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S.T Supplementary Tables
Supplementary Table 1: Reference data and experimental data on the plas-
mids investigated

Reference data Experimental data
Plasmid Size

(kbp)
Measured
size (kbp)b

Size interval
usedc

Number of
experimentsd

Number of theoret-
ical sequencese

RP1 60.1 58.5 (4.0) 46.5-70.5 18 539
R100 94.3 90.0 (5.6) 73.2-106.8 25 471
pUUH239.2 220.8 221.3 (10.3) 190.4-252.2 14 174
pEC005A 67a 71.0 (2.1) 65-77 13 295
pEC005B 139a 137.6 (6.4) 118-157 14 222

aFrom PFGE data.
bStandard deviation in parenthesis
cThe size interval used when the experimental consensus barcodes are compared
with the sequences in the database.
dThe number of individual barcodes used to form the consensus barcode.
eThe number of theoretical sequences in the database in the specified size inter-
val.
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Supplementary Table 2: Names and sizes of the six highly similar plas-
mids that gave high Ĉ-values for the comparison with the consensus barcode of
plasmid pEC005A

Plasmid Reference Sequence Size (kbp)
pHK08 NC_019072.1 69.8
pKF3-70 NC_013542.1 70.1
pHK17a NC_016039.1 70.1
pHK01 NC_019057.1 70.3
pEG356 NC_013727.1 70.3
pHK09 NC_019071.1 70.4

S.F Supplementary Figures
S.F.1 Individual barcodes
Figure S1a shows that for the larger plasmids R100 and pUUH239.2, a majority
of the individual barcodes will allow identification of the correct plasmid from
the database. Figure S1b-d show individual experimental barcodes of RP1,
R100 and pUUH239.2 compared to the theoretical sequence, showing excellent
overlap.

Figure S1: Individual barcodes. (a) Percentage of the individual barcodes that
have the highest Ĉ-value for the correct theoretical sequence, when compared
to all sequences within 3 STD of the measured mean size. (b-d) Experimental
individual barcodes (gray) compared to the corresponding theoretical barcodes
(black) for RP1 (b), R100 (c) and pUUH239.2 (d).

S.F.2 pUUH239.2 with inversion
Figure S2 shows the experimental consensus barcode of pUUH239.2 compared
to the theoretical barcode with the inversion discussed in the main text.
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Figure S2: pUUH239.2 with inversion. Consensus barcode (gray) compared to
the theoretical barcode with the inversion (black) for pUUH239.2.

S.F.3 Testing assay resolution
To test the resolution of the assay, we decided to modify the theoretical sequence
of R100 and compare it to the corresponding experimental consensus barcode.
We choose four different modifications to the sequence:

1. Deletion: where a subsequence is removed

2. Duplication: where a subsequence is repeated as an insertion

3. Inversion: where a subsequence is inverted

4. Transposition: where a subsequence is moved to another location

For each type of modification of a given length, we applied the modification
in 10 separate instances at randomly chosen locations in the sequences. We
increased the size of the modification from 250 bp to 17 kbp. For deletions,
duplications, and transpositions we observed significant decreases in Ĉ when
the modifications were larger than 1 kbp. Inversions had less impact on the
maximum correlation coefficients making them more difficult to detect.
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Figure S3: Structural variations. Maximum correlation coefficient of the exper-
imental consensus barcode of plasmid R100 when compared to modified theo-
retical barcodes of R100 with deletions (a), insertions (b), inversions (c), and
transpositions (d) of increasing sizes.

S.F.4 Comparing theory vs theory and theory vs consen-
sus

In the main text are histograms of theory versus theory (TvT) and theory vs
consensus (TvC), see Figure 3 in the main text. We noticed the great similarity
for the TvT and TvC results. To further elaborate on this similarity, Figure S4
shows the “raw” data underlying the histograms in the main text, namely the
maximum correlation coefficients for R100, RP1 and pUUH239.2 as a function
of length of the plasmid to which these three plasmids are compared (a-c) and
as scatter plots (d-f) where, even though the correct sequence has a lower value
than 1 (due to experimental reasons, as discussed in the main text), the com-
parison shows a narrow distribution of the majority of the Ĉ-values around y =
x.
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Figure S4: Comparison of plasmid pairs in theory database and theory
vs three experimental consensus barcodes. Theory vs theory and theory
vs consensus plots for the RP1 (a, d), R100 (b, e) and pUUH239.2 (c, f) plasmid
as a function of plasmid length (a-c, red = theory, black = consensus) and as a
scatter plot where black line corresponds to y=x.

S.F.5 The variation of Ĉ for theory vs theory with plasmid
length

In order to evaluate the general applicability of DNA optical maps for differenti-
ating between plasmids, in the main text we calculated theoretical barcodes for
all the 3127 sequenced plasmids. The similarity of all TvT pairs were compared
using a maximum correlation coefficient matrix, Ĉij (see Figure 4a in the main
text). We now provide some supplmentary post-processing results of Ĉij . Fig-
ure S5 displays the mean cross correlation and associated standard deviation
by averaging over each row of the matrix as a function of plasmid size. We
see that the mean maximum correlation coefficient decays with plasmid size.
This results is in qualitative agreement with the main finding in equation S5
(below) which thus has importance also for “real” barcodes. In contrast to the
mean, the standard deviation around the mean does not have a clear monotonic
dependence on the plasmid size.
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Figure S5: The mean and the standard deviation of the maximum
correlation coefficient depend on plasmid length. Mean and variance of
each row in the theory vs theory maximum cross correlation matrix displayed
in Figure 4a in the main text. The “whitened-out” regions are not included.
Notice that the mean maximum correlation coefficient systematically decrease
with length of the barcodes.

S.F.6 Comparison of pEC005B and pAcX50e
Figure S6 shows a comparison of the theoretical barcode of pEC005B and the
sequence with the second best fit to pEC005B, plasmid pAcX50e. Note that the
theoretical barcodes are similar in their overall shape but on the local level they
differ significantly in agreement with that they have no sequence similarity.

Figure S6: Comparison of the theoretical barcode of plasmid pAcX50e (black)
and the theoretical barcode of 005B (gray).

S.F.7 Uniqueness of match
In the main text we found that, generally, plasmid barcodes > 70 kbp can be
identified from the theory barcode database (using the experimental "match"-
condition, Ĉ > 0.9). In Figure S7 we show how many plasmid barcodes > 70
kbp which end up in the tail of the fitted Gumbel PDF (at significance levels
α = 0.01 (top) and 0.001 (bottom), non-recursive fitting). We find that in a
significant fraction of the cases, the correct plasmid is the only plasmid in the
tail of the Gumbel PDF (unique "match").
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Figure S7: Uniqueness of "match". Histograms of the number of plasmid
barcodes in the tail of fitted Gumbel PDF, at significance levels α = 0.01 (top)
and α = 0.001 (bottom), respectively.

S.M Supplementary Methods
S.M.1 Generating theory barcodes from sequences
Theoretical plasmid barcodes from a database are used extensively throughout
the main text. The database contains theoretical barcodes for all of the 3127
unique plasmid DNA sequences in the database, providing data in a format
against which experimental data can be compared. Theory barcodes are cal-
culated using the known statistical physics framework for competitive binding
of ligands; see [2, 3, 4]. In brief, the current setup uses two ligands, netropsin
and YOYO-1. Both of these molecules occupy four basepairs when bound to
DNA. Netropsin binding constants are sequence-specific whereas YOYO-1 binds
non-specifically. By formulating the statistical physics problem of where these
ligands are likely to bind in terms of transfer matrices, and obtaining values
for relevant binding constants from the literature, we were able to establish
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an avenue to numerically calculate the probability, p (i), that a base-pair i, is
occupied by (one of the monomers of) a YOYO-1 ligand.[4] Note that the prob-
ability, p (i), has basepair resolution. In contrast, experimental data comes in
the form of a significantly lower resolution barcode (due to the limiting optical
microscope resolution) obtained at pixel level. Furthermore, in experiments,
DNA molecules are not fully extended in the nanochannels. To account for
these differences when comparing theory and experiment, experimental condi-
tions are simulated by first translating the quantity i into length (µm) and then
convolving a point spread function in the shape of a Gaussian with p (i). Finally,
the theoretical barcode may be sampled at points separated by a fixed interval
length to produce barcodes that are of a given length in “pixel resolution” such
that it can be directly compared to an experimental barcode. Details are found
in [4].

S.M.2 Handling of individual experimental barcodes
Experimental data must undergo a few preprocessing steps before it can be com-
pared to theoretical barcodes. These steps are described in the three subsections
below.

S.M.2.1 Kymograph alignment

DNA molecules are subject to local conformational changes and center-of-mass
diffusion as they are imaged using the barcoding method as described in the
main text. Therefore, before time-averaged individual barcodes, which we use
throughout our study, can be extracted from experimental data (kymographs),
the effect of noise is reduced by aligning the features in the kymograph. This
is achieved using a computationally fast algorithm called WPAlign[1]. Once
the kymograph has been aligned we calculate an average over the “rows” in
the kymograph in order to obtain an individual time-averaged experimental
barcode.

S.M.2.2 Identifying the edges of DNA barcodes

Time-averaged barcodes contain some background with lower intensity in addi-
tion to the fluorescence signal from the DNA molecule (high intensity region);
see example in Figure S8. In order to identify a “start” and “end” point of the
molecular data in a barcode, we fit it to a function g (x)

g (x) = a+ (tanh((x− b) d)− tanh((x− c) e)) f. (S.1)

using a least squares approach, where the fitting parameters a-f are adjusted
to minimize the sum of squared residuals. The parameters b and c specify the
start and end points of the barcode. The initial guess values for b and c are set
to the first and last zero-point crossings obtained by subtracting the mean of
the signal from the data signal. The function g (x) fitted to an R100 plasmid
barcode is shown in Figure S8. The estimated length of the “signal region”
representing the molecule is L ≈ c− b. The barcode B (i) is defined over indices
from 0 ≤ i ≤ L − 1 with the values of the pixels from b through c (inclusive
after rounding b and c to the nearest integer pixel indices).
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Figure S8: Method for edge detection in experimental barcodes. A
time-averaged experimental barcode consists of a signal region in the middle
of two background regions. The function g (x), equation (S.1), is fitted to the
time-averaged experimental barcode data. The fitting parameters for the start
and end points, b and c, which represent the detected edges of the molecule, are
indicated as vertical lines.

S.M.2.3 Bit-weighting edge regions

Experimental DNA barcodes, such as the barcode shown in Figure S8, have
particular distortions and fluctuations at their edges, which could introduce
misleading data that adversely affects downstream analysis if they are not ac-
counted for. There are three main reasons for these distortions:

1. the experimental signal is “filtered” by the optical point spread function
PSF (with a width, w, on the order of 300 nm); this filtering makes it
likely for barcode end regions to contain a mixture of background and
actual signal over distances of w

2. DNA molecules have more pronounced local conformational fluctuations
at their ends compared to interior parts

3. the kymograph alignment algorithm, WPAlign [1], used herein, does not
explicitly align the starts and ends together, so greater mixtures of back-
ground with actual signal are likely to be present at the end regions

Here we introduce a simple “bit-weighting” scheme which allows us to avoid
many of the undesirable effects that can arise from distortions at edges that
have not been taken into account. Similarly to B (i), we define bit weights
W (i) for all pixels in the region 0 ≤ i ≤ L − 1. In our implementation, the
weight for a pixel i, W (i), which is associated with a barcode value B (i) are
simply defined: a pixel is given a weight of 0 if it is in an “end region” and a
weight of 1 otherwise. End regions are defined as the regions where the distance
from the index 0 and L − 1 is less than or equal to a predefined length of an
end region, ∆.

W (i) =


0 if (0 ≤ i ≤ ∆− 1) or (L−∆ ≤ i ≤ L− 1)

(i.e pixel is in an “end region”)

1 if (∆ ≤ i ≤ L−∆− 1)

(S.2)

In this work, we have defined ∆ = rw with r = 3. The bit weights produced are
utilized in Secs. S.M.4 and S.M.5 in the processes of comparing and merging
experimental barcodes in order to suppress the negative influence of the prob-
lematically uncharacteristic data that tends to be present at the end regions.

S.M.3 Length rescaling of barcodes
In our study, we handle barcodes under the premises that they are circular
with a period of their detected length. In many cases, we wish to compare
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the similarity of two barcodes by appealing to pairwise comparisons of their
values. If we have two circular barcodes of differing lengths, these comparisons
are complicated by the need to rescale them to a common length. The bit-
weights associated with the barcodes must also be scaled to, or produced, at
that common length. To scale the barcodes we first determine a target length
for the barcodes and then sample or interpolate the barcodes as necessary to
produce versions of the barcodes which have a common length. For our study,
there were three scenarios under which a design choice was made regarding how
to rescale the barcodes. We are able to produce bit-weights after the rescaling,
so bit-weights did not have to undergo any sampling or interpolation. Here we
describe the scenarios and our approaches to handling them:

1. When generating a consensus barcode, the target length chosen for the
rescaled barcodes was the mean of the lengths for the individual barcodes
being rescaled, rounded to the nearest integer. For the length rescaling we
use sampling and linear interpolation. The bit-weights that specified end
regions on the rescaled barcodes were simply computed in accordance with
the resized length. The bit-weights for the rescaled barcodes were gener-
ated based on the same approach of setting values of 0 for a fixed number
of pixels in the end regions as is described in Sec. S.M.2.3. The algorithm
for calculating the values for a consensus barcode and its corresponding
bit-weights are detailed in Sec. S.M.5.

2. When comparing a theoretical barcode to an experimental barcode, the
target length chosen was that of the experimental barcode so that the
experimental data did not have to be sampled/interpolated and that its
bit-weights could be left alone. The bit-weights for the theory are all 1
since they have no distorted end regions so the change in size also requires
no extra work in terms of adjusting bit-weights.

3. When comparing a theoretical barcode to another theoretical barcode, the
first theoretical barcode was adjusted to the size of the second barcode.
All bit-weights were set to 1. This approach was chosen so that results for
each pair of two theoretical barcodes would be more comparable to results
for each pairing of a theoretical barcode with an experimental consensus
barcode.

S.M.4 Quantifying barcode similarity
In this section, we define and analyze our similarity score, Ĉ.

S.M.4.1 Parameterizing barcode alignment

Consider a pair of barcodes, B1 and B2, where B1 is a circular barcode with
a length N1 which is no shorter than the length of B2, N2. Our similarity
score, Ĉ, is semantically defined to represent the maximum Pearson correlation
coefficient that can be produced by comparing B1 and B2 across an exhaustive
set of valid “alignment possibilities” for the sequential values in B1 and B2.

The possible reorientation configurations can be understood through and
expressed by two parameters:
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1. a relative “flip” parameter, f : The flip parameter is used to account for
the fact that the directions of the DNA molecules associated with the two
barcodes may be either the same as one another (f = 1) or the opposite
of one another (f = −1).

2. a relative circular shift (i.e. periodic delay) parameter, d, defined as an
integer in modulo N1. The parameter d is used to explore each of the N1
different indices along B1 which the first index of the sequence of values
in barcode B2 can be shifted to in order to produce a new pairing (i.e.
alignment) for their (ordered) values.

There are thus a total of 2N1 valid alignments that can be parameterized by
pairs of f and d.

S.M.4.2 Pearson correlations of barcodes with weights

Using the pairing of barcode values at a combination of f and d, we compute
a Pearson correlation coefficient, C (f, d). Pearson correlation measures linear
correlation for two variables, where the coefficient values produced are between
−1 and 1, the expected value for uncorrelated data is 0, and a value of 1 denotes
a total perfect correlation (e.g. a perfect match).

We now define
Ĉ = max{C (f, d)} (S.3)

as our similarity score between two circular barcodes, and note that this max-
imum generally has an expected value > 0 even for uncorrelated data. The
manner in which this expected value for Ĉ is expected to scale with a sample
size of N is elaborated in subsections S.M.4.5 and S.M.4.6.

Herein, the values in our two barcodes, B1 and B2 are also associated with
“bit-weights” provided in W1 and W2. The rationale for these bit-weights is
discussed in Sec. S.M.2.3. The bit-weight associated with a value in a barcode
represents whether the value may be included when computing the Pearson cor-
relation coefficient or not. In the calculations of Pearson correlation coefficients,
at a given alignment produced by a pair of f and d, any pairs of values in B1
and B2 which are associated with a weight of 0 in either W1 or W2 would be
excluded. Any values in B1 which are unpaired with any value due to some
difference in length where N2 < N1 are excluded.

In Sec. S.M.4.3, we explore the mathematics behind the efficient computa-
tion of C (f, d) for circular barcodes B1 and B2 with bit-weights provided in W1
and W2, assuming that their lengths are equal (N = N1 = N2). Our barcode
preprocessing step described in Sec. S.M.3 explains how we arrive at barcodes
of equal length for this study.

Although we do not deal with fragments in our study of circular barcodes,
it may be interesting to note that if N2 < N1, and B2 represents a potential
fragment of a circular barcode of length N1, one can simply “zero-pad” the
barcode B2 and its bit-weights W2 with extra zeros at their end until they
also have a length of N1 without affecting the values of C (f, d). This can be
understood by considering the fact that all values for B2 with weights of 0 will
always be excluded from the samples and that padding the shorter barcode
at the end would not distort the alignment of values for the barcodes in any
undesirable way. Thus, the requirement for equal length does not result in a
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loss of generality for the methodology described in Sec. S.M.3 if it is to be used
on a circular barcode of length N1 and a smaller fragment of a circular barcode
with length N2 < N1, since B2 and W2 can trivially be extended to meet the
requirement.

S.M.4.3 FFT friendly representation of C (f, d)

Here, we present a mathematical representation of the Pearson correlation coef-
ficient parameterized by f and d [equation (S.4)] for a pair of barcodes (B1 and
B2) with bit-weights (W1 and W2), all of a common length, N . This formu-
lation allows us to demonstrate how we may efficiently compute the coefficient
for all pairs of f and d, allowing us to find the maximum Pearson correlation
coefficient, [equation (S.3)]. The bit-weighted cross correlation used throughout
this study is defined:

C (f, d) = p12 (f, d)− n (f, d)µ1 (f, d)µ2 (f, d)√(
p11 (f, d)− n (f, d) (µ1 (f, d))2

)(
p22 (f, d)− n (f, d) (µ2 (f, d))2

) .
(S.4)

This definition is a composite of a set of functions [see equations (S.8)-(S.13)]
parameterized by f and d, which will be addressed shortly, but first, let us define
weighted barcodes B?j for j = 1, 2 as follows:

B?j (i) = Wj (i)Bj (i) (S.5)

Let us also denote the squares of the weighted barcodes as B2?
j noting also that

Wj (i) = (Wj (i))2 since bit-weights are 0 or 1.

B2?
j (i) = (B?j (i))2 = Wj (i) (Bj (i))2 (S.6)

The sample means for weighted barcodes j = 1, 2 with a given shift d and flip f
after excluding values that correspond to bit-weights of 0 are given by µj (f, d)
[equation (S.7)].

µj (f, d) = sj (f, d)
n (f, d) (S.7)

where the effective sample size, n(f, d), is defined in equation (S.8) and sj(f, d)
is defined in equations (S.9) and (S.10). If half or more of the bit-weights in W1
or W2 are 0, the equations (S.4) and (S.7) could contain a division by 0. This
situation never occurred in any of our calculations, but if the denominators were
to equal 0, the values for C (f, d) and µj (f, d) could be considered undefined
and represented as NaN.

The values for all the other new functions represent simple sliding dot-
products (i.e. unnormalized cross-correlations) that may be computed at all the
circular shifts and flips in linearithmic time O(N logN) using the fast Fourier
transform (FFT) algorithm. To do so, the task can be converted into a circular
convolution problem by flipping either barcode. The circular convolution can be
performed linearithmically by converting the barcodes to the frequency domain
with FFTs, performing element-wise multiplication and converting the results
back to the time domain with an inverse fast Fourier transform (IFFT).

With a given flip (f) and shift (d), the sample size is provided by n (f, d)
[equation (S.8)]. For weighted barcode j = 1, 2 the sums of the samples are given
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by sj (f, d) [equations (S.9) & (S.10)], the sums of the squares of the samples
are given by pjj (f, d) [equations (S.11) & (S.12)], and finally, the sums of the
products of the paired samples are given by p12 (f, d) [equation (S.13)]. For sim-
plicity, we denote the flipped versions ofW2, B?2 , and B?22 with a subscript index
of −2 (instead of 2) such that W2f , B?2f , and B?22f refer to the original versions
when f = 1 and to the flipped versions when f = −1. To be precise, the “flip-
ping” of a barcode simply means that for an index i, the new value associated
with it should be the old value for the barcode at index (N − i) (mod N).

n (f, d) =
N−1∑
i=0

W2f (i)W1 ((i− d) (mod N)) (S.8)

s1 (f, d) =
N−1∑
i=0

W2f (i)B?1 ((i− d) (mod N)) (S.9)

s2 (f, d) =
N−1∑
i=0

B?2f (i)W1 ((i− d) (mod N)) (S.10)

p11 (f, d) =
N−1∑
i=0

W2f (i)B2?
1 ((i− d) (mod N)) (S.11)

p22 (f, d) =
N−1∑
i=0

B2?
2f (i)W1 ((i− d) (mod N)) (S.12)

p12 (f, d) =
N−1∑
i=0

B?2f (i)B?1 ((i− d) (mod N)) (S.13)

S.M.4.4 Summation representation of C (f, d)

While the formulation for C (f, d) presented in Sec. S.M.4.3 is relatively straight-
forward and especially efficient for computations, for the purposes of normalizing
Ĉ with respect to its expected value for a given N as will be discussed in Secs.
S.M.4.5 & S.M.4.6, it is useful to present C (f, d) in the form of the summation
in equation S.14.

C (f, d) = 1
n (f, d)− 1

N−1∑
i=0

B̃1 (f, d, i) B̃2 (f, d, i) (S.14)

For barcodes j = 1, 2, the quantities σj (f, d) (equations (S.15) & (S.16)] provide
the (unbiased) standard deviations for the samples (with a given flip f and shift
d):

σ2
1 (f, d) = 1

n (f, d)− 1

N−1∑
i=0

(
B?2f (i)W1 ((i− d) (mod N))− µ1 (f, d)

)2 (S.15)

σ2
2 (f, d) = 1

n (f, d)− 1

N−1∑
i=0

(W2f (i)B?1 ((i− d) (mod N))− µ2 (f, d))2 (S.16)
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Now, for barcodes j = 1, 2, B̃j (f, d, i) [equations (S.17) & (S.18)] represent
the values of the barcodes at index i after all the samples in the barcode have
been linearly rescaled to have a new sample mean of 0 and a sample standard
deviation of 1 (with a given flip f and shift d):

B̃1 (f, d, i) = (W2f (i)B?1 ((i− d) (mod N))− µ1 (f, dF ))
σ1 (f, d) (S.17)

B̃2 (f, d, i) =
(B?2f (i)W1 ((i− d) (mod N))− µ2 (f, d))

σ2 (f, d) (S.18)

With these definitions, we are able to form a representation of C (f, d) in the
summation representation provided in equation (S.14).

S.M.4.5 Expected scaling of Ĉ for non-matching barcodes with re-
spect to N

In the main text (see also Figure S5) we find that when comparing a plasmid
barcode of length N to a non-matching (i.e. unrelated) plasmid barcode of sim-
ilar length, the corresponding maximum correlation coefficient value decreases
with N . In this subsection we provide an explanation for this finding based on a
derivation of the expected N -dependence of the maximum correlation coefficient
when matching two random barcodes to each other.

Consider again our choice of similarity score, the correlation coefficient, as
expressed in equation (S.14), and assume that the barcodes B1 (i) and B2 (i) are
independent random numbers picked from the same probability density function
(PDF). Denote the sample size by N . If N � 1, then equation (S.4) is a sum
of many independent, identically distributed, random numbers with mean zero,
allowing us to apply the central limit theorem to find that the PDF for the
correlation coefficients becomes a Gaussian [equation (S.19)] with mean zero
and variance S [equation (S.20)] where γ is the variance for the random numbers
expressed by B̃1 (f, d, i) B̃2 (f, d, i) in (S.14).

P (C) = 1√
2πS2

· exp
[
− C2

2S2

]
(S.19)

i.e.
S = S(N) = γ√

N
(S.20)

Note the direct relationship of the variance to the reciprocal of
√
N as this

plays a role below. We are interested in the PDF of the maximum correlation
coefficient, Ĉ rather than the PDF for C itself. Based on the Gaussian above
we find that the PDF for Ĉ is given by the following: [4, 7]

φ
(
Ĉ
)

= NaP
(
Ĉ
)[1

2

(
1 + erf

(
Ĉ√
2S2

))]Na−1

, (S.21)

where Na is the number of placement attempts when sliding one barcode across
the other (Na = 2N for circular barcodes where the relative permutation and rel-
ative directions of the barcodes are not known) and erf (x) is the error-function.
Note that for large Na the expression above approaches the Gumbel distribution
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presented in Sec. S.M.6 [8]. From equation (S.M.4.5) we can evaluate the ex-
pected maximum cross correlation (m = 1) and higher order moments (m ≥ 2).
We have:

〈Ĉm〉 =
∫ ∞
−∞

Ĉmρ
(
Ĉ
)
dĈ =

√
1

2π [S(N)]m f (m,Na) (S.22)

where

f (m,Na) = Na

∫ ∞
−∞

zm exp(−z2/2)
{

1
2

[
1 + erf

(
z√
2

)]{Na−1
(S.23)

For large Na, the quantity f(1, Na) is well approximated by c
√

ln(Na) with
some constant c.[7]. Thus, using this result we obtain

〈Ĉ〉 ∝
√

lnNa
N

(S.24)

We finally note that correlation coefficient values obtained by sliding one barcode
across another are correlated over a few pixels [4]. Therefore, the quantities
Na and N above must be replaced by the effective sample sizes, Neff,a and
Neff respectively. However, since these effective sample sizes are proportional
to N [4], for large enough N , this does not change the maximum correlation
coefficient’s scaling with N .

S.M.4.6 Expected scaling of Ĉ for matching barcodes with respect
to N

In the previous subsection, we found that the mean maximum correlation co-
efficient between “non-matching” barcodes is expected to decay with N . In
this subsection, we address whether the maximum correlation coefficient when
matching an experimental barcode to a theoretical barcode originating from the
same DNA sequence exhibits any dependence on N .

Consider an experimental barcodes, Be (i), and a theoretical barcode, Bt (i),
for the same plasmid at different pixels i = 0, . . . , N − 1. Neglecting bit-weights
(i.e. assuming they are all 1), with some simple algebra where we subtract
their respective means and divide them by their respective variances, we can
rescale values for Be (i) and Bt (i) to have means of 0 and variances of 1. Let us
denote these rescaled barcodes as B̃e (i) and B̃t (i) and denote the element-wise
difference of the rescaled barcodes by D̃ (i) such that we yield the following:

B̃e (i) = B̃t (i) + D̃ (i) (S.25)

Since the means are set to 0 and the variances are set to 1 for B̃e (i) and B̃t (i)
we know the following to be true:

0 =
∑
i

B̃t (i) =
∑
i

B̃e (i) (S.26)

N =
∑
i

B̃t (i)2 =
∑
i

B̃e (i)2 (S.27)
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Through equations (S.25) and (S.27), we yield the following:

N =
∑
i

B̃e (i)2 =
∑
i

(B̃t (i) + D̃ (i))2 (S.28)

Expanding the expression in equation (S.28) and substituting
∑
i B̃t (i)2 with

N as seen in equation S.27, we find the following relation:

N = N + 2
∑
i

(B̃t (i) D̃ (i)) +
∑
i

(D̃ (i)2) (S.29)

With a little algebraic manipulation on equation (S.29), we reach the following
equality which serves as a direct consequence of having rescaled both barcodes:∑

i

(B̃t (i) D̃ (i)) = −1
2
∑
i

(D̃ (i)2) (S.30)

Let us now consider the cross correlation coefficient, using equation (S.14), to
study the difference of the maximum correlation coefficient values for a theoreti-
cal barcode against a theoretical barcode in comparison to a theoretical barcode
against an experimental barcode that matches the theory. We have

Ĉtt − Ĉet = 1
N − 1

∑
i

B̃t (i) B̃t (i)− 1
N − 1

∑
i

B̃e (i) B̃t (i) (S.31)

Ĉtt − Ĉet = 1
N − 1

∑
i

B̃t (i) (B̃t (i)− B̃e (i)) = − 1
N − 1

∑
i

B̃t (i) D̃ (i) (S.32)

Ĉtt = Ĉet + 1
2 (N − 1)

∑
i

D̃ (i)2 (S.33)

We can see that the “advantage” that Ĉtt would have over Ĉte is almost ex-
actly directly proportional to the mean of the squared differences between the
barcodes (for large N). Based on this consideration, for long enough barcodes
originating from the same DNA sequence, we do not expect significant length-
dependence playing a part in the relationship between the maximum correlation
coefficients produced by theoretical-experimental pairs (Ĉet) and those produced
by theoretical-theoretical pairs (Ĉtt). Further, since Ĉtt = 1 for two identical
barcodes, we conclude that Ĉet ≈ constant (N -independent) when comparing a
theory barcode and an experimental barcode originating from the same DNA se-
quence. In the main text we find that this constant, for the current experimental
setup, is Ĉet ≈ 0.9.

S.M.5 Consensus barcodes
As a result of stochasticity in individual experiments (for instance from the
staining process, from thermal motion, and from optical noise), time-averages
of kymographs and the barcodes directly produced from them are always ex-
pected to differ slightly from one another. Since molecule-to-molecule fluctu-
ations are undesirable in characterizing plasmids from experiments, we here
present a method for aligning and averaging data from the barcodes of multiple
molecules that represent the same DNA sequence into “consensus barcodes.”
Our method also provides a means to identify out-of-class barcodes such that
they may be prevented from erroneously affecting the consensus.
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S.M.5.1 Scaling to a common length

When comparing a set of barcodes originating from M molecules with (pre-
sumably) identical DNA sequences, the fact that small variations in the lengths
of the barcodes may still exist needs to be addressed. These small variations
may arise for a number of reasons, including the possibility that the nanochan-
nels have slightly differing diameters, resulting in one molecule being slightly
more elongated than another. Our procedure for handling this is simply to
stretch/compress all barcodes to a common target length equal to the mean
length in pixels for the set of barcodes, see Sec. S.M.3. In subsequent subsec-
tions, we assume that all barcodes and bit-weights have been scaled to such a
common target length. The number of pixels in these barcodes is denoted by
N .

S.M.5.2 Overview of consensus barcode generation

After scaling the barcodes to a common length, we have M circular barcodes
and theirM associated bit-weighting barcodes, which we denote herein as Bk (i)
and Wk (i) for (k = 1, . . . ,M), respectively.

Here we describe an overview of our method for generating a consensus
barcode from this data through agglomerative hierarchical clustering. First, we
consider a collective pool of barcodes containing all of the molecular barcodes
that we wish to merge into a consensus barcode. We then identify the two most
similar barcodes in that pool of barcodes and merge them by replacing them
by a weighted average of their values. This leaves us with a pool of M − 1
barcodes and we can repeat this agglomerative procedure until there is only
a single barcode formed as a consensus from the pool of barcodes. For each
iteration of this procedure, we keep track of which pairings were merged as well
as the degree of similarity that was found for the merged pair. If the degree of
similarity for a pair is considered too low, we may consider the two to represent
different classes of barcodes. The “consensus barcode” for a class of barcodes is
simply the barcode produced by merging all the in-class barcodes and none of
the out-of-class barcodes using the agglomerative procedure described above.

We explore our implementation of the above procedure in greater mathe-
matical detail in Secs. S.M.5.4 & S.M.5.5.

S.M.5.3 Consensus generation example

Here we illustrate our consensus method with an example using five (M = 5)
barcodes, B1−B5 from five different experiments on R100 plasmids where four
of the barcodes are quite similar and one is not. Our procedure for generating
a consensus produces data that can be structured as a binary tree of nodes
containing barcodes as illustrated in Figure S9. We begin with “leaves” of the
tree and use an agglomerative merging process to generate “parent” nodes in
the tree which each contain the mergers of the two barcodes from their “child”
nodes. Let it be noted that when we call nodes in the tree “parent” nodes or
“ancestor” nodes we do not mean to imply any precedence within the generation
process; on the contrary, these are generated from their descendant nodes since
the process is agglomerative.

The order in which barcodes are chosen to be merged can effect the result.
We merge the two most similar yet-to-be-merged barcodes together in each it-
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Figure S9: Schematic illustration of our method for reducing molecule-
to-molecule fluctuations using a hierarchical clustering type approach
for consensus barcode generation. (Top) Automated generation of consen-
sus barcodes from five barcodes, B1-B5. Data are from experiments on the
plasmid R100. The barcodes are successively merged pairwise, by finding the
weighted average of each pair, until only the consensus barcode is left. The
end-regions of the “best” pair is indicated as white regions in the circular plots.
The two inner circles in these plots are the original barcodes, and the outer one
is the merged barcode. The cut position and relative orientation of a barcode
with respect to another one is determined by maximizing the score function,
equation (S.34). Notice that full procedure for generating the consensus bar-
code, illustrated above, generates a binary tree structure, see Figure S11. By
analyzing this binary tree (see Sec. S.M.5.6), and introducing a suitable cut-off
value for the maximum correlation coefficient during the merging of two bar-
codes, the barcode B2 is here deemed to be out of class, and, therefore, the
consensus barcode is B1(4((3)(5))) in this example.

eration of our method, eventually building up to the root of the tree. The
similarity score is computed for each possible pairing of barcodes (denoted as
Ba and Bb) and is measured with a score, Sab

(
f̂ , d̂
)
[equation (S.35)] which is

elaborated on in Sec. S.M.5.4. The score involves finding the best alignment
represented by the pair of values for f̂ and d̂ through the computation of correla-
tion coefficient values for the bit-weighted barcodes at all potential alignments.
The values computed for f̂ and d̂ for each pair of barcodes are used to circularly
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shift and flip the barcodes as necessary to optimally align them. Post-alignment
barcodes are shown as the two inner barcode rings at each parent node in Figure
S9.

The outer ring at each parent node in Figure S9 represents the barcode pro-
duced by merging the barcodes. The process of merging barcodes is detailed in
S.M.5.5 and involves taking an average of aligned barcode values. Our formu-
lation is designed to give the values in the initial barcodes equal weight as any
other barcode in the generated barcodes at each of their ancestor nodes. White
regions in the barcode rings denote areas of the barcode where the bit-weight is
0. The value of the barcodes in these areas is ignored when generating a merged
barcode.

In our example, we can see that B3 and B5 were the first to be merged
together into B(3)(5). This indicates that they were considered the most similar
barcodes from our initial set of barcodes. After that, the similarity of the newly
generated barcode with B4 was found to be greater than that of any other yet-to-
be-merged barcodes, and they were merged to produce B4((3)(5)). Next that new
barcode was merged with B1 to produce the consensus barcode in B1(4((3)(5))).
The only other yet-to-be-merged barcode left was B2. However, by comparing
the two inner rings inside the result for B2((4((3)(5)))), we see that B2 was not
very similar to the consensus barcode produced by others and was therefore
excluded from the consensus. If the similarity score of a pair of barcodes fails
to reach some threshold, we can choose to form consensuses below the root of
the tree as we have done in this example. This idea is elaborated upon in Sec.
S.M.5.6 where we discuss designating barcodes as “out-of-class"".

The resulting consensus barcode from all the barcodes other than the out-
of-class barcode (B2) is shown in greater detail in Figure S10. Instead of just
showing the two immediate child barcodes, the four component barcodes (asso-
ciated with the input barcodes at the descendant leaf nodes) are shown in their
optimally aligned state.

S.M.5.4 Scoring barcode alignments

For each pair of barcodes from the pool, designated by a and b, when measuring
similarity, all the possible alignments that can be produced by circularly shifting
and flipping the barcodes relative to one another are explored to find the best
possible alignment. The quality of an alignment for a pair of barcodes (Ba and
Bb) with weights (Wa and Wb) is measured by the alignment score, Sab (f, d)
[equation (S.34)]. Note that the Pearson correlation coefficient for barcodes a
and b with alignment given by f and d, denoted here as Cab (f, d), is determined
with the bit-weights associated with the barcodes taken into account such that
the sample size, n (f, d) [equation (S.8)] can vary depending on f and d if some
bit-weights for a and b are 0. To help counterbalance the length dependency,
we applied the square root correction factor seen in our equation. We apply
this correction because we will be interested in the maximum score that can be
produced by varying f and d and want the scores to be less dependent on the
sample size. From our general analysis of the expected maximum correlation
coefficient’s dependency on sample size in Sec. S.M.4.5, neglecting the weaker
logarithmic dependency on sample size, this square root correction is supported
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Figure S10: Consensus barcodes are averages over optimally rotated
and flipped experimental barcodes. Four out of five barcodes (barcode 2
was excluded) from R100 plasmid experiments along with the resulting consen-
sus barcode (outer cylinder) obtained. The end regions for the original barcodes
are bit-weighted to zero and are displayed in white.

by equation S.24. Thus, our alignment score is defined as

Sab (f, d) =
√
nab (f, d)Cab (f, d) . (S.34)

We denote the values for alignment parameters f and d that produce the maxi-
mum Sab (f, d) for a constant pair of barcodes a and b as f̂ and d̂. The associated
alignment score is

Sab

(
f̂ , d̂
)

= max{Sab (f, d)} (S.35)

S.M.5.5 Merging barcodes and weights

With f̂ , d̂ depending on the barcodes and weights for a and b, the score
Sab

(
f̂ , d̂
)

tells us how similar the barcodes are when they are aligned. The
pair of barcodes a and b which produces the maximum value for this score are
regarded as the most similar and are therefore chosen to be merged. For the
process of merging these circular barcodes, the values of f̂ and d̂ can be inter-
preted as instructions for how to manipulate the barcodes’ orientations in order
to synchronize their values to the best alignment. The pre-alignment index of
Ba associated with an index i in the post-alignment version of Ba is denoted
by Ia (i) [equation (S.36)] and is dependent on a circular shift of d̂. The pre-
alignment index of Bb associated with an index i in the post-alignment version
of Bb is denoted by Ib (i) [equation (S.37)] and is dependent on f̂ which specifies
if flipping the barcode is necessary.

Ia (i) =
(
i− d̂

)
(mod N) (S.36)
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Ib (i) =


i if f̂ = 1

N − i if f̂ = −1
(S.37)

Once aligned, values for a pair of barcodes Ba and Bb with weights can be
merged into a new barcode Bab [equation (S.40)] by taking a weighted average.
For the initial pool of barcodes, the weights (which we denote as W ?

a and W ?
b

in this process) are the same as the initial bit-weights for the barcodes, Wa and
Wb. For barcodes produced by merging a pair of barcodes, the weights denoted
with asterisks are no longer restricted to just 0 and 1, but are instead the sums
of the aligned weights for the pair of barcodes [equation (S.38)]. Note that
the weights supplied to the similarity measure are however still bit-weights as
presented in equation (S.39).

W ?
ab (i) = W ?

a (Ia (i)) +W ?
b (Ib (i)) (S.38)

Wab (i) =


1 if W ?

ab (i) > 0

0 if W ?
ab (i) = 0

(S.39)

Bab (i) = W ?
a (Ia (i))Ba (Ia (i)) +W ?

b (Ib (i))Bb (Ib (i))
W ?
ab (i) (S.40)

It is important to note that with this weighted approach, if a consensus barcode
is produced from a subset of barcodes from the initial pool, the order in which
barcodes are merged does not effect the contribution of their respective values
to the consensus barcode so long as all the barcodes are aligned in the same
way; the consensus barcode is ultimately equivalent to an average of the values
with non-zero bit-weights for the barcodes at each aligned index. Note also that
the bit-weight associated with an index i in a barcode produced from multiple
barcodes of the initial pool is 1 if any of the bit-weights at the aligned index
for those barcodes is non-zero. This means that in practice, with reasonably
bit-weighted data and a consensus of multiple barcodes, it is quite likely to have
only 1s in the bit-weights for the consensus barcode.

S.M.5.6 Out-of-class barcode detection

As mentioned in the overview in Sec. S.M.5.2, the process of selecting the most
similar barcodes, aligning them, and merging them can be repeated until all
barcodes are merged together. Alternatively we can choose to terminate the
process when all of the scores Sab

(
f̂ , d̂
)

for all pairs of barcodes in the pool
are below some threshold. The barcodes in the pool can then be considered to
represent consensus for separate classes of barcodes.

Let us observe the binary tree in Figure S9 and introduce our method for
determining ”bad” (out-of-class) barcodes. Such “bad” barcodes may originate
from photo-cutting, failures in the staining process, or, simply because of “for-
eign” DNA molecules entering the sample. Note, however, that in the present
study our workflow (see main text) is constructed such that we know that all
molecules we study are intact ones. Hence, the molecule length is, most often,
a very good classifier for detecting “foreign” molecules.
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Figure S11: Analysis of the binary tree generated through our consen-
sus generation method allow us to detect out-of-class barcodes. Binary
tree generated from five R100 experimental barcodes (compare to Figure S9).
The horizontal line corresponds a particular choice of threshold for classification
purposes – different categories have different colors. The barcodes have been
reshuffled to be adjacent to those in the same class. Note that B2 is deemed to
be out-of-class since it is not sufficiently similar to the consensus formed by the
barcodes.

For binary tree analysis we here use standard methods from hierarchical
clustering.[5, 6] If we add the similarity score values to the tree in Figure S9 at
each merging point, we end up with a tree (dendrogram) as the one found in Fig-
ure S11. The vertical axis shows the alignment score scaled with respect to the
sample length. The process of classifying barcodes now simply corresponds to
“cutting the tree”, i.e. choosing a threshold value for the maximum correlation
coefficient – if a barcode pair has a smaller maximum correlation coefficient than
the threshold they are deemed to be different and classified into separate cate-
gories. For our case, four out of the five R100 experimental barcodes are deemed
to belong to the same category for a threshold value Sthreshold = 0.75 1√

N
(for

plotting purposes we scale Sthreshold by the factor 1/
√
N , where, here, N = 168).

Barcode 2 is here classified as an out-of-class barcode – this particular barcode
is also visually different from the rest (inner two rings at the top left cylindrical
plot in Figure S9).

In the main text, we set Sthreshold = 0 such that no cut is made and all
plasmid barcodes of similar length are averaged into the consensus barcode.

Our approach to binary tree analysis for detecting out-of-class barcodes can
be trivially adapted for the purpose of analyzing mixed samples containing dif-
ferent types of DNA molecules. If there are several independent subtrees below
a threshold, barcodes may be classified as belonging to the same or different
DNA molecule species as one another by noting whether their nodes belong to
the same subtree. We plan to investigate the effectiveness of binary tree analysis
for the purpose of classifying experimental samples in future studies.
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S.M.6 Identifiability of plasmids based on the maximum
correlation coefficient

Based on the similarity score, Ĉ, introduced in previous sections, how can we
quantify the quality of a “match” of a (individual, consensus or theory) barcode
with respect to another barcode? To be able to answer this question, let us
assume we have the following scenario: we matched an experimental, or theo-
retical, barcode to a set of K theoretical barcodes. This provides us with a set
of K maximum correlation coefficient values, Ĉk, k = 1, . . . ,K. Can we in such
a scenario, define the number of “matches” in the K barcodes? Before answer-
ing this question, we first note that in [4] we introduced a p-value measure for
answering a similar question, namely “is our maximum correlation coefficient
value significantly larger than what you would expect by matching to random
DNA sequence barcodes?”. However, the p-value is subject to the usual “flaw”
known to bioinformaticians [9], namely, that random sequences may not be very
“representative” of real DNA sequences. In the present study we have a large
reference database of theory barcodes. As we show below, this database allows
us to circumvent some of the main potential problems of using random sequence
barcodes as reference in the quest of attempting to identify “matches” between
pairs of barcodes.

S.M.6.1 The Gumbel probability density function

Let us now introduce statistical means for defining the number of “identifiable”
barcodes. For large enough K, the maximum correlation coefficients are ex-
pected to follow the Gumbel PDF (probability density for the maximum values)
[9]

φ(Ĉ) = 1
β

exp[−(y + e−y)] (S.41)

where y = y(Ĉ) = (Ĉ−κ)/β, with parameters κ and β. Equation (S.41) follows
from equation (S.M.4.5) in the large N limit. The mean of equation (S.41) is
〈Ĉ〉 = κ+βγ where γ ≈ 0.5772 is the Euler-Mascheroni constant. The variance
of equation (S.41) is (Ĉ − 〈Ĉ〉)2〉 = π2β2/6.

S.M.6.2 Parameter estimation

To be able to fit the parameters, κ and β, in equation (S.41) using the maxi-
mum cross correlation data, Ĉk (k = 1, . . . ,K), we proceed as follows (moment
matching): First, we estimate β by equating the sample variance to the expres-
sion for (Ĉ−〈Ĉ〉)2〉 given in Sec. S.M.6.1. The parameter κ is then obtained by
equating the sample mean to the expression for the mean above. This procedure
yields the following explicit estimate for the parameter β:

β =
√

6
π
σ (S.42)

where σ2 = [1/(K̃−1)]
∑K̃
k=1(Ĉk−µ)2, i.e., σ2 is the sample variance of the Ĉks

with mean µ = (1/K̃)
∑K̃
k=1 Ĉk. The parameter κ is subsequently determined

by
κ = µ− βγ (S.43)

23



The quantity K̃ is estimated using two different approaches

1. Non-recursive approach. In this approach the sample mean and sample
variances are estimated using the full data set, i.e. we set K̃ = K and
use all Ĉk for k = 1, . . . ,K when estimating the sample estimates for the
mean and variance.

2. Recursive approach. In this method we first determine the sample mean
and sample variances using the full data set (as in 1.). The criteria given
below, equation (S.44), for determining the outliers in the data set are
then applied, and the sample estimates recalculated with a reduced data
set with no outliers included (i.e. with K̃ < K highest correlation coeffi-
cient values). This procedure is repeated until no additional outliers are
detected.

Representative histograms alongside fitted φ(Ĉ) for a few different plasmids
are displayed in Figure S12 (theory vs theory). Both the recursive as well as the
non-recursive approach are used. Note that, by construction, the peak of the
probability density is always located at the same or at a smaller cross correlation
value for the recursive method as compared to the non-recursive approach.

Figure S12: A plasmid is deemed an outlier if its cross correlation
ends up in the tail of a fitted Gumbel PDF. Illustration of the normalized
histograms φ(Ĉ) and fitted Gumbel probability densities for (top, left) RP1,
(top, right) R100, and (bottom,left) PUUH239.2. Both non-recursively (dashed
curves) and recursively (solid curves) fitted curves are shown. Note that in
the main text we exclusively use non-recursive fitting. (Bottom, right) Number
of iterations in the recursive Gumbel parameter fitting procedure. Whenever
this number = 1, the recursive and non-recursive approaches provides identical
parameter estimates for the Gumbel parameters, β and κ.

S.M.6.3 Separability score

Based on the considerations in the previous two subsection, we now introduce
our separability score for detecting outliers in the data set. Our definition is
based on the fact that a maximum correlation coefficient which ends up “far
out” in the tail of the fitted Gumbel distribution is deemed an outlier. To make
this precise we say that we have an outlier if

separability score(Ĉ) < α (S.44)

where α is a significance level. Our separability score is defined according to1

separability score(Ĉ) =
∫∞
Ĉ
φ(Ĉ ′)dĈ ′, where φ(Ĉ) is the Gumbel probability

density defined in equation (S.41). Using the known cumulative distribution for
the Gumbel probability density we have the explicit expression:

separability score(Ĉ) = 1− exp[−e−(Ĉ−κ)/β ]. (S.45)
1If φ(Ĉ) had been obtained using a set of random barcodes as reference, our separability

score becomes a p-value [9].
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Note that for the recursive method (2. above) the number of iterations in the
method is dependent on α. Therefore, the separability score calculated using
this method will, in general, be α dependent. In contrast, for the non-recursive
method (1. above) the separability scores are always independent on α. In the
main text we use the non-recursive method throughout.
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