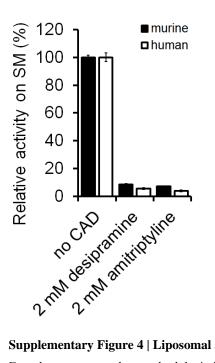
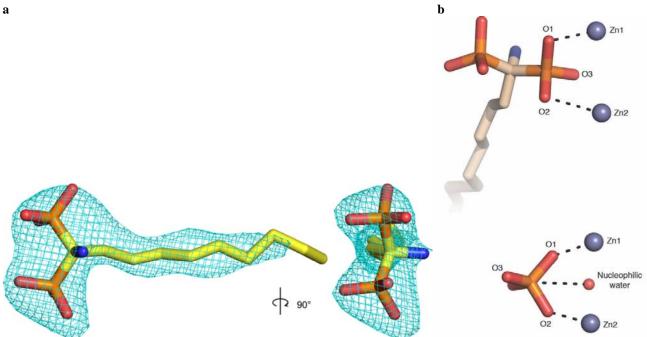

### Supplementary Figure 1 | Purification of human ASMase and activity assays

(a) Size exclusion chromatography elution profiles of human ASMase and point mutants. UV absorbance is normalized. The elution volume of the wild-type protein (vertical marker) corresponds to a molecular weight of 57 kDa, as extrapolated from a standard curve. (b) SDS-PAGE of purified mutants. (c) Activity measurements of wild-type and mutant proteins on liposomes containing sphingomyelin (SM). Activity is normalized to the wild-type enzyme. 100% activity corresponds to 534 µM SM hydrolyzed per µM protein per hour on anionic liposomes. Data are representative of two independent experiments performed in triplicates. (d) Activity measurements of wild-type and mutant proteins on the small molecule substrate bis(p-nitrophenyl) phosphate (bNPP). Activity is normalized to the wild-type enzyme. 100% activity corresponds to 1.11 µM bNPP hydrolyzed per nM protein per hour. Data are the means and standard deviations of two to five experiments performed in triplicates. (e) Effect of detergents on activity of wild-type protein against the non-lipid substrate bNPP. Data are representative of two independent experiments performed in triplicates. OGP, octyl β-D-glucopyranoside. TX-100, Triton X-100. NP-40, Tergitol type NP-40. For the latter two detergents, 0.1 mM and 1 mM represent concentration below and above their critical micellar concentrations. (f) Activity measurements of bNPP hydrolysis by ASMase interface mutants with added detergent. Data are the means of triplicates. In all panels, error bars represent the standard deviation.



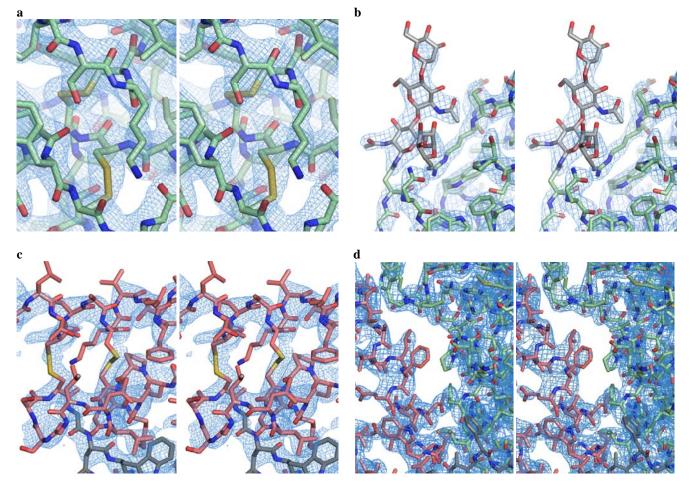

Supplementary Figure 2 | Main chain B-factor analysis of catalytic domain interface loops

The two histidines of the active site are displayed as sticks, and the loops at the inter-domain interface leading to these histidines are marked with asterisks. (a) In the structure with the open form of the saposin domain, catalytic domain loops have relatively lower B-factors due to the interactions with the saposin domain (white helix). (b) In the structure of the isolated catalytic domain, B-factors are relatively higher since the interface is absent. Low temperature factors are colored in blue, while high temperature factors, indicative of relative higher mobility, are shown in red. Note that the color and thickness are for the relative B-factors within each structure, and not absolute B-factor values across both structures. The range of  $\alpha$ -carbon B-factors is 21 to 50 Å<sup>2</sup> in (a) and 37 to 83 Å<sup>2</sup> in (b).




### Supplementary Figure 3 | Saposin dimers in the crystal lattice

(a) Rearrangement to the V-shaped conformation of ASMase<sup>sap</sup> exposes its hydrophobic core, which in the crystal is buried by a symmetric dimerization with another saposin domain. (b) Co-crystallization in the presence of lipid causes the dimer to shift such that a cavity is created at its center, and a molecule of octadecylphosphonic acid (ODPA) is bound between the saposin monomers. (c)  $F_0$ - $F_c$  electron density map contoured at 2.5  $\sigma$  before inclusion of the lipid molecule. Density for a second lipid molecule is also present within the dimer; however, it is fragmented and its last carbon atom overlaps with density for the first molecule, indicating likely partial occupancy of the lipid molecules in different positions. (d) Comparison of the saposin domains from the four protein chains of the lipid-bound structure (blue) and from the two chains of the apo structure (red). Proteins were superimposed via their catalytic domain (not shown).




**Supplementary Figure 4** | **Liposomal activity assay of ASMase in the presence of cationic amphiphilic drugs (CADs).** Error bars represent the standard deviation of triplicates.



#### Supplementary Figure 5 | Electron density and binding mechanism for the co-crystallized inhibitor AbPA

(a) Simulated annealing omit  $F_0$ - $F_c$  electron density map contoured at 3  $\sigma$ . (b) Comparison of the phosphate-bound active site of ASMase (below) vs that of AbPA-bound (above). Interestingly, in the AbPA-bound structure the phosphate group appears to be positioned as a product as if its configuration has been inverted after nucleophilic attack by the zinc-activated water molecule. Thus for AbPA, the phosphate group not only blocks the substrate binding site, but also completes the octahedral zinc coordination shell by excluding the nucleophilic water molecule. In the phosphate-bound structure, the phosphate group is positioned as a substrate with O3 pointed in a direction opposite to that of AbPA. The structures are in the identical orientation to illustrate the difference in the phosphate group between the two ligands. Zinc ions and the nucleophilic water are labeled.



Supplementary Figure 6 | Representative electron density maps of the ASMase structures

A wall-eyed stereo view of the  $2F_o$ - $F_c$  electron density maps, contoured at 1.5  $\sigma$ . (a) Isolated catalytic domain structure showing a disulfide-rich loop. (b) A glycan on the structure with the saposin domain in a closed form. (c) The open form of the saposin domain; the latter is stabilized by disulfide bonds. (d) The inter-domain interface in the structure with the saposin domain in an open form in the presence of lipid.

|         |         |                         | Mutations that dis    | srupt the active site     |                        |              |         |
|---------|---------|-------------------------|-----------------------|---------------------------|------------------------|--------------|---------|
| H321Y   | D280A   | H427R                   | H461P                 | D253E                     | D253H                  |              |         |
|         | Mutatio | ns that alter the sapos | in domain hydropho    | bic surface or its interf | ace with the catalytic | c domain     |         |
| L105P   | V114M   | L163P                   | F392del               | V132A                     | L139P                  | P325A        | W393G   |
|         |         | Mutations t             | hat prevent disulfide | bond formation or gly     | cosylation             |              |         |
| C91H    | C94W    | C159R                   | C228R                 | C387R                     | C433R                  | C596Y        | N522S   |
| N522D   |         |                         |                       |                           |                        |              |         |
|         |         | Marta Garage            |                       | falster er staletitte af  |                        |              |         |
| F482del | T594del | R610del                 | G168R                 | e folding or stability of | A198P                  | R202C        | W211F   |
|         |         |                         |                       |                           |                        |              |         |
| L227M   | L227P   | R230C                   | R230H                 | A243V                     | G244R                  | W246C        | G247E   |
| G247S   | S250R   | T258I                   | A283T                 | R291H                     | Q294K                  | L304P        | V314M   |
| Y315H   | P332R   | W342C                   | L343P                 | A359D                     | A359V                  | Y369C        | P373S   |
| R378H   | R378L   | S381F                   | S381P                 | L382F                     | M384I                  | N385K        | N385S   |
| N391T   | A415V   | H423R                   | H423Y                 | P429L                     | P430S                  | L434P        | W4370   |
| W437R   | S438R   | Y448C                   | T451P                 | L452P                     | A453D                  | (G)A454V     | G458E   |
| T460P   | F465S   | Y469S                   | R476W                 | R476Q                     | P477L                  | F482L        | F482S   |
| A484E   | A484V   | S486R                   | T488A                 | (F)Y490N                  | G496C                  | G496S        | R4980   |
| R498H   | R498L   | Y500H                   | H516Q                 | E517V                     | Y519C                  | P533L        | W535F   |
| Y539H   | A541T   | (M)L551P                | V559L                 | F572L                     | H577L                  | H577R        | H577D   |
| K578N   | G579S   | Q598R                   | L599F                 | R602H                     | R602P                  | S436_W437dup |         |
|         |         | Surf                    | ace mutations witho   | ut clear deleterious eff  | fect                   |              |         |
| P186L   | G234D   | E248K                   | E248Q                 | R296Q                     | G336S                  | E471K        | (N)G492 |
| Q525H   | H556Y   | D565Y                   | R610C                 |                           |                        |              |         |

# Supplementary Table 1 | Predicted effects of ASMase mutations found in Niemann-Pick patients

Mutations were classified according to their predicted effect, based on the ASMase structure. When the human and murine amino acid sequences differ, the latter is indicated in parentheses.

|                                |                         | Variants            | that prevent disulfide b | ond formation or gly | cosylation              |                      |          |
|--------------------------------|-------------------------|---------------------|--------------------------|----------------------|-------------------------|----------------------|----------|
| Probably harmful:              |                         | C433W               | (P)S507F                 |                      |                         |                      |          |
|                                | Variants that alter the | ne saposin domain h | ydrophobic and positive  | ely charged surface  | s or its interface with | the catalytic domain |          |
| Probably benign:<br>Uncertain: |                         | (L)I101V            | V117M                    | (A)I136V             | R113H                   |                      |          |
|                                |                         | A158T               | R113C                    | V318E                | T324I                   | V132M                |          |
| Probably harmful:              |                         | V145del             | P325delinsLS             |                      |                         |                      |          |
|                                |                         |                     | Other non-surf           | ace variants         |                         |                      |          |
| Probably benign:               |                         | N102S               | G115S                    | L256P                | G270S                   | (I)V301I             | P331S    |
| A346V                          | (R)Y374F                | A446V               | N450S                    | A487V*               | Y519F                   | 1520V                | (A)T550A |
| V559I                          | R591H                   | L599I               |                          |                      |                         |                      |          |
| Uncertain:                     |                         | L266V               | A269V                    | P282T                | R296W                   | A297V                | V305M    |
| P332L                          | R378C                   | V409G               | P430A                    | E449Q                | (G)A454S                | V512M                | R591C    |
| Probably harmful:              |                         | L379F               | S510F                    |                      |                         |                      |          |
|                                |                         |                     | Surface variants,        | probably benign      |                         |                      |          |
| S192del                        | G104R                   | R150C               | (T)S175P                 | P187S                | (Q)R240Q                | (F)Y245H             | (Q)H288I |
| S)T290N                        | (D)A303T                | P313S               | (Q)R341C                 | (Q)R341H             | (Q)R341P                | E352D                | (H)R3610 |
| H)R361H                        | R389C                   | (K)R443G            | (K)R443Q                 | E472D                | G508R*                  | G530A                | R542Q    |
| N557K                          | R561H                   | D565N               | P582S                    | S583L                | T588M                   | R610H                | M613I    |

# Supplementary Table 2 | Predicted effects of ASMase variants of unknown significance

Variants were classified according to their predicted effect, based on the ASMase structure. Reported polymorphisms are marked by an asterisk. When the human and murine amino acid sequences differ, the latter is indicated in parentheses.