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APPENDIX 2: Systemic properties  

 EXAMPLE 1: The purpose of this example is to provide an illustration of the concept of 

a systemic property. To do so we will consider a dynamical system comprising elements whose 

interactions are governed by coupling parameters (connectivity), and show how several distinct 

patterns of connectivity impact the structure (as measured by homology) of the resulting 

trajectory spaces.  

 The Kuramoto Model (Kuramoto, 1975) was suggested to describe the synchrony 

between oscillators. The phase of each oscillator, 𝜃𝑖 , is evolved according to: 

𝜃𝑖
 = 𝜔𝑖 +

1

𝑁
 𝐾𝑖𝑗 sin(𝜃𝑗 − 𝜃𝑖)

𝑁

𝑗 =1

 

where 𝐾𝑖𝑗  are the coupling parameters, and 𝜔𝑖  the intrinsic frequency of each oscillator.  

 Two order parameters can then be defined, 𝑟 the phase coherence, and 𝜓 the average 

phase: 

𝑟(𝑡)𝑒−𝑖𝜓(𝑡) =
1

𝑁
 𝑒−𝑖𝜃𝑗 (𝑡)

𝑁

𝑗 =1

 

 We assume for the purposes of our discussion that the phase represents a movement of an 

element along a circular path given by   cos 𝜃𝑖   sin(𝜃𝑖) . For any trajectory length, the 

resulting trajectory space for each element will be a circle, denoted by 𝑆1, even though the 

dimensionality of the embedding space will be  2𝑁 where 𝑁 is the length of each trajectory (or 

rather its discrete representation).  
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 If we are to take a set of uncoupled such elements (i.e. 𝐾𝑖𝑗  = 0) with the appropriate 

intrinsic frequencies (IFs),
1
 the Betti numbers of the resulting trajectory space would be those of 

an 𝑛-torus, because: 1) the movements are independent; 2) therefore the topology of the resulting 

trajectory space is the Cartesian product of n circles,  
𝑆1 × … × 𝑆1         

𝑛
 , which is exactly that of the 

𝑛-torus; 3) the Betti numbers of the 𝑛-torus are given by the coefficients of (1 + 𝑥)𝑛 .  

 Elements coupled with a sufficiently large (uniform) 𝐾 would synchronize perfectly and 

move in a uniform frequency, therefore regardless of their number their trajectory space would 

be a circle, that is have the Betti numbers of 𝑆1. 

 Assume a scenario in which we have three elements, A, B, and C, where elements A and 

B are symmetrically coupled with 𝐾 ≫ 1, and neither is coupled to C. Under this dynamics the 

Betti numbers of the system AB are subadditive (ignoring the zero Betti number counting 

connected components, which is trivial for our purposes):  

 AB has a single normal cut (bipartition) - 𝐴/𝐵 - which is obtained by evaluating the 

dynamics on A and B in parallel while the interaction terms between them are set to 0 - 𝐾12 =

𝐾21 = 0. The normal cut of the system therefore will give rise to a (2-)torus trajectory space (a 

product of two independent circles associated with each of the uncoupled oscillators). Thus, 

according to the equation above we end with the Betti vector  1 2 1 . In contrast, as the 

coupled pair move along a circular path in synchrony, the resulting trajectory space will be 

circular as well, which will give rise to the Betti vector associated with 𝑆1,  1 1 0 .  

                                                      
1
 For the uncoupled case that would mean such that no IF is a multiple of any other IF, and for the coupled case, that 

the IFs of the non coherent elements are not a multiple of the coherent cluster. 
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 Next, if we denote by  the function that matches a space with its Betti vector we can 

evaluate it to see if it is systemic. First, we define the relation >𝜑  as: 

 𝑥 >𝜑 𝑦 ≡ 𝑥, 𝑦 ∈ 𝑅𝑁 ∧ 𝜑(𝑥)1 = 𝜑(𝑦)1 = 1 ∧ ∀𝑖>1𝜑(𝑥)𝑖 > 𝜑(𝑦)𝑖    

 and similarly for <𝜑  where =𝜑  would simply be vector equality. Next we define the relation +𝑖  

as: 𝑠+𝑖𝑠 ≡ 𝑖(𝑠 × 𝑠 ) where  𝑠, 𝜃 ⊆ 𝑅𝑀×𝐿 , (𝑠 , 𝜃) ⊆ 𝑅𝑀×𝑁−𝐿, × is the Cartesian product, N the 

number of elements in S, L the number of elements in s, M the trajectory length and 𝑖 is the 

inclusion map. Thus we are left with  

𝑠+𝜑𝑠 = 𝜑 𝐴+𝑖𝐵, 𝐾 >𝜑 𝜑 𝐴, 𝐾 = 𝑆. Therefore A an B are proper parts of AB, and because 

for every normal cut 𝜑 is larger than when evaluated on the entire system, 𝜑 is a subadditive 

conjoint property. 

 In contrast,  is not conjoint for ABC: First, for ABC, because C is unconnected from 

both A and B, the "entire system" and the normal cut AB/C are one and the same. Therefore both 

give rise to the same trajectory space, a torus, with the corresponding Betti vector  1 2 1 . 

Thus AB and C are not proper parts of ABC, therefore   cannot be conjoint for ABC. 

Accordingly  is systemic for AB - as it is conjoint for AB and AB is not a proper part of ABC. 

  EXAMPLE 2: In this example, we wish to show another simple system giving 

rise to a systemic property under a definite pattern of connectivity, which, unlike our previous 

example, is super-additive. 

 Consider the following system of second order ODEs, described schematically in figure 

S3A in which 𝑁 Duffing oscillators (Duffing, 1918), 𝑋𝑖 , 𝑖 = 1 . . 𝑁, are unidirectionally 

connected to form a ring (Perlikowski et al., 2010) : 
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𝑥 𝑖 = −𝑏𝑥 𝑖 − 𝑎𝑥𝑖 − 𝑥𝑖
3 + 𝑘𝑖 𝑥𝑖−1 − 𝑥𝑖  

which can be represented as the first order set of equations as follows: 

𝑥 𝑖 = 𝑥𝑖+𝑁  , 𝑥 𝑖+𝑁 = −𝑏𝑥𝑖+𝑁 − 𝑎𝑥𝑖 − 𝑥𝑖
3 + 𝑘𝑖 𝑥𝑖−1 − 𝑥𝑖  

 If two such oscillators are coupled, following the above equations, this results in a space 

of trivial structure, whereas coupling 3 or more elements with an appropriate coupling parameter 

(e.g. 0.3) will result in a ring structure (figure S3B,C), while each element on its own will simply 

stabilize at 0. 

 Consider for example the system 𝑋1𝑋2𝑋3𝑋4, arranged on a ring with a coupling 

parameter of 0.3. The system will therefore give rise to a circular trajectory space with the 

associated Betti vector  1 1 0 . A normal cut would result if the connections between the 

nodes in each of the two groups are set to 0. An example would be 𝑋1𝑋3/𝑋2𝑋4 where 

𝑘1, 𝑘2 , 𝑘3 𝑎𝑛𝑑 𝑘4 would be set to 0, or 𝑋1𝑋2𝑋3/𝑋4 in which  𝑘3 𝑎𝑛𝑑 𝑘4  would be set to 0. 

However, any normal cut will compromise this ring connectivity pattern, resulting in an 

unstructured trajectory space - a single point in the first scenario, and an unstructured cloud in 

the second. Both cases result in the homology of a single connected component -  1 0 0 , and 

therefore any part of 𝑋1𝑋2𝑋3𝑋4 is a proper part. Thus for this architecture, the homology of  the 

trajectory space would be a super-additive conjoint property, and as is this case it is the complete 

system, it is not a proper part, and hence systemic. 
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Figure S3: a ring of unidirectionally coupled systems. (A) the topology (architecture) of the 

system (B) a point cloud depicting the state variables for a ring of three oscillators with a 

coupling parameter 0.3. (C) a point cloud depicting the state variables of a ring of two coupled 

oscillators. 

 

 


