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In this work we assume that VWF is packed into a dense globular-like structure 

when no hydrodynamic tension is applied. We only consider the case of a VWF 

grafted on the surface of a platelet. There are two types of forces acting on the grafted 

macromolecule in blood under flow conditions. The first one is the so-called drag-

force arising due to the action of blood movement. The second one is caused by 

“effective surface tension” tending to transform the macromolecule to the most 

compact form – to a globule (see Fig. 1). 

Using the simplest approximation
1,2

 the drag-force may be estimated as: 

𝐹𝑢𝑛 = 𝑘𝛾̇𝜂 ∙ 𝜋𝑟2       (S1) 

where r denotes the radius of the globule, 𝛾̇  corresponds to the shear rate and 𝜂 

reflects the value of blood viscosity, k is a dimensionless proportionality coefficient. 

We consider only the drag force acting on the globule, supposing that it is larger than 

the drag force acting on the linear part of the multimer. The drag force is denoted as 

Fun, where the subscript “un” alludes to “unfolding”. 

To define the folding force Ff, consider the energy of VWF molecule interaction 

with the surrounding blood. This energy is proportional to the VWF molecule surface: 

𝐸 = σ(𝜋𝑥𝑑 + 4𝜋𝑟2)       (S2) 

where  corresponds to the effective “surface tension”, x denotes the length of the 

“tail” (the unwound part of the molecule) and d refers to the diameter of  VWF 

monomeric subunits. The absolute value of the folding force is defined by first 

derivative of E by x: 
𝜕𝐸

𝜕𝑥
=

𝜕

𝜕𝑥
[σ(𝜋𝑑𝑥 + 4𝜋𝑟2)]       (S3) 

The surface tension forces are supposed to be prevailing over other folding 

forces (hydrogen bonds and other interactions). Due to the fact that the total volume 

of VWF remains unchanged in any winding-unwinding processes the following 

expression is valid: 
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where L denotes the total length of the VWF molecule. 

The relation may be rewritten in the following form: 

𝑟 = √
3

16
𝑑2(𝐿 − 𝑥)

3
        (S5) 

Keeping this in mind for the absolute values of folding and unfolding forces one 

has: 

𝐹𝑓 = σ𝜋𝑑 [1 − (
2

3
𝑑)

1/3
(𝐿 − 𝑥)−

1

3]      (S6) 

𝐹𝑢𝑛 = 𝑘𝛾̇𝜂 ∙ 𝜋 ∙ 𝑑4/3(𝐿 − 𝑥)2/3 (
3

16
)

2/3

     (S7) 

Thus the balance between the folding and unfolding forces takes place when an 

equality: 

𝐹𝑓 = 𝐹𝑢𝑛         (S8) 

is satisfied. 

This expression may be written in a dimensionless form: 
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1 − 𝜉−1/3(1 − 𝑢)−1/3 = 𝛾̃𝜉2/3(1 − 𝑢)2/3     (S9) 

where a new variable  𝑢 = 𝑥 𝐿⁄  corresponding to the portion of the multimer chain in 

the unfolded tail and two dimensionless parameters: 𝛾̃ = 𝑘𝛾̇𝜂𝑑 4σ⁄  proportional to the 

shear rate and 𝜉 = 3𝐿 2𝑑⁄  proportional to the total VWF multimer length, –are 

introduced.  

The left-hand side of eq. (S9) represents the dimensionless folding force: 

𝑓𝑓 =
𝐹𝑓

σ𝜋𝑑
 while the right-hand side represents the unfolding force: 𝑓𝑢𝑛 =

𝐹𝑢𝑛

σ𝜋𝑑
. 

Below, it will be demonstrated that under certain conditions the equality (S9) is 

not satisfied. In the case when fun>ff the molecule will evolve to a more unwound 

state, while in the case when fun<ff , – to more wound state. 

 

Bifurcation analysis  

Consider the expression (S9). It is clear that if at some moment the right-hand 

side is greater than the left-hand side, then the unfolding force prevails and the 

globule should unfold. This remains true until both forces become equal to each other 

or until the globule becomes a fully unfolded chain, i.e. u=1 is satisfied. 

On the contrary, if the left-hand side of (S9) is greater than the right-hand one, 

then the folding force predominates and the chain should fold. This remains true until 

folding and unfolding forces become equal or until the chain fully folds into a 

globule, i.e. u=0 is satisfied. 

It is easy to establish that in principle, only three types of collocation of plots 

𝑓𝑢𝑛(𝑢) and 𝑓𝑓(𝑢) are possible. All of them are shown in Fig. S1, where the plots 

corresponding to the dependence of the folding force on u are shown with dash-dot 

lines while the plots relevant to the unfolding force – with solid lines.  
 a          b      c 

 
Fig. S1. Plots of folding (dash-dot line) and unfolding (solid line) forces. Three 

possible types of collocations of 𝑓𝑓(𝑢) and 𝑓𝑢𝑛(𝑢)  are presented. The arrows on the 

abscissa axis indicate the direction of the variable u changing: u grows if fun>ff and it 

decreases if fun<ff. 

If the relation between the folding and unfolding forces is as shown in Fig. S1a, 

then steady states corresponding to fully folded (u=0) and a fully unfolded (u=1) 

VWF molecule are stable with respect to finite amplitude perturbations, while 

intersection of the plots in Fig. S1a corresponding to a partially unfolded molecule is 

absolutely unstable. Indeed, the folding force prevails on the left side of the 

intersection point (see Fig. S1a) and the unfolding force prevails on the right side of 

it. 

If the plots relevant to folding and unfolding forces have two intersections as 

demonstrated in Fig. S1b, then the right intersection corresponds to an unstable 

partially unfolded state, and the left intersection of plots corresponds to a state stable 

with respect to finite amplitude perturbations. The fully unfolded state (u=1) is locally 
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stable.  The state u=0 is unstable, that means that at certain values of parameters the 

globule cannot stay in a fully folded state. 

Figure S1c corresponds to the situations when the plots of folding and unfolding 

forces have no intersections. Unfolding force always prevails that means that the fully 

unfolded state u=1 is stable and the fully folded state u=0 is absolutely unstable. 

It is worth mention that no other variants of the relative location of plots 𝑓𝑢𝑛(𝑢) 

and 𝑓𝑓(𝑢) exist. In principle, the list of situations considered above is complete.  

Based on the analysis presented above, a parametric plane (𝜉, 𝛾̃) can be divided 

into 3 domains (see Fig. S2). Three domains denoted as “globule”, “globule with tail” 

and “linear” correspond to the three different types of steady states. Domain “globule” 

corresponds to the situation relevant to Fig. S1a, domain “globule with tail” to Fig. 

S1b and domain “linear” to Fig. S1c. 

 
Fig. S2. Parametric diagram of stability of VWF molecules. The plane of parameters  

(𝜉, 𝛾̃)   is divided into 3 domains: “globule” corresponds to one intersection of 𝑓𝑓(𝑢) 

and 𝑓𝑢𝑛(𝑢)  plots as shown in Fig. S1a; “globule with tail” corresponds to Fig.S1b; 

“linear” corresponds to Fig. S1c. 𝛾̃  denotes the dimensionless shear rate ( 𝛾̃ ≡
𝑘𝛾̇𝜂𝑑 4σ⁄ ),  𝜉  denotes the dimensionless total length of a VWF multimer ( 𝜉 ≡
3𝐿 2𝑑⁄ ), 𝜉𝑐 = 27 8⁄ . 

 
It is worth mentioning that under the values of the parameters from domains 

“globule” and “globule with tail”, a fully unfolded state also exists. 

Solid lines restricting the domains in Fig. S2 correspond to bifurcations taking 

place in VWF molecules under variations of parameters. Domain “globule” is 

bounded by the curve 𝛾̃ = 𝛾̃∗(𝜉): 

𝛾̃∗(𝜉) =
𝜉1/3−1

𝜉
         (S10) 

Strait line 𝛾̃ = 𝛾̃𝑐  separating the domains “globule with tail” and “linear” is 

defined by the expression: 

𝛾̃𝑐(𝜉) =
4

27
,        for  𝜉 > 𝜉𝑐 = 27/8    (S11) 
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Bifurcation diagrams of the system under consideration are shown in Fig. S3, 

where the dimensionless shear rate 𝛾̃ is used as a bifurcation parameter. It is obvious 

that there are two different types of transitions from the folded (“globule”) to the 

unfolded (“linear”) state. The first type implies a direct transition that takes place at 

the values of parameter 𝜉 less than 𝜉𝑐. This transition seems to be classified as a far 

from equilibrium first-order transition (see Fig. S3a)
3,4

. 

 
Fig. S3. Bifurcation diagrams of VWF multimer. u is degree of VWF multimer 

unfolding, i.e. relative length of unfolded part of the molecule. u=0 corresponds to a 

fully folded globule, u=1 corresponds to a fully unfolded multimer chain. a: 𝜉 =2, b: 

𝜉 =20. Stable stationary states are shown by solid line and unstable states – by dashed 

line. 𝛾̃∗ = (𝜉1/3 − 1)/𝜉,     𝛾̃𝑐 = 4/27,   𝑢𝑐 = 1 −
27

8𝜉
,   𝑢𝑠 = 1 −

1

𝜉
. 

 

Another type of transition from the folded to the fully unfolded state takes place 

for the values of parameter 𝜉 greater than 𝜉𝑐.  In this case any variation of shear rate 𝛾̃ 

starting in the domain “globule” and finishing in the domain “linear” passes through 

the “globule with tail” state. This means that under variation of shear rate 𝛾̃ , an 

initially folded globule first starts partially to unfold since the boundary 𝛾̃ = 𝛾̃∗(𝜉) is 

reached. This looks like a far from equilibrium second-order transition
3,4

. Further 

increasing of the shear rate 𝛾̃ leads to a growth of the length of an unfolded tail (see 

Fig S3b). If shear rate is increased up to the critical value 𝛾̃ = 𝛾̃𝑐 , then a fold 

catastrophe takes place
5,6

. 

It can be seen from Fig. S3, that under values of parameters belonging to the 

domains “globule” and “globule with tail”, a fully unfolded state (u=1) also exists and 

is stable with respect to small perturbations. But it may be reached only if shear rate 𝛾̃  

was initially once increased to the over-critical value 𝛾̃ > 𝛾̃𝑐 and then decreases. A 

fully unfolded state corresponding to the domains “globule” and “globule with tail” 

cannot be reached by variation of 𝛾̃  if 𝛾̃ increases from initially small values in the 

interval 𝛾̃ < 𝛾̃𝑐.  

 

Platelet activation diagram derivation 
In this part we derive a platelet activation diagram on the (𝜉, 𝛾̃) parametric 

plane. We assume the existence of a minimal amount of VWF monomers in multimer 
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chain that is necessary to activate a platelet. We call this number “minimal platelet 

activation accord” 𝑛𝐴 . In our further consideration, instead of 𝑛𝐴  we use for 

mathematical convenience the parameter 𝜉𝐴 =
3

2
𝑛𝐴 

It is obvious that if 𝜉 < 𝜉𝐴, then VWF cannot activate a platelet, no matter what 

shear rate is applied. The corresponding domain on the platelet activation diagram, 

Fig. S4, is denoted as “U” (unable to activate). 

If 𝜉 > 𝜉𝐴  and 𝛾̃ > 𝛾̃𝑐 , i.e. conformational state of VWF corresponds to the 

domain “linear” on the VWF folding-unfolding diagram (Fig. S2), then VWF is fully 

unfolded, that means, it can activate a platelet. This area belongs to the upper part of 

the domain “A” (activate) in the platelet activation diagram (Fig. S4). 

 

 
Fig. S4. Platelet activation diagram. Domain “U” corresponds to the situation when 

VWF is unable to activate platelet (𝜉 < 𝜉𝐴). Domain “S” is relevant to subcritical 

activation of platelets (S14). In this domain VWF can be in one of two different 

conformational states: one of them is sufficient for platelet activation and the other is 

not. Symbol “A” denotes the domain corresponding to platelet activation by VWF 

([(𝜉𝐴 < 𝜉 < 𝜉𝐴 + 𝜉𝑐) ∩ (𝛾̃ > 𝛾̃𝑐)] ∪ [(𝜉 > 𝜉𝐴 + 𝜉𝑐) ∩ (𝛾̃ > 𝛾̃∗∗(𝜉))]). 
 

If 𝜉 > 𝜉𝐴 but 𝛾̃ < 𝛾̃𝑐, then besides a fully unfolded state of VWF multimer, a 

folded or partially unfolded state exists (see domains “globule” and “globule with 

tail” in Fig. S2).  The possibility of platelet activation by VWF then depends on the 

value of the VWF unfolded tail length.  

This length obviously equals to zero inside the domain “globule” and on the 

boundary between the domains “globule” and “globule with tail”.  

Platelet is activated only if the length of the unfolded tail – 𝑢𝑛 is larger than the 

minimal platelet activation accord: 𝑢𝑛 ≥ 𝑛𝐴. (Equivalent to  𝑢𝜉 ≥ 𝜉𝐴). 

The substitution of 𝑢𝜉 = 𝜉𝐴 into the equation (S9) gives the expression: 

𝛾̃ = 𝛾̃∗∗(𝜉) ≡
(𝜉−𝜉𝐴)1/3−1

(𝜉−𝜉𝐴)
      (S12) 

For 𝜉 > 𝜉𝐴 + 𝜉𝑐  this curve corresponds to the partially unfolded state of the VWF 

molecule with tail length 𝜉𝐴. This means that VWF multimer activates platelets if the 

values of parameters are within the range that corresponds to the upper part of the 

domain “globule with tail”: 

 𝛾̃ > 𝛾̃∗∗(𝜉),  𝜉 > 𝜉𝐴 + 𝜉𝑐      (S13) 

(part of domain “A” in Fig. S4). 
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The domain of the parametric plane denoted as “S” in Fig. S4 corresponds to 

situations when the platelet may be activated by VWF only if the VWF molecule is 

fully unfolded. In a partially unfolded state of VWF, relevant to the domain “S”, the 

tails have subcritical lengths, insufficient for platelet activation (𝑢𝜉 < 𝜉𝐴) (see Fig. 

S4). Domain “S” can be described by the expression: 

[(𝜉𝐴 < 𝜉 < 𝜉𝐴 + 𝜉𝑐) ∩ (𝛾̃ < 𝛾̃𝑐)] ∪ [(𝜉 > 𝜉𝐴 + 𝜉𝑐) ∩ (𝛾̃ <
(𝜉−𝜉𝐴)1/3−1

(𝜉−𝜉𝐴)
)]      (S14) 

 

Transformation of the results from the dimensionless to 

dimension form  
The problem of VWF unfolding is considered mathematically in dimensionless 

units. For experimental or clinical analysis, the parametric diagram should be 

converted into a dimension form. Instead of dimensionless multimer length 𝜉  and 

shear rate 𝛾̃ it is necessary to represent the results in usable units.  

For instance, the multimer size could be measured in the number of monomers 

per multimer, n. We assume that the width of the multimer chain d is of the order of 

one monomer size (~30 nm). This means that n=L/d. Taking in mind that 𝜉 =
3

2

𝐿

𝑑
 one 

has  𝑛 =
2

3
𝜉.  

In order to estimate the relation between the dimensionless shear rate 𝛾̃ and 

shear rate 𝛾̇ measured in sec
-1

, we take into account that it is usually assumed that the 

upper value for a critical shear rate inducing a non-reversible platelet aggregation, 

without any relation to VWF multimer size, is assumed
7,8

 to be about 10000 sec
-1

. We 

suppose that this corresponds to the critical value of parameter 𝛾̃: 𝛾̃𝑐 = 4/27, that 

separates the domains “globule with tail” and “linear” on the parametric plane (Fig. 

S2). Thus, in order to obtain a proportionality coefficient in the linear dependence 

between  𝛾̇  and 𝛾̃ , a correspondence between 𝛾̃𝑐 = 4/27  and  𝛾̇𝑐 = 10000𝑠𝑒𝑐−1  

should be used. As a result, one has: 𝛾̇ =
27

4
∙ 104 𝑠𝑒𝑐−1 ∙ 𝛾̃ = 6.75 ∙ 104 𝑠𝑒𝑐−1 ∙ 𝛾̃ 

(see Fig. S5). 
   a           b

 

 

Fig. S5. Parametric diagrams in dimensionless variables and their possible reference 

to real dimension values. a: VWF folding-unfolding diagram; b: diagram of platelet 

activation by VWF. 

 
It is clear that these estimates for  𝛾̇𝑐  are rough. Quantitative correspondence of 

dimensionless variables 𝜉 and  𝛾̃ to the values of n and 𝛾̇ should be obtained in further 
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experiments. Probably, further progress in the area could be reached with the aid of 

optical tweezers method
9,10,11

. 

 

Asymptotic formulas for the large VWF molecules 
An approach developed here is essentially based on the assumption that a VWF 

is rather large, so that the concepts of a dense spherical globule and “surface tension” 

may be introduced.  

Certainly, the concept of a spherical globule may not be applied for molecules 

containing three or less monomeric units (𝑛 ≤ 3) because their compact packaging is 

possible in one plane. In this sense, a simplest compact 3D packed object may occur 

only if 𝑛 ≥ 4 (starting from tetrahedron).  

For this reason, “rigorous formulas” presented in this paper are not applicable 

for short VWF molecules, consisting of less than 4 monomers. The larger a VWF 

multimer is, the higher is the correctness of formulas received. Moreover, for practical 

purposes for large VWF molecules the following asymptotic expressions can be used 

instead of (S10) and (S12): 

𝛾̃∗(𝜉) ∼ 𝜉−2/3         (S15) 

𝛾̃∗∗(𝜉)~(𝜉 − 𝜉𝐴)−2/3      (S16) 

 

Note on the fractal dimensionality of a VWF globule 
In this work we considered a VWF multimer as a 3-dimensional object folding 

into a dense globule. It is very probable that an actual VWF globule is more porous 

than a macromolecule in the fully condensed 3D model described above. Formally, a 

“nest-like” model of the object may be described in terms of fractal geometry
12

. Any 

fractal object may be characterized by fractal dimensionality D.  

In this case, the connection between the radius and length of the tail is described 

as 

𝑟 = 𝛼 √𝐿 − 𝑥
𝐷

        (S17) 

( is a proportionality coefficient) and supposing that surfaces of globule are 

measured in power (D-1) of r ( 𝑆~𝑟𝐷−1 ), the equation between the folding and 

unfolding forces is: 

1 − 𝜉−
1

𝐷(1 − 𝑢)−
1

𝐷 = 𝛾̃𝜉
𝐷−1

𝐷 (1 − 𝑢)
𝐷−1

𝐷     (S18) 

where 𝜉~
𝐿

𝑑
      and   𝛾̃~

𝛾̇𝜂𝑑

𝜎
. Analysis of this equation reveals the same 3 states of a 

D-dimensional globule as in 3D case. The parametric plane (𝜉, 𝛾̃) is divided into 

corresponding zones “globule”, “globule with tail” and “linear” by the curves: 

  𝛾̃∗ =
𝜉1/𝐷−1

ξ
  and  𝛾̃𝑐 =

(𝐷−1)𝐷−1

𝐷𝐷
  for 𝜉𝑐 > (

𝐷

𝐷−1
)

𝐷

        (S19) 

In the case D=3 this formulas give expressions (S10) and (S11). 

Argumentation, similar to that demonstrated above for a 3-dimensional globule, 

leads to an asymptotic formula for the critical shear rate of platelet activation in a 

common case of a globule of fractal dimensionality D: 

𝛾̃∗∗(𝜉)~(𝜉 − 𝜉𝐴)−(𝐷−1)/𝐷.      (S20)  
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