999; Kadia and Wang, 2003;

Sadagopan andWang, 2009), arising largely from two-tone (sec-

ond-order) interactions (Nelken et al., 1994a, 1994b). Neurons in

the auditory cortex and thalamus of the bat show augmented

responses to particular combinations of sound frequency corre-

sponding to the harmonics of sonar calls and their echoes (e.g.,

Suga et al., 1979, 1983; Olsen and Suga, 1991; Wenstrup, 1999).

However, no systematic motif of gain enhancement by near-

simultaneous pairings has emerged, and it has remained unclear

how sound combinations interact with integration within the

receptive field. It may be that near-simultaneous gain facilitation

becomes significant only during auditory processing of complex

broadband sounds (cf. Nelken et al., 1997; Rotman et al., 2001),

when the preferential processing of simultaneous onsets may be

most functionally important.

It is unclear whether the off-frequency peaks we observed

reflect a special sensitivity to half-octave separations or an inter-

action between a broad central peak of simultaneous enhance-

ment and the earliest component of narrowband delayed

suppression. The latter scenario might arise from integration of

broadly tuned subthreshold inputs with strong short-term synap-

tic depression, consistent with reports that short-term spectral

integration in the auditory cortex extends over one to two oc-

taves (Kaur et al., 2004; Metherate et al., 2005). On the other
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hand, neural mechanisms associated with psychoacoustic ‘‘crit-

ical bands,’’ which are approximately one-third-octave wide in

themouse (Egorova et al., 2006; Egorova and Ehret, 2008), might

conceivably favor nonlinear interactions between sounds one

critical band apart. For example, off-frequency CGF peaksmight

arise from coherent modulations in adjacent frequency laminae

of the inferior colliculus, which discretize the midbrain tonotopic

gradient into approximately critical-band intervals (Schreiner

and Langner, 1997; Malmierca et al., 2008).

Variability across Cells and Brain Areas

The shapes of CGFs are notable for their variability as well as for

their consistency. Analysis of principal components of the CGFs

revealed cell-to-cell variability in the overall depth of delayed

suppression and the strength of off-frequency near-simulta-

neous enhancement. Thus, the consistent features of the mean

CGFs are not uniformly inherited from peripheral nonlinearities

but arise through the combination of different gain-modulation

profiles in individual cortical or thalamic neurons.

The systematic temporal variations in CGFs between thal-

amus and cortex, and A1 and AAF, are consistent with temporal

properties observed in STRFs (Miller et al., 2002; Linden et al.,

2003), suggesting that both linear and nonlinear components

of forward suppression operate on faster timescales in thalamus

than cortex, and in AAF than A1. In contrast, spectral profiles for

near-simultaneous gain enhancement were very similar in cortex

and thalamus, and also in A1 and AAF, although the magnitude

of the effect appeared stronger in A1, and facilitatory side peaks

fell at slightly larger frequency offsets in AAF. However, if the

apparent peaks arise through a combination of broad facilitatory

bumps and the effects of narrowband suppression, then these

small differences may simply result from the deeper short-term

suppression in AAF.

The consistency of CGFs in ventral and medial MGB accords

with the general similarity of many response properties in mouse

vMGB and mMGB (Anderson and Linden 2011) but seems

surprising given known differences between the subdivisions in

sensitivity to stimulus context over much longer timescales (An-

derson et al., 2009; Antunes et al., 2010; Antunes andMalmierca,

2011). Thus, the relatively fast context effects studied here may

differ from mechanisms of long-term SSA, even if they underlie

the short-term component, as we suggest above. Furthermore,

consistent contextual gainmodulation in auditory thalamic subdi-

visions also suggests that the CGF differences between cortical

fields A1 and AAF (especially in the temporal profiles for delayed

suppression) may arise at the thalamocortical synapse or intra-

cortically, rather than from differing patterns of thalamic input.

Conclusion
Theneuronal representation of sound is transformedbynonlinear

mechanisms as it ascends the auditory pathway. These mecha-

nisms manifest as the nonlinear interactions within the RFs of

neurons in thalamus and cortex captured by the CGF. Similar ef-

fectsmay shape sensory coding in other brain areas and sensory

modalities, and adapt across different behavioral contexts.

EXPERIMENTAL PROCEDURES

Detailed descriptions appear in Supplemental Experimental Procedures 1.



Surgical Procedures

Subjects were adult male mice of the CBA/Ca inbred strain. Mice were main-

tained at a surgical plane of anesthesia with ketamine and medetomodine.

Cortical surgical procedures were as described by Linden et al. (2003) and

conformed to protocols approved by the Committee on Animal Research at

the University of California, San Francisco, which were in accordance with fed-

eral guidelines for care and use of animals in research in the United States.

Thalamic surgical procedures were similar and were performed under a li-

cense approved by the UK Home Office in accordance with the United

Kingdom Animal (Scientific Procedures) Act of 1986.

Recording Procedures

Extracellular recordings were obtained from the auditory cortex and thalamus

using single or multiple tungsten electrodes, and spike-sorted off-line to

extract responses from either small clusters of neurons or well-isolated single

units. Cortical areas A1 and AAF were identified physiologically, and thalamic

subdivisions vMGB and mMGB were identified histologically.

Stimuli

All experiments were conducted in a sound-shielded anechoic chamber

(Industrial Acoustics). Auditory stimuli were directed toward the ear contralat-

eral to the recording site via a free-field speaker, and a sound-attenuating plug

was placed in the ipsilateral ear. Prior to the start of each experiment, acoustic

stimuli were calibrated with a Brüel and Kjær 1/4’’ microphone positioned near

the opening of the animal’s auditory canal. Typically, the calibration ensured

that the frequency response of the sound system was flat to within ±2 dB

over 2–90 kHz.

A 2–32 kHz dynamic random chord (DRC) stimulus described previously by

Linden et al. (2003) was used for both cortical and thalamic experiments. While

much simpler in structure than many natural sounds, the DRC stimulus can be

considered a complex stimulus in that it contains a huge variety of spectrotem-

poral conjunctions of tonal elements, which provide a substrate for combina-

tion-sensitive nonlinearities (such as those captured by the CGF) to act.

Data Analysis and Modeling

From larger databases of cortical and thalamic recordings collected during

presentations of the DRC stimulus, we selected for analysis here those record-

ings with significantly nonzero stimulus-dependent signal power (see Supple-

mental Experimental Procedures 3). In order to enable comparisons between

brain regions, we further restricted our attention to those recordings that had

been reliably localized to A1 or AAF within the auditory cortex, or to vMGB or

mMGB within the auditory thalamus. We then fit both linear STRF models and

multilinear CGF models to the DRC-evoked neural responses.
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Supplementary Figure S1: Predictive performance of separable models (related to Fig. 2a of the
main text)

The generalisation performance (measured as a fraction of predictable response variance accurately predicted
during cross-validation) of a model with both CGF and PRF inseparable (ordinate) as in the main text, com-
pared to models where either the CGF alone (left abscissa) or both CGF and PRF (right abscissa) are constrained
to be separable. The inseparable model provides a better fit to the contextual input-specific gain modulation
than either alternative. In particular, it generalises more accurately despite the many more degrees of freedom
that are contained within the two inseparable weight matrices than in their separable equivalents. These added
degrees of freedom should allow for greater overfitting in the inseparable model, and thus the size of the true
generalisation advantage may be underestimated here.
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Supplementary Figure S2: Dual-CGF model (related to Fig. 2 of the main text)

(Description on following page)
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The model employed in the main text assumed that the form of contextual input-specific gain dependence,

embodied in the CGF, was the same at each point within the PRF. We tested this assumption by studying

“dual-CGF” models in which the CGF was allowed to differ between two different regions of the PRF. Results

are shown here for a model in which the two regions were defined by the timing of PRF excitation and inhibition.

(a) Illustration of the model. Each PRF (identified by using the standard “single-CGF” model) was divided into

two regions along its temporal axis by identifying the point of transition from net excitation to net inhibition. A

model was then re-fit with two different CGFs: CGFexc applied to the short-latency weights (with net excitation)

and CGFinh applied to longer-latency weights (with dominant inhibition). (b) Example dual CGFs fit to six

recordings each in cortex (upper panels) and thalamus (lower panels). Pairs of CGFs look broadly similar,

supporting the hypothesis that the form of contextual gain dependence does not differ substantially between

the two PRF regions. (c) Distribution of correlation coefficients between CGF weights for (CGFecx,CGFinh) pairs

fit to the same recordings (solid lines) compared to the distribution obtained for pairs fit to different recordings

(dashed lines). The true pairs are more similar than shuffled ones. (d) Difference in generalisation performance

(measured as a fraction of predictable response variance accurately predicted during cross-validation) of the

single- and dual-CGF models, plotted as a function of recording variability (normalised noise power). The

single-CGF model generalises more accurately overall, and even for recordings with low variability, suggesting

that the added degrees of freedom in the dual-CGF models lead to overfitting and do not help model the

contextual input-specific gain effect more closely. Similar results were obtained when the two CGFs applied to

the low-frequency half and high-frequency half of the PRF (not shown). Taken together, these results support

the interpretation that a similar pattern of input-specific gain modulation acts upon different regions of the

receptive field.
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Supplementary Figure S3: CGF model performance compared to performance of quadratic models
(related to Fig. 2 of the main text)

(a,b) Neither a one-dimensional nor a two-dimensional quadratic model generalises as well as the CGF-based
context model in cross-validation. Conventions as in Fig. 2a of the main text. Both generalisation performance
and training fit (c,d) are normalised by the estimated signal power of the recording. (c) The one-dimensional
quadratic model accounted for a smaller part of the training data signal power than did the CGF model,
indicating that the degrees of freedom available within the outer-product Volterra form, while more than twice
as numerous than the degrees of freedom of the CGF model (720 versus 324), are nevertheless not as suitably
directed to capture the stimulus-dependent neural response even in training data. (d) The two-dimensional
model, with more than four times as many parameters as the CGF model, did achieve a better fit to the
training data — but still generalised more poorly than the CGF model even after regularisation (b), suggesting
that the improvement resulted from overfitting.
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Supplementary Figure S4: Comparing PRFs and STRFs (related to Fig. 4a of the main text)

(a–d) STRFs estimated using the independent DRC stimulus agree with predictions derived from the estimated
CGF model parameters. As derived in Supplementary Experimental Procedures 5, the predicted STRF is
formed by combining a copy of the PRF scaled by a factor β with the result of convolving the PRF by the CGF,
scaled by the average stimulus strength s̄ (a). All panels for each of the two example recordings are shown at the
same color scale. The error between the predictions and the measured STRFs is small. Across the populations,
the majority of variance in the measured STRFs can be accurately predicted from the CGF model (b). The
convolution term generally contributes less than a third of the predicted variance (c), suggesting that changes
in STRF shape arising through nonlinear contextual interactions are significant, but contained when using an
independent DRC stimulus. More structured or natural stimuli are likely to produce a larger shape difference
(Christianson et al., 2008). The scale factors applied to the PRF to form the prediction are generally less than
1 (d), indicating that on average the PRF weights are stronger than the STRF weights. This observation is
consistent with the finding that CGF weights are predominantly suppressive.
(e–h) Comparison of receptive-field extents estimated by the PRF and STRF. Field durations and bandwidths
were estimated for the excitatory and inhibitory subfields and for the overall linearly-weighted receptive field
using the definitions employed by Linden et al. (2003). Estimated extents were quantised by the stimulus
spectrotemporal resolution at 20ms in time and 1/12 octave in frequency, however values were jittered within
this quantisation window to aide visualisation of the density of data points. PRF and STRF structure appears
broadly similar, although inhibitory subfields tend to be of longer duration in the PRF.
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Supplementary Figure S5: Contribution of cell-specific CGFs to predictions (related to Fig. 6 of
the main text)

The generalisation performance (measured as the fraction of predictable response variance accurately predicted
during cross-validation) of models with an individual CGF fit to each recording as described in the main text,
compared to a model in which the CGFs for all recordings were fixed either (a,c) to the mean CGF for the
corresponding cortical field (A1 or AAF) or (b,d) to the mean CGF in the thalamus (where the subregion means
were indistinguishable). Performance of both models was broadly similar across each population, suggesting
that the common field-specific contextual gain effects identified in Fig. 7 of the main text play a major role
in shaping all gain-sensitive responses. However, the effective number of degrees of freedom available to the
population of models with individual CGFs fit to each recording is many times greater than the number of
degrees of freedom for models with a fixed CGF for all recordings. The additional degrees of freedom in the
individual CGFs will allow for overfitting, and should thus tend to reduce generalisation performance unless
these degrees of freedom are also important to modelling the true response. This effect is reflected in a trend
(c,d) for individual-CGF models to generalise more poorly than those with a fixed CGF when recordings are
more variable (higher normalised noise power), as these are the cases where overfitting is likely to play a more
significant role (see also Fig. 2 of the main text). Notably, however, for the recordings with the most reliable
stimulus-dependent signal (lowest normalised noise power), generalisation performance was usually better for
models with cell-specific CGFs than for models with a fixed CGF, at least in the auditory cortex (c). Hence, we
conclude that the individual variation in CGFs within a field does also contribute to shaping sensory responses,
but that we did not have the statistical power in the present study to quantify the precise extent of this
contribution.
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Supplementary Experimental Procedures

1 Details of experimental procedures (related to Experimental Procedures)

1.1 Animals

Twelve adult male CBA/CaJ mice (6–15 weeks old) were used for cortical experiments, and six adult male

CBA/Ca mice (6–8 weeks old) for thalamic experiments. These mice are the same CBA/Ca inbred strain,

obtained from different vendors; Jackson Labs versus Harlan or Charles River UK. Mice were maintained in

standard cages and under standard mouse housing conditions.

1.2 Surgical procedures

Surgical procedures for cortical and thalamic recording experiments were similar to those described previously in

Linden et al. (2003). Mice were anaesthetised with ketamine and medetomidine. After an initial intraperitoneal

bolus injection of anaesthetic, a cannula was placed into the animal’s peritoneal cavity so that maintenance

boluses or continuous infusion of anaesthetic could be provided. Dexamethasone was administered to control

brain oedema, atropine to minimise bronchial secretions, and Ringer’s solution to ensure adequate hydration.

The animal was kept on a homeothermic blanket (Harvard Instruments) to ensure that the body temperature

was maintained at approximately 37.5 ± 0.5◦C (monitored via a rectal probe). Once fully anaesthetised and

prepared for surgery, the animal was placed onto a bite bar in order to immobilise its head, after which the skin

was transected along the midline to expose the skull.

For cortical experiments, a small craniotomy was performed on the left-hand side of the skull, to expose a

region bordered rostrally by the lambdoid suture, caudally and ventro-laterally by the squamosal suture, and

dorso-medially by the temporal ridge. Cortical areas A1 and AAF were identified physiologically by reversal of

the tonotopic gradient as described previously in Linden et al. (2003).

For thalamic experiments, a craniotomy approximately 2.5 mm in diameter, centred 2.75 mm lateral to midline

and 2.75 mm caudal to bregma, was performed on the right-hand side of the skull, enabling vertical access to the

thalamus. Thalamic recording sites were localised to vMGB or mMGB histologically, using procedures similar

to those described by Anderson et al. (2009) and Anderson and Linden (2011). Electrolytic lesions were created

by passing current through the desired electrode on the array (5µA for 7 secs). Such lesions were typically

created at the most medial and lateral electrodes on the array that yielded auditory activity. Lesions were

replicated at both the top and bottom of the electrode track. Ideally, this procedure yielded four lesions (two

at the top of the track, and two at the bottom), bracketing the area over which auditory activity had been

recorded. This placement of lesions allowed for estimation of shrinkage and histological reconstruction of most

recording sites.

Once lesioning was complete, animals were euthanised with sodium pentobarbital and perfused transcardially

with 4% paraformaldehyde in 0.1 M phosphate buffer. Following perfusion, the brain was removed and placed

in the paraformaldehyde solution for 1–2 days. Blocks containing the full auditory thalamus were then cut into

50µm slices using a vibratome. The sections were then stained for the metabolic marker cytochrome oxidase

(CYO), which delineates auditory thalamic subdivisions. Slides were incubated for 3–7 hours at 37◦C in a

solution containing 20 mg of diaminobenzidine hydrochloride in 10 ml of distilled water and 30 mg of cytochrome

c with 3 g of sucrose in 30 ml of 0.1 M phosphate buffer.

Electrolytic lesions were visualised in the stained brain sections using a Zeiss AxioPlan 2 Imaging microscope

(magnification x25–x200). The position of each neuron was assigned to the appropriate subdivision as defined by

the CYO distribution. Recording sites for which localisation was ambiguous were not included in the subdivided

datasets.

1.3 Recording procedures

For cortical experiments, extracellular recordings were made using epoxylite-coated tungsten electrodes (FHC

Inc.; 1–4 MΩ impedance). These were introduced into the left auditory cortex in penetrations orthogonal to the

cortical surface. Recordings targeted the thalamorecipient layers III/IV (Smith and Populin, 2001) by cortical

depth (350–600µm below the dural surface), and were obtained using clicks and frequency sweeps as search
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stimuli. Cortical areas A1 and AAF were identified physiologically by reversal of the tonotopic gradient as

described in Linden et al. (2003).

For thalamic experiments, extracellular recordings were made across all thalamic subdivisions using custom-

made linear arrays consisting of eight tungsten electrodes (World Precision Instruments; impedance typically

1-2 MΩ). The array was placed perpendicular to the midline with the first penetration targeting a position

approximately 2 mm from midline, 3 mm from bregma, and 2200µm below the cortical surface, as this position

was deemed most likely to yield responses from all three major thalamic subdivisions (Anderson and Linden,

2011). Neurons responsive to auditory stimuli were located by their responses to clicks. Once an auditory

response had been established (typically at depths of about 2900µm), further sites were located by progressing

the electrode 100µm at a time, until auditory activity was lost. Histological delineation was carried out as

described above to identify subdivision locations for all thalamic recordings, and recording sites for which

localisation was ambiguous were not included in the subdivided datasets.

Cortical and thalamic recordings were analysed off-line using Bayesian spike-sorting techniques (Sahani, 1999;

Lewicki, 1998) to extract responses from either small clusters of neurons or single units. We used automated

clustering criteria to quantify single-unit isolation. Using Bayesian criteria requiring >95% probability of single-

unit isolation, only a minority of the recordings in cortex and thalamus were judged to be definitively single

units; therefore we conservatively assume here that many recordings were from local multiunits.

1.4 Stimuli

To obtain an initial characterisation of the frequency-intensity response area for each recording site, we used

simple tonal stimuli consisting of 50 or 100 ms tone pulses, ramped up and down with 5 ms cosine gates. The

frequency and intensity of each tone were varied pseudorandomly over a 2–32 kHz range of frequencies (in

1/12-octave steps) and a 0–70 dB SPL range of in intensities (in 5 dB increments). Other simple stimuli such

as clicks, broadband noise, and frequency-modulated sweeps were also used to identify recording sites where

auditory activity was present.

We then presented the 2–32 kHz dynamic random chord (DRC) stimulus described previously by Linden et al.

(2003). This spectrotemporally rich stimulus is clocked such that every 20 ms a combination of 20 ms cosine-

gated tone pulses with randomly chosen frequencies and intensities is generated. Centre frequencies of the tone

pulses were chosen from 48 different possibilities (2–32 kHz in 1/12 octave steps). The number of tones that

composed a chord was random, with an average density of two tone pulses per octave. The peak level of each

pulse was chosen randomly from 10 different intensity levels, 5 dB SPL apart in the range 25–70 dB SPL. A

single trial of the DRC stimulus lasted 60 seconds. Full presentation of the stimulus lasted for 20 minutes,

allowing for 20 continuous trials. Cortical experiments also involved presentations of a 25–100 kHz version of

the DRC stimulus, which was not used in thalamic experiments; cortical recordings using this “high-frequency”

DRC stimulus were therefore not included in the analysis here.

1.5 Data analysis and modelling

We fit both linear STRF models and multilinear contextual input-specific gain models to the DRC-evoked neural

responses. Estimation of the STRFs was carried out using the automatic smoothness determination algorithm

(ASD) algorithm (Sahani and Linden, 2003a). Conceptually, this approach uses regularised linear regression

with a smoothness constraint which is optimised separately for each recording.

The contextual input-specific gain model of equation 1 of the main text is bilinear, and was fit using the

alternating least squares (ALS) approach of Ahrens et al. (2008). Each least-squares step was regularised using

either the ASD-derived optimal spectrotemporal smoothing (for the PRF) or a fixed smoothing bandwidth

of 40 ms and 1/6 octave (for the CGF). The fixed CGF smoothing was necessary to facilitate straighforward

averaging and comparison of CGF properties across recordings. All PRFs and CGFs shown in this study were

regularised in this way. However, training data performance measures in Fig. 2b of the main text and Fig. 2c

of the main text were derived from unregularised fits.

Generalisation performance was assessed using ten-fold cross-validation, reserving a randomly distributed dis-

joint subset of one-tenth of the bins as the validation set for each of the ten repetitions.
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2 Analysis of input gain specificity (related to Fig. 1 of the main text)

To illustrate the locality of the input gain effects in an example unit, we chose two spectrotemporal positions

over an octave apart within the responsive region of the unit’s STRF (Fig. 1f of the main text): input 1 had a

temporal offset of 20 ms and a centre frequency of 31.09 kHz (j1 = 2; k1 = 48) and input 2 had a temporal offset

of 40 ms and centre frequency of 13.85 kHz (j2 = 3; k2 = 34). For each input, we first calculated the average

number of spikes observed when the sound amplitude at that point in the STRF took on each of the 11 possible

values (including 0) s0 . . . s10. That is, for each input p = 1, 2 and level index l = 0 . . . 10, we averaged the

responses r(t) at all times at which the DRC stimulus took on the level sl at the pth input location:

r̄p(sl) = 〈r(t)〉t : s(t−jp,kp)=sl
.

The slope of the linear relationship between r̄p(sl) and sl is essentially an unregularised estimate of the corre-

sponding STRF weight (Fig. 1g–i of the main text, grey open circles and dashed lines), that is the gain with

which the unit responds to this particular input.

We then asked how this response gain was affected by local and remote context. We fit the context model to

this unit, and computed the predicted gain modulation G(i, k) at each time i and frequency k in the stimulus.

(Similar values are illustrated in Fig. 3 of the main text.) To avoid risk of overfitting, for this analysis we

estimated the gain modulations using a cross-validation scheme: that is, the gain at time i was estimated using

a CGF derived from a cross-validation fold in which the training data did not include time i. We divided the

values G(i, k) into three equal-sized quantile sets — Qlow, Qmid and Qhigh — and repeated the averages, now

selecting for times when either the local or the remote context fell in a specific quantile. That is, for input

p = 1, 2 and context q = 1, 2 we found

r̄p,q low(sl) = 〈r(t)〉t : s(t−jp,kp)=slandG(t−jq,kq)∈Qlow
,

along with similar averages for Qmid and Qhigh. These values, along with the corresponding linear relationships,

are shown in Fig. 1g–j of the main text. As described in Results, we then tested hypotheses regarding changes

in the slopes of these linear relationships. The significance of the changes in slope was assessed by comparing

each observed difference in slopes to a simulated null distribution of differences constructed by permuting the

time indices of the predicted gain values G(i, k) and then repeating the analysis. The p-values quoted are the

proportion of 1000 simulations on which a larger difference in slopes was observed after permutation.

Note that even if context had no effect on input gain, our analysis could generate a change in intercept in the

r̄p,q relationships. This is because the CGF applied around (say) location 1 is not orthogonal to the local part

of the STRF, and so the local predicted gain will be correlated with the linear input integrated over that local

region. Thus, restricting to times when G(t− j1, k1) ∈ Qlow implicitly selects times when the local linear input

around location 1 is low. However, in a linear model this effect must be additive and independent of the level

at input 1 (and of that at input 2, given that it is an octave away). Thus it would lead to a constant offset in

the linear relationships, not to a change in slope.

3 Evaluating predictive power of STRF and CGF models (related to Fig. 2 of the

main text)

This section of Supplementary Experimental Procedures provides a more detailed explanation of the methods

used in Fig. 2 of the main text for evaluating predictive power of STRF and CGF models. This approach was

originally introduced by Sahani and Linden (2003b).

Intuitions underlying the approach

The variability of neural responses to a repeated stimulus leads to two difficulties in evaluating the predictive

performance of a stimulus-response function model such as an STRF model or CGF model. First, the variability

obscures the desired target for the model output. Perfect prediction of a noisy response is impossible, even in

principle; moreover, since the true underlying relationship between stimulus and neural response is unknown, it

is unclear what degree of partial prediction could possibly be expected. Second, noise introduces error into the

estimation of the model parameters themselves (e.g., the STRF weights, or in the CGF model, the PRF and
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CGF weights). Consequently, the estimated model parameters will inevitably differ from the “ideal parameters”

that would have been obtained in the absence of noise, and response predictions from the estimated model will

therefore understate the predictive performance that those ideal parameters might have achieved.

These difficulties are both manifest in a classical statistical measure of goodness-of-fit: the coefficient of deter-

mination, or r2 statistic. This is the ratio between the reduction in variance achieved by a regression model

(the total variance of the measured outputs minus the variance of the residuals) and the total variance of the

measured outputs. The total variance of the outputs appearing in the denominator includes a contribution from

the noise, and so an r2 of 1 is an unrealistic target and the actual maximum achievable value of r2 is unclear.

Moreover, the reduction of variance obtained using the same data as were employed to to fit the model parame-

ters (the “training data”), which is the factor that appears in the numerator of r2, includes some “explanation”

of noise due to the phenomenon of overfitting, where a chance partial correlation between the model inputs and

the noise allows the model to fit these elements of the variability.

Following Sahani and Linden (2003b), we take an alternative approach in this study, compensating for the

disadvantages of r2 in three key analytic steps that overcome the confounding effects of neural response vari-

ability on model evaluation and model estimation. First, we derive an unbiased estimate of the total predictable

(stimulus-dependent) component of the variance in the neural response (see the section on maximum predictable

power below). Second, we assess model predictions relative to this noise-independent standard, both on the

training data used to estimate the model parameters (as for the r2) and on test data not used to estimate

the parameters, using the standard procedure of cross-validation, described below. For any single recording,

the predictive performance of the estimated model on training data and on test data provide, respectively,

over- and under-estimates of the predictive power of the version of the model with ideal parameters. When

the trial-to-trial variability of the neural response is large, these estimates might bound the predictive power of

the ideal version of the model extremely loosely. However, upper and lower estimates of predictive power for

a population of similar neural recordings can be extrapolated with respect to the degree of variability in each

recording, to obtain an estimate of the fraction of predictable power that would have been explainable given

an idealised recording from the same population that exhibited no trial-to-trial variability. In the third and

final stage of the analysis, we perform such an extrapolation, to quantify the extent to which either STRF or

CGF models can account for auditory cortical and thalamic responses to dynamic random chord stimuli in the

zero-noise limit.

Maximum predictable power (“signal power”)

In our experiments, a DRC stimulus comprising T random chords was repeated N (= 20) times for each

recording. The resulting spike-trains were binned (in 20 ms bins) to yield a set of N response vectors {r(n)}Nn=1

for each unit, with each response vector formed of T spike counts (r
(n)
1 , r

(n)
2 , . . . , r

(n)
T ). Our objective is to

measure the performance of a predictive model in terms of the fraction of response power that it successfully

predicts, where “power” is used here in the sense of average squared deviation from the mean over time:

P (r) =
〈
(rt − 〈rt〉)2

〉
, with 〈·〉 used to denote averages over time. As argued above, only some part of this

total response power is predictable, even in principle; fortunately, the magnitude of this signal power can be

estimated for each neuron by analysing the repeated responses to the same stimulus sequence. We provide here

an intuitive derivation for the relevant estimator; see also Sahani and Linden (2003b).

The impossibility of perfect prediction results from the variability in the responses r(n). To characterise this

variability, we divide each response into a reliable and a variable component: r(n) = µ+η(n), with the variable

component η(n) defined to have an expected value of zero in every time bin. From the point of view of a predictive

model, η(n) is unpredictable noise, and indeed we refer to it in the following as “noise” even though it may in

fact reflect biologically meaningful but non-stimulus-locked activity. If we could average together an infinite

set of responses to the same stimulus, we would obtain the “signal” part µ. This reflects the stimulus-driven

response of the neuron under consideration, and is thus the only component that is predictable by a model of

the cell’s stimulus-response function. However, the average of a finite number of trial responses collected within

experimental constraints retains a contribution from the noise, and thus the true signal response µ cannot be

determined. Nevertheless, it is possible to form an unbiased estimator of the power in that response, as follows.

First, the simple property of additivity of variances implies that P (r(n))
E
= P (µ) +

〈
(η

(n)
t )2

〉
(where the symbol

E
= is used to represent “equal in expectation”—i.e., the equality may not hold on any trial, but the expected
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values of the left- and right-hand sides are equal). This relationship depends only on the noise component having

been defined to have zero expectation, and holds even if the variance or other property of the noise depends

on the signal strength as would be expected for a Poisson noise process. We now construct two trial-averaged

quantities, similar to the sum-of-squares terms used in the analysis of variance (ANOVA): the power of the

average response, and the average power per response. Using · to indicate trial averages:

P (r(n))
E
= P (µ) + P (η(n)) and P (r(n))

E
= P (µ) + P (η(n)).

Assuming the noise in each trial is independent, although the noise in different time bins within a trial need not

be, we have: P (η(n))
E
= P (η(n))/N . Then solving these equations for P (µ) suggests the following estimator for

the signal power:

P̂ (µ) =
1

N − 1

(
NP (r(n))− P (r(n))

)
. (S1)

A similar estimator for the noise power is obtained by subtracting this expression from P (r(n)). Both estimators

are unbiased, provided only that the noise distribution has defined first and second moments and is independent

between trials. Unlike the sum-of-squares terms encountered in an ANOVA, the signal power estimate is not a

χ2 variate even when the noise is normally distributed (indeed, it is not necessarily positive). However, since

each of the power terms in Eq. S1 is the mean of at least T numbers, the central limit theorem suggests that

P̂ will be approximately normally distributed for recordings that are considerably longer than the time-scale of

noise correlation (in the experiments considered here, T = 3000, equivalent to a duration of 60 s). Its variance

is given by:

Var
[
P̂
]

=
4

N

(
1

T 2
µTΣµ− 2

T
µσTµ + µσµ

)
+

2

N(N − 1)

(
1

T 2
Tr [ΣΣ]− 2

T
σTσ + σ2

)
, (S2)

where Σ is the (T × T ) covariance matrix of the noise, σ is a vector formed by averaging each column of Σ, σ

is the average of all the elements of Σ and µ is the time-average of the signal µ. Thus, Var
[
P̂
]

depends only

on the first and second moments of the response distribution; substitution of data-derived estimates of these

moments into Eq. S2 yields a standard error bar for the estimator.

In this way we have obtained an estimate P̂ (along with corresponding uncertainty) of the maximum possible

signal power that any model could accurately predict, having assumed neither a particular distribution nor

short-time-scale independence in the noise. Essentially, this signal power is the stimulus-dependent power in

the neural response, i.e., the part of the response that is, in principle, predictable from the stimulus alone. The

signal power therefore provides an absolute yardstick against which the performance of any stimulus-response

function model can be judged. If the model is correct, then it should predict all of the signal power in the neural

responses for a given stimulus, regardless of the level of noise power.

Upper and lower estimates of model predictive power

The estimate of the signal power forms a reference against which to compare the magnitude of response power

accurately predicted by a particular model. This model predictive power is not necessarily the power of the

predicted response ρ, since that prediction may be inaccurate. Instead, as in the numerator of the coefficient

of determination, it is given by the difference between the power in the observed response P (r) and the error

power or power in the residuals P (r− ρ).

The magnitude of this predictive power will depend both on the parameters used for the model prediction, and

on the stimulus used to compare prediction to measurement. We define the true predictive power of a particular

class of model (such as the STRF model) to be the predictive power that would be achieved by the version of

the model with “ideal” parameters (e.g., ideal STRF weights or coefficients), which maximise predictive power

across all stimulus-response combinations of the type under study (e.g., responses to all possible random chord

stimuli). This true predictive power cannot be determined from realistic volumes of experimental data; however,

it is possible to obtain a pair of predictive power estimates that are likely to bracket its value, as explained

below.

Model parameters (such as the weights or coefficients of the STRF) are commonly estimated by minimising
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the mean squared error of the model prediction on the training data. By definition, these least-mean-squares

(LMS) parameters produce model predictions for the training data that have minimum possible error, and

therefore maximal predictive power. Of course, the resulting maximal value, the training predictive power, will

inevitably include an element of overfitting to the training data, and so will overestimate the true predictive

power of the model with ideal parameters (which would perform best on average for all possible stimulus-

response combinations, not just the training data). More precisely, the expected value of the training predictive

power of the LMS parameters is an upper bound on the predictive power of the model with ideal parameters.

Thus, the measured training predictive power can be considered an upper estimate of the true predictive power

of the model class.

We can also obtain a lower estimate, defined similarly, by empirically measuring the generalization performance

of the model by cross-validation. Cross-validation is a standard statistical procedure (Duda and Hart, 1973),

in which each data set is repeatedly divided into a “training” segment and a “test” segment (in this study,

9/10 and 1/10 of the full stimulus length, respectively). Model parameters are estimated using responses to the

training segment alone; a test prediction is obtained by applying the model to the test segment; and the mean

squared difference between this prediction and the observed response to the test segment is calculated. This

procedure is repeated multiple times (here, 10 times), on each occasion using a different division of the data

into training and test segments. The average of the multiple mean-squared-error figures obtained in this way is

the cross-validation error power. The difference between this error power and the total response power in the

recording is the cross-validation predictive power. Cross-validation provides an unbiased estimate of the average

generalization performance of the fitted models (as obtained from the training fraction of the available data).

Since these models are inevitably overfit to their training data, not the test data, the expected value of this

cross-validation predictive power bounds the predictive power of the model with ideal parameters from below,

and thereby provides the desired lower estimate of the true predictive power of the model class. These lower

estimates may be tightened somewhat by optimising model parameters to improve generalisation performance,

for example using the Bayesian smoothing and de-noising techniques applied here (Sahani and Linden, 2003a).

Population extrapolation to zero-noise limit

For any one recording of finite length, the true predictive power of the model class (i.e., the predictive power of

the version of the model with ideal parameters) can only be bracketed between the upper and lower estimates

defined above. The looseness of these estimates will depend on the variability or noise in the recording. For a

recording with high trial-to-trial variability, the model parameters will be more strongly overfit to the noise in

the training data. Thus we expect the training predictive power on such a recording to appear high relative to

the signal power, and the cross-validation predictive power to appear low. Indeed, in very high-noise conditions,

the model may primarily describe the stimulus-independent noisy part of the training data, and so the training

predictive power might exceed the estimated signal power (P̂ (µ)), while the cross-validation predictive power

may fall below zero (that is, the predictions made by the model may be worse than a simple unchanging mean

rate prediction). Thus, the estimates may not usefully constrain the predictive power measure for a particular

recording.

However, for a population of recorded neurons that are relatively homogeneous, it is possible to tighten the

estimates of model predictive power for the population as a whole, by normalising the upper and lower estimates

of model predictive power by the signal power for each recording, plotting these normalised estimates as a

function of noise power—also normalised by signal power—for each recording, and then extrapolating across

the population to the theoretical zero noise level. The upper and lower estimates of model predictive power

in this zero-noise limit provide the desired noise-independent measure of model predictive performance. This

extrapolation is shown in Fig. 2 of the main text for both STRF and CGF models, and for the populations of

auditory cortical and thalamic recordings.

4 Fitting 1-D and 2-D quadratic models (related to Supplementary Fig. S3)

We implemented one- and two-dimensional quadratic models to compare with the CGF model. Like the CGF

model, these models are constrained parametrisations of the second-order spectrotemporal Volterra kernel;

however, the low-dimensional constraint is not formulated in terms of input-specific contextual gain. Similar

models were discussed by Park et al. (2013) in the context of an approximate fitting procedure. While the
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estimation method used there was consistent for low-rank models (in the sense that if the data actually arose

from a low-rank quadratic model, their approach would converge to the correct parameters as the number of

available data grew), the leading eigenvectors of the full second-order term do not estimate the optimal low-rank

model when the data arise from a different process. Thus, to provide the fairest comparison to our CGF model

fits, we explicitly sought low-rank quadratic forms which were optimal in the sense of regularised least-squares.

A K-dimensional quadratic model takes the form

r̂(i) = c+ wtf · s(i) +

K∑
k=1

λk
(
wq

k · s(i)
)2

where the vectors wq
k (k = 1 . . .K) parametrise the second-order Volterra kernel matrix (V ) using K outer

products: V =
∑K

k=1 λkwq
kwq

k
T

. Including the dimension corresponding to the linear term wtf , this model may

also be interpreted as a (K + 1)-dimensional LN cascade with a second-order polynomial nonlinearity.

A 1-D quadratic model has a similar number of degrees of freedom to the context model (a single quadratic

basis component wq
1 with 720 degrees of freedom in place of the CGF with 324 degrees of freedom). However

least-squares fitting of such a model is not straightforward. Thus we first fit a 2-D quadratic model of the form

r̂(i) = c+ wtf · s(i) + s(i)TuvTs(i)

using the same alternating least-squares method as we used to fit the CGF: alternately obtaining least-squares

values of (c,wtf ,u) holding v fixed, and of (c,wtf ,v) holding u fixed. This approach also allowed us to use a

regularising prior to improve generalisation — when fitting models for cross-validation we set the prior on wtf ,

u and v to be the optimal ASD smoothing prior obtained when fitting the STRF model. The least-squares

models used to evaluate training fit were unregularised.

Although it exploits a rank 1 decomposition of the quadratic kernel matrix, as long as u and v are unconstrained,

this model is equivalent to a two-dimensional model with λk and wq
k (k = 1, 2) given by the eigenvalues and

eigenvectors of 1
2 (uvT+vuT). (The equivalence follows from the observation that sTAs = 0 for an antisymmetric

matrix A and any vector s, and so only the symmetric part of the product uvT contributes to the model output.)

We found the 1-D quadratic model by gradient descent in the mean squared error, constraining wq
1 to lie within

the two-dimensional subspace spanned by the eigenvectors derived from the optimal (regularised or not, as

appropriate) 2-D model. Although when using a general structured or natural-sound stimulus, the optimal 1-D

quadratic model may not lie within the subspace spanned by the optimal 2-D model, the expected difference

vanishes for a independent random stimulus with Gaussian-distributed amplitudes. Numerical experiments

suggested that any bias introduced by our two-step estimation process was also small for the independent DRC

stimulus.

5 Predicting the STRF for a DRC stimulus from the PRF and CGF (related to

Supplementary Fig. S4)

The details of an STRF fit to a nonlinear neural response will depend on details of the stimulus by which

the response was evoked. Stimuli with non-trivial statistical structure — such as natural sounds and some

artificial stimuli including spectrotemporal ripples — may engage specific nonlinear encoding mechanisms and

lead to STRF estimates that substantially misrepresent the neuron’s true response properties (Christianson

et al., 2008). This general point will also apply to responses with nonlinear context-dependent input-specific

gain modulation of the type revealed here, and so an STRF estimated by neglecting contextual effects may differ

significantly from the corresponding PRF in ways that reflect the interaction between the context-dependence

and the structured statistics of the sound.

However, the DRC stimulus, with its independent and identically distributed (iid) tone pulses, is designed to

reduce the effects of such nonlinear distortion (Christianson et al., 2008). In particular, this property means

that — provided the dominant combination-dependent nonlinearity in the response is indeed contextual input-

specific gain modulation — it is possible to find a closed-form expression for the STRF weights that should be

estimated from a DRC stimulus by using the estimated values of the PRF and CGF.

Consider a DRC stimulus with iid pulse energies s(i, k) (where i indexes time and k pulse frequency) that evokes

14



a measured response r(i) in a neuron whose mean firing rate is accurately described by the quadratic contextual

input-specific gain model. Then,

r(i) = c+

J∑
j=0

K∑
k=1

wtf
j+1,ks(i− j, k)

(
1 +

M∑
m=0

N∑
n=−N

wτφ
m+1,n+N+1s(i− j −m, k + n)

)
+ η(i) , (S3)

where c is a firing rate offset, wtf
·,· are the PRF weights, wτφ

·,· the CGF weights, and η(i) is a noise term with

zero mean but otherwise unconstrained distribution. It will be useful to collect the PRF weights into a vector

with L ≡ (J+1)K elements, wtf . The subscript notation wtf
(jk) will then refer to the element of the PRF vector

that corresponds to time offset j and frequency bin k in the PRF matrix: that is, wtf
(jk) = wtf

j+1,k. Similarly, we

define an L-element stimulus vector s(i) such that s(jk)(i) = s(i− j, k); and also an (L+ 1)-element augmented

stimulus vector s̃(i) =

[
1

s(i)

]
Now consider the estimate of an STRF defined over the same (J + 1)×K region of the stimulus as spanned by

the PRF. The STRF model is

r̂(i) = cSTRF +

J∑
j=0

K∑
k=1

wSTRF
j+1,ks(i− j, k) , (S4)

where cSTRF is model firing rate offset (which might differ from c) and wSTRF
·,· are the STRF weights. Again, we

define an L-element vector wSTRF with wSTRF
(jk) = wSTRF

j+1,k , and the (L+1)-element vector w̃STRF =

[
cSTRF

wSTRF

]
.

Then the least-squares estimate of the STRF parameters is given by the familiar regression form:

w̃STRF =
〈
s̃s̃T
〉−1〈rs̃〉 . (S5)

The angle brackets in equation S5 represent averages over time and we drop the explicit time index i from the

averaged expressions. We assume that the stimulus used for estimation is long enough for these time-averages to

converge to their corresponding expected values (an assumption that also justifies the use of the unregularised

maximum-likelihood estimate). The expected value of the estimated STRF for a neuron with a mean firing

rate described by the contextual input-specific gain model is then obtained by evaluating the expectations of

equation S5 with r set to the value given by equation S3. We perform this evaluation one term at a time.

Consider first the stimulus autocorrelation term
〈
s̃s̃T
〉−1

. As the tone pulses within the DRC stimulus are iid,

the expected value and variance of each stimulus element have constant values, which we write as s̄ and σ2
s

respectively. The expected second moment of each stimulus element is then
〈
s(i− j, k)2

〉
= s̄2 + σ2

s ; but by

independence the cross-moments are just 〈s(i− j, k)s(i− j′, k′)〉 = s̄2 when j 6= j′ or k 6= k′. Assembling these

values into matrix form (and writing 1 for a vector of L ones and I for the L× L identity matrix):

〈
s̃s̃T
〉−1

=

〈[
1

s

] [
1 sT

]〉−1
=

[
1 〈s〉T
〈s〉

〈
ssT
〉]−1 =

[
1 s̄1T

s̄1 s̄211T + σ2
sI

]−1
(S6)

The inverse follows from the block-matrix identity:[
A B

C D

]−1
=

[
A−1 +A−1BS−1|A CA

−1 −A−1BS−1|A
−S−1|A CA−1 S−1|A

]
(S7)

where S|A = D − CA−1B is the Schur complement of the block A. For the current matrix

S|A = s̄211T + σ2
sI − s̄1 · 1 · 1Ts̄ = σ2

sI (S8)

so

〈
s̃s̃T
〉−1

=

[
1 + σ−2s s̄1T1s̄ −σ−2s s̄1T

−σ−2s s̄1 σ−2s I

]
= σ−2s

[
σ2
s + Ls̄2 −s̄1T

−s̄1 I

]
. (S9)
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Turning now to the correlation term 〈rs̃〉, we note that as the first element of s̃ is always 1 we have

〈rs̃〉1 = 〈r〉 = c+

J∑
j=0

K∑
k=1

wtf
j+1,ks̄

(
1 +

M∑
m=0

N∑
n=−N

wτφ
m+1,n+N+1s̄

)
+ 〈η〉 , (S10)

where we have used the iid property of the stimulus and the fact that the input gain term does not depend on

s(i − j, k). We define WPRF ≡
∑J

j=0

∑K
k=1 w

tf
j+1,k and WCGF ≡

∑M
m=0

∑N
n=−N wτφ

m+1,n+N+1 and note that the

noise has zero mean, giving

〈rs̃1〉 = c+WPRFs̄+WPRFWCGFs̄
2 ≡ α , (S11)

where the definition of α will be valuable below.

The correlation with the (pq)th element of the stimulus vector is given by

〈
rs(pq)

〉
=

〈
s(pq)

c+

J∑
j=0

K∑
k=1

wtf
j+1,ks(jk)

(
1 +

M∑
m=0

N∑
n=−N

wτφ
m+1,n+N+1s(j+m,k+n)

)〉 (S12)

= cs̄+

J∑
j=0

K∑
k=1

wtf
j+1,k

〈
s(pq)s(jk)

〉
+

J∑
j=0

K∑
k=1

M∑
m=0

N∑
n=−N

wtf
j+1,kw

τφ
m+1,n+N+1

〈
s(pq)s(jk)s(j+m,k+n)

〉
.

(S13)

Now,

〈
s(pq)s(jk)

〉
=

{
s̄2 + σ2

s if (pq) = (jk)

s̄2 otherwise ,
(S14)

and

〈
s(pq)s(jk)s(j+m,k+n)

〉
=

{
s̄3 + σ2

s s̄ if (pq) = (jk) or (pq) = (j +m, k + n)

s̄3 otherwise ,
(S15)

and the case (jk) = (j +m, k + n) does not contribute as the corresponding CGF weight is set to 0. Thus,

〈
rs(pq)

〉
= cs̄+ s̄2WPRF + σ2

sw
tf
(pq) + s̄3WPRFWCGF + σ2

s s̄WCGFwtf
(pq)

+ σ2
s s̄

p−1∑
j=0

min(K,q+N)∑
k=max(1,q−N)

wtf
j+1,kw

τφ
p−j+1,q−k+N+1 . (S16)

Now recall the definition of α from equation S11, and further define β ≡ (1 + s̄WCGF) as well as wconv
(pq) ≡∑

jk w
tf
j+1,kw

τφ
p−j+1,q−k+N+1 with limits as in equation S16, so that wconv is the vector representing the (J +

1)×K region of the 2D convolution between the CGF and PRF that is central in frequency and causal in time.

We can then write:〈
rs(pq)

〉
= s̄α+ σ2

sβwtf
(pq) + σ2

s s̄w
conv
(pq) . (S17)

Finally, combining equations S9, S11 and S17, we have

w̃STRF =
〈
s̃s̃T
〉−1〈rs̃〉 = σ−2s

[
σ2
s + Ls̄2 −s̄1T

−s̄1 I

] [
α

s̄α1 + σ2
sβwtf + σ2

s s̄w
conv

]
, (S18)

which, with some simplification and setting Wconv ≡
∑

(pq) wconv
(pq) , yields:

w̃STRF =

[
c− s̄2Wconv

βwtf + s̄wconv

]
. (S19)
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Thus, the expected weights of the STRF correspond to the weights of the PRF scaled by the factor β and

modified by the convolutional factor s̄wconv.

The accuracy of this prediction is shown in Supplementary Fig. S4.
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