SUPPORTING INFORMATION

SILVER-CATALYZED ENANTIOSELECTIVE PROPARGYLATION REACTIONS OF N-SULFONYL KETIMINES

Charlotte A. Osborne, Thomas B. D. Endean, and Elizabeth R. Jarvo*

Department of Chemistry, University of California, Irvine, Irvine, CA 92697

I.	G	ENERAL PROCEDURES	SI-3
II.	Ex	Experimental	
	A.	STEREOCHEMICAL PROOFS	SI-5
	B.	REPRESENTATIVE ADDITION PROCEDURES	SI-7
		METHOD A: ENANTIOSELECTIVE ADDITION TO KETIMINES	SI-7
		METHOD B: RACEMIC STANDARDS	SI-7
	C.	CHARACTERIZATION DATA FOR PRODUCTS	SI-9
	D.	GENERAL PROCEDURES FOR STARTING MATERIAL SYNTHESIS	SI-17
		METHOD C: GRIGNARD ADDITION INTO SACCHARIN	SI-17
		METHOD D: ORGANOLITHIUM ADDITION INTO SACCHARIN	SI-17
		METHOD E: CHLOROSULFONYL ISOCYANATE CONDENSATION	SI-18
	E.	CHARACTERIZATION DATA FOR STARTING MATERIALS	SI-19
	F.	SYNTHETIC TRANSFORMATIONS OF HOMOPROPARGYLIC SULTAMS	
		(SCHEME 3)	SI-25
		1) ENVNE RING-CLOSING METATHESIS TO FORM 6	SI-25
		2) SONOGASHIRA CROSS-COUPLING REACTION TO FORM 7	SI-25
		3) LINDLAR REDUCTION TO FORM 8	SI-26
		4) PD/C REDUCTION TO FORM 9	SI-27
	G.	MECHANISTIC STUDIES (TABLE 2)	SI-28
		1) SYNTHESIS OF PROPARGYL BOROLANE REAGENT 12	SI-28

 I) ISOMERIZATION IN PRESENCE OF 8 MOL % BASE II) ISOMERIZATION IN PRESENCE OF 20 MOL % BASE II) ISOMERIZATION IN PRESENCE OF 20 MOL % BASE SI- A) MECHANISTIC STUDIES WITH BOROLANE REAGENTS I) REACTION USING ALLENYL BOROLANE 2 II) REACTION USING PROPARGYL BOROLANE 12 III. REFERENCES FOR SUPPORTING INFORMATION III. CRYSTALLOGRAPHIC DATA A. COMPOUND (S)-3A B. COMPOUND (R)-3F C. COMPOUND (R)-3H D. COMPOUND (R)-5B E. COMPOUND (R)-5C SI- V. ¹H AND ¹³C NMR SPECTRA SI- A. SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3) 		2) CONTROL REACTIONS WITH 12	SI-30
 I) ISOMERIZATION IN PRESENCE OF 20 MOL % BASE SI- MECHANISTIC STUDIES WITH BOROLANE REAGENTS I) REACTION USING ALLENYL BOROLANE 2 II) REACTION USING PROPARGYL BOROLANE 12 III. REFERENCES FOR SUPPORTING INFORMATION IV. CRYSTALLOGRAPHIC DATA A. COMPOUND (S)-3A B. COMPOUND (S)-3F C. COMPOUND (R)-3F C. COMPOUND (R)-5B E. COMPOUND (R)-5C SI- V. ¹H AND ¹³C NMR SPECTRA SI- A. SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3) 		I) ISOMERIZATION IN PRESENCE OF 8 MOL % BASE	SI-30
 3) MECHANISTIC STUDIES WITH BOROLANE REAGENTS 1) REACTION USING ALLENYL BOROLANE 2 1) REACTION USING PROPARGYL BOROLANE 12 II. REFERENCES FOR SUPPORTING INFORMATION IV. CRYSTALLOGRAPHIC DATA A. COMPOUND (S)-3A B. COMPOUND (S)-3F C. COMPOUND (R)-3F C. COMPOUND (R)-5B E. COMPOUND (R)-5B E. COMPOUND (R)-5C V. ¹H AND ¹³C NMR SPECTRA VI. SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3) SI- 		II) ISOMERIZATION IN PRESENCE OF 20 MOL % BASE	SI-32
 I) REACTION USING ALLENYL BOROLANE 2 II) REACTION USING PROPARGYL BOROLANE 12 III. REFERENCES FOR SUPPORTING INFORMATION IV. CRYSTALLOGRAPHIC DATA A. COMPOUND (S)-3A B. COMPOUND (S)-3F C. COMPOUND (R)-3F C. COMPOUND (R)-5B E. COMPOUND (R)-5C V. ¹H AND ¹³C NMR SPECTRA VI. SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3) SI- 		3) MECHANISTIC STUDIES WITH BOROLANE REAGENTS	SI-34
I) REACTION USING PROPARGYL BOROLANE 12 SI- III. REFERENCES FOR SUPPORTING INFORMATION SI- IV. CRYSTALLOGRAPHIC DATA SI- A. COMPOUND (S)-3A SI- B. COMPOUND (S)-3F SI- C. COMPOUND (R)-3F SI- C. COMPOUND (R)-3H SI- D. COMPOUND (R)-5B SI- E. COMPOUND (R)-5C SI- V. ¹ H AND ¹³ C NMR SPECTRA SI- VI. SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3) SI-		I) REACTION USING ALLENYL BOROLANE 2	SI-34
 III. REFERENCES FOR SUPPORTING INFORMATION IV. CRYSTALLOGRAPHIC DATA A. COMPOUND (S)-3A B. COMPOUND (S)-3F B. COMPOUND (R)-3F C. COMPOUND (R)-3H D. COMPOUND (R)-5B E. COMPOUND (R)-5C V. ¹H AND ¹³C NMR SPECTRA VI. SFC TRACES A. SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3) 		II) REACTION USING PROPARGYL BOROLANE 12	SI-36
IV.CRYSTALLOGRAPHIC DATASIA.COMPOUND (S)-3ASIB.COMPOUND (R)-3FSIC.COMPOUND (R)-3HSID.COMPOUND (R)-5BSIE.COMPOUND (R)-5CSIV. ¹ H AND ¹³ C NMR SPECTRASIVI.SFC TRACESSIA.SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3)SI	III.	References for Supporting Information	SI-38
A. COMPOUND (S)-3A SI-4 B. COMPOUND (R)-3F SI-4 C. COMPOUND (R)-3H SI-4 D. COMPOUND (R)-5B SI-4 E. COMPOUND (R)-5C SI-4 V. ¹ H AND ¹³ C NMR SPECTRA SI-4 VI. SFC TRACES SI-4 A. SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3) SI-4	IV.	CRYSTALLOGRAPHIC DATA	
B. COMPOUND (R)-3F SI-4 C. COMPOUND (R)-3H SI-4 D. COMPOUND (R)-5B SI-4 E. COMPOUND (R)-5C SI-4 V. ¹ H AND ¹³ C NMR SPECTRA SI-4 VI. SFC TRACES SI-4 A. SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3) SI-4		A. COMPOUND (S)- 3 A	SI-39
C. COMPOUND (R)-3H SI- D. COMPOUND (R)-5B SI- E. COMPOUND (R)-5C SI- V. ¹ H AND ¹³ C NMR SPECTRA SI- VI. SFC TRACES SI- A. SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3) SI-		B. COMPOUND (R) -3F	SI-54
D. COMPOUND (R)-5B SI- E. COMPOUND (R)-5C SI- V. ¹ H AND ¹³ C NMR SPECTRA SI- VI. SFC TRACES A. SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3) SI-		C. COMPOUND (R) -3H	SI-65
E. COMPOUND (R)-5C SI- V. ¹ H AND ¹³ C NMR SPECTRA SI- VI. SFC TRACES A. SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3) SI-		D. COMPOUND (R) -5B	SI-76
V. ¹ H AND ¹³ C NMR SPECTRASI-VI.SFC TRACESSI-A.SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3)SI-		E. COMPOUND (R)-5C	
VI. SFC TRACES SI- A. SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3) SI-	V.	¹ H and ¹³ C NMR Spectra	SI-100
A. SFC TRACES FOR MECHANISTIC STUDIES WITH 2 OR 12 (SECTION II-G-3) SI-	VI.	SFC TRACES	
		A. SFC TRACES FOR MECHANISTIC STUDIES WITH $2 \text{ or } 12 \text{ (Section II-G-3)}$	SI-191

I. GENERAL PROCEDURES

NMR spectra were recorded on Bruker DRX-400 (400 MHz ¹H, 100 MHz ¹³C, 376.5 MHz ¹⁹F), GN-500 (500 MHz ¹H, 125.7 MHz ¹³C, 160.2 MHz ¹¹B), or CRYO-500 (500 MHz ¹H, 125.7 MHz 13 C) spectrometers. Proton chemical shifts are reported in ppm (δ) relative to internal trimethylsilane (TMS, δ 0.00). Data are reported as follows: chemical shift (multiplicity [singlet (s), broad singlet (br s), doublet (d), apparent doublet (ad), doublet of doublets (dd), doublet of doublets of doublets (ddd), triplet (t), apparent triplet (at), doublet of triplets (dt), triplet of doublets (td), quartet (q), quintet (quint), apparent quintet of doublets (aquintd), sextet (sext), multiplet (m)], coupling constants [Hz], integration). Carbon chemical shifts are reported in ppm (δ) relative to TMS with the solvent resonance as the internal standard (CDCl₃, δ 77.16 ppm or DMF- d_7 , δ 163.15 ppm). NMR data were collected at 25 °C. Infrared spectra were obtained on a Thermo Scientific Nicolet iS5 spectrometer with an iD5 ATR tip (neat) and are reported in terms of frequency of absorption (cm⁻¹). Analytical thin-layer chromatography (TLC) was performed using Silica Gel 60Å F254 precoated plates (0.25 mm thickness). Visualization was accomplished by irradiation with a UV lamp and/or staining with p-anisaldehyde (PAA) or potassium permanganate (KMnO₄) solutions. Flash chromatography was performed using Silica Gel 60 (170-400 mesh) from Fisher Scientific. Melting points (m.p.) were obtained using a Mel-Temp melting point apparatus and are uncorrected. Optical rotations were measured with a Rudolph Research Analytical Autopol III Automatic Polarimeter. SFC determinations of enantiopurity were performed on a Berger Analytical instrument using a DaicelTM Chiralpak® column (OD-H, AD-H, AS-H, or (R,R)-Whelk-O); 100 bar, 215 nm, 50 °C). High resolution mass spectrometry was performed by the University of California, Irvine Mass Spectrometry Center.

All reactions were carried out under a N₂ atmosphere, unless otherwise stated. All glassware was either oven-dried or flame-dried prior to use. *N*,*N*-Dimethylformamide (DMF), tetrahydrofuran (THF), diethyl ether (Et₂O), dichloromethane (CH₂Cl₂), triethylamine (TEA), methanol (MeOH), and *N*,*N*-dimethylacetamide (DMA) were degassed with argon and then passed through two 4 x 36 inch columns of anhydrous neutral A-2 alumina (8 x 14 mesh; LaRoche Chemicals; activated under a flow of argon at 350 °C for 12 hours) to remove H₂O. Other solvents were purchased "anhydrous" commercially, or were purified as described.

AgPF₆ was purchased as a white powder from Strem, stored in the dark in a glove box under an atmosphere of N₂, and discarded upon turning to a brown powder.

(R,R)-Walphos W001-1 was purchased from Strem or Acros, stored in a glove box under an atmosphere of N₂, and used as received. All other ligands were purchased from Strem or Sigma Aldrich and were stored under N₂ atmosphere and used as received.

Saccharin was purchased from Sigma Aldrich and used as received. All Grignard reagents were titrated with iodine prior to use.¹ *n*-Butyllithium and methyllithium solutions were purchased from Acros, stored at 4 $^{\circ}$ C, and titrated prior to use.²

tert-Butanol was purchased from Fisher and distilled every two weeks over CaH₂ through a short-path distillation head onto activated 4Å mol sieves.

Allenylboronic acid pinacol ester 2 was prepared according to Yoshida and co-workers³ and distilled every month.

Propargylboronic acid pinacol ester **12** was prepared according to Fandrick and co-workers (vide infra, Section II-G-1).⁴ Ethynylmagnesium bromide was purchased from Sigma Aldrich, stored at 4 °C, and used within one week of opening the bottle.

N,N-Dimethylformamide- d_7 was purchased from Cambridge Isotope Laboratories and used as received.

All other chemicals were purchased commercially and used as received.

II. EXPERIMENTAL

A. STEREOCHEMICAL PROOFS

The absolute configurations of products **3a**, **3f**, **3h**, **5b**, and **5c** were assigned by X-ray crystallographic analysis (Scheme SI-1). The absolute configurations of all other products were assigned by analogy. See Section IV for crystallographic data.

Scheme SI-1. Absolute configurations of products determined by X-ray crystallography.

B. REPRESENTATIVE ADDITION PROCEDURES

METHOD A: ENANTIOSELECTIVE ADDITION TO KETIMINES

Note: All manipulations involving silver-catalyzed reactions were performed in the absence of direct light, using vials wrapped in aluminum foil.

In a glovebox, an oven-dried 1.0 mL conical vial equipped with a triangular stir bar was charged with AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv) and Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv). The vial was sealed with a screw-top cap fit with a septum and removed from the glovebox. Anhydrous DMF (400 μ L) was added and the solution was stirred for 5 min at rt. The N₂ line was then removed and the solution was stirred for 30 min at 70 °C, then cooled to rt over 15 min.

To the catalyst solution was added *tert*-butanol (21 μ L, 0.22 mmol, 1.1 equiv), followed by potassium *tert*-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv) and phenyl ketimine **1a** (48.6 mg, 0.200 mmol, 1.00 equiv) under a flow of N₂. The reaction was stirred at rt for 5 min to dissolve the ketimine. Allenylboronic acid pinacol ester **2** (72 μ L, 0.40 mmol, 2.0 equiv) was added via syringe, followed by another portion of allenylboronic acid pincol ester (72 μ L, 0.40 mmol, 2.0 equiv) added via slow addition over 3 h using a syringe pump. The N₂ line was removed and the reaction was stirred at 22 °C for 18 h. The reaction mixture was filtered through a plug of silica gel eluting with 100% Et₂O to remove the catalyst. Et₂O was removed in vacuo and the resulting residue was purified by silica gel chromatography.

METHOD B: RACEMIC STANDARDS

Note: All manipulations involving silver-catalyzed reactions were performed in the absence of direct light, using vials wrapped in aluminum foil.

In a glovebox, a flame-dried 7 mL vial equipped with a stir bar was charged with AgF (2.5 mg, 0.020 mmol, 0.10 equiv) and PPh₃ (13 mg, 0.050 mmol, 0.25 equiv). The vial was sealed with a screw-top cap fit with a septum and removed from the glovebox. Anhydrous DMF (800 μ L) was added and the solution was stirred for 5 min at rt. The N₂ line was then removed and the solution was stirred for 30 min at 70 °C, then cooled to rt over 15 min.

To the catalyst solution was added *tert*-butanol (21 μ L, 0.22 mmol, 1.1 equiv), followed by potassium *tert*-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv) and phenyl ketimine **1a** (48.6 mg, 0.200 mmol, 1.00 equiv) under a flow of N₂. The reaction was stirred at rt for 5 min to dissolve the ketimine. Allenylboronic acid pinacol ester **2** (72 μ L, 0.40 mmol, 2.0 equiv) was added via syringe. The N₂ line was removed and the reaction was stirred at 22 °C for 18 h. The reaction mixture was filtered through a plug of silica gel eluting with 100% Et₂O to remove the catalyst. Et₂O was removed in vacuo and the resulting residue was purified by silica gel chromatography.

C. CHARACTERIZATION DATA FOR PRODUCTS

Note: The yield of homoallenylic sultam is typically less than 5–10% in these reactions and can be separated from the homopropargylic sultam using the column chromatography conditions specified below. The TLC R_f of the homoallenylic sultam is generally 0.1 higher than the R_f of the homopropargylic sultam. The diagnostic peaks for the homoallenylic sultam are found in the ¹H NMR range of δ 5.96 to 5.48 (t, *J* = 6.6 Hz, 1H) and δ 5.11 to 5.01 (d, *J* = 6.6 Hz, 2H).

Sultam (S)-3a was prepared according to Method A, using the following amounts of reagents: AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv), Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv), tert-butanol (21 µL, 0.22 mmol, 1.1 equiv), potassium tert-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv), substrate 1a (48.6 mg, 0.200 mmol, 1.00 equiv), DMF (400 μ L), and allenvlboronic acid pincol ester (144 µL, 0.800 mmol, 4.00 equiv). The resulting mixture was purified by flash column chromatography using 0-1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 5-10-20% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford the title compound as a white solid (43.6 mg, 0.152 mmol, 76%, 99:1 er). TLC $R_f = 0.2$ (20%) EtOAc/hexanes, stains pink with PAA); m.p. = 139-142 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.80 (ad, J = 7.3 Hz, 1H), 7.62-7.53 (m, 4H), 7.41-7.30 (m, 4H), 5.23 (br s, 1H), 3.30 (dd, J = 17.2)2.6 Hz, 1H), 3.24 (dd, J = 17.2, 2.6 Hz, 1H), 2.06 (t, J = 2.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) § 142.3, 140.4, 135.0, 133.5, 130.0, 129.1, 128.7, 126.6, 125.0, 121.5, 78.5, 73.3, 67.1, 31.3; IR (neat) 3286, 2923, 1713, 1293, 1165 cm⁻¹; HRMS (TOF MS ES+) m / z calcd for $C_{16}H_{13}NO_{2}S$ (M + Na)⁺ 306.0565, found 306.0564; $[\alpha]^{24}D$ +42 (c 0.7, CHCl₃); SFC analysis (OD-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 99:1 er: t_R (minor) = 11.5 min, t_R (major) = 14.3 min.

Sultam 3b was prepared according to Method A, using the following amounts of reagents: AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv), Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv), *tert*-butanol (21 µL, 0.22 mmol, 1.1 equiv), potassium *tert*-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv), substrate **1b** (55.9 mg, 0.200 mmol, 1.00 equiv), DMF (400 µL), and allenylboronic acid pincol ester (144 µL, 0.800 mmol, 4.00 equiv). The resulting mixture was purified by flash column chromatography using 0–1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 5–10–20% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford the title compound as a pale yellow oil (50.5 mg, 0.158 mmol, 79%, 97:3 er). **TLC R_f** = 0.2

(20% EtOAc/hexanes, stains pink with PAA); ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 7.7 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.42 (ddd, J = 11.6, 7.5, 2.5 Hz, 1H), 7.37–7.37 (d, J = 7.7 Hz, 1H), 7.34–7.30 (m, 1H), 7.17 (q, J = 8.8 Hz, 1H), 5.35 (br s, 1H), 3.25 (dd, J = 17.4, 2.5 Hz, 1H), 3.18 (dd, J = 17.4, 2.5 Hz, 1H), 2.10 (t, J = 2.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 151.3 (dd, J = 12.5, 7.6 Hz), 149.4 (dd, J = 13.0, 9.0 Hz), 141.4, 137.5 (t, J = 4.2 Hz), 134.9, 133.6, 130.2, 124.4, 122.8 (dd, J = 6.5, 3.7 Hz), 121.6, 117.7 (d, J = 17.6 Hz), 116.3 (d, J = 19.0 Hz), 77.6, 73.8, 66.1, 31.5; ¹⁹F NMR (376.5 MHz, CDCl₃) δ –135.8 (m), – 137.7 (m); IR (neat) 3281, 2923, 2359, 1518, 1284, 1167 cm⁻¹; HRMS (TOF MS ES+) m / z calcd for C₁₆H₁₁F₂NO₂S (M + Na)⁺ 342.0376, found 342.0372; $[\alpha]^{25}{}_{D}$ +56 (*c* 0.8, CHCl₃); SFC analysis (OD-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 97:3 er: t_R (major) = 8.2 min, t_R (minor) = 11.7 min.

Sultam 3c was prepared according to Method A, using the following amounts of reagents: AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv), Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv), tert-butanol (21 µL, 0.22 mmol, 1.1 equiv), potassium tert-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv), substrate 1c (55.5 mg, 0.200 mmol, 1.00 equiv), DMF (400 µL), and allenylboronic acid pincol ester (144 μ L, 0.800 mmol, 4.00 equiv). The resulting mixture was purified by flash column chromatography using 0-1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 5-10-20% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford the title compound as a clear oil (53.6 mg, 0.168 mmol, 84%, 97:3 er). TLC $R_f = 0.3$ (20%) EtOAc/hexanes, stains pink with PAA); ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 7.4 Hz, 1H), 7.66–7.54 (m, 3H) 7.48–7.44 (m, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.35–7.29 (m, 2H), 5.30 (br s, 1H), 3.27 (dd, J = 17.4, 2.5 Hz, 1H), 3.20 (dd, J = 17.4, 2.5 Hz, 1H), 2.09 (t, J = 2.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 142.4, 141.5, 134.95, 134.86, 133.5, 130.3, 130.1, 128.8, 126.8, 124.8, 124.6, 121.5, 77.8, 73.6, 66.5, 31.36; **IR** (neat) 3292, 2923, 2359, 1295, 1165 cm⁻¹; **HRMS** (TOF MS ES+) m / z calcd for C₁₆H₁₂ClNO₂S (M + Na)⁺ 340.0175, found 340.0183. [a]²⁶_D +49 (c 1.0, CHCl₃); SFC analysis (OD-H, 10% MeOH, 3.0 mL/min, 215 nm) indicated 97:3 er: t_R (minor) = 9.5 min, t_R (major) = 10.2 min.

Sultam 3d was prepared according to Method A, using the following amounts of reagents: AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv), Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv), *tert*-butanol (21 μ L, 0.22 mmol, 1.1 equiv), potassium *tert*-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv), substrate 1d (62.3 mg, 0.200 mmol, 1.00 equiv), DMF (400 μ L), and allenylboronic acid pincol ester (144 μ L, 0.800 mmol, 4.00 equiv). The resulting mixture was purified by flash column chromatography using 0–1% TEA/benzene to separate product from

unreacted starting material. The mixture was purified again by flash column chromatography using 5–10–20% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford the title compound as a beige solid (49.8 mg, 0.142 mmol, 71%, 98:2 er). **TLC R**_f = 0.1 (20% EtOAc/hexanes, stains pink with PAA); **m.p.** = 125–127 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.85–7.82 (m, 2H), 7.78 (d, J = 7.9 Hz, 1H), 7.70–7.58 (m, 3H), 7.52 (t, J = 7.9 Hz, 1H), 7.37 (d, J = 7.9 Hz, 1H), 5.35 (br s, 1H), 3.32 (dd, J = 17.3, 2.7 Hz, 1H), 3.24 (dd, J = 17.3, 2.7 Hz, 1H), 2.10 (t, J = 2.7 Hz, 1H); ¹³**C NMR** (125.7 MHz, CDCl₃) δ 141.6, 141.5, 135.1, 133.8, 131.4 (q, J = 32.4 Hz), 130.4, 130.3, 129.8, 125.6 (q, J = 3.7 Hz), 124.6, 123.9 (q, J = 272.4 Hz), 123.3 (q, J = 4.0 Hz), 121.8, 77.7, 73.9, 66.7, 31.5; ¹⁹**F NMR** (376.5 MHz, CDCl₃) δ –62.6; **IR** (neat) 3302, 1329, 1164, 1125, 731 cm⁻¹; **HRMS** (TOF MS ES+) m/z calcd for C₁₇H₁₂F₃NO₂S (M + Na)⁺ 374.0439, found 374.0433; $[\alpha]^{26}{}_{\rm D}$ +47 (c 1.2, CDCl₃); **SFC** analysis (Whelk-O (R,R), 5% IPA, 3.0 mL/min, 215 nm) indicated 98:2 er: t_R (minor) = 10.8 min, t_R (major) = 11.3 min.

Sultam 3e was prepared according to Method A, using the following amounts of reagents: AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv), Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv), tert-butanol (21 µL, 0.22 mmol, 1.1 equiv), potassium tert-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv), substrate 1e (54.7 mg, 0.200 mmol, 1.00 equiv), DMF (400 µL), and allenylboronic acid pincol ester (216 µL, 0.800 mmol, 6.00 equiv). The resulting mixture was purified by flash column chromatography using 0-1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 5–10–20% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford the title compound as a clear oil (39.0 mg, 0.124 mmol, 62%, 99:1 er). TLC $R_f = 0.1$ (20%) EtOAc/hexanes, stains purple with PAA); ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 7.7 Hz, 1H), 7.60 (t, J = 7.2 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.44 (d, J = 8.7 Hz, 2H), 7.35 (d, J = 7.7Hz, 1H), 6.89 (d, J = 8.8, 2H), 5.12 (br s, 1H), 3.80 (s, 3H), 3.29–3.20 (m, 2H), 2.07 (t, J = 2.5Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.8, 142.9, 135.1, 133.4, 132.3, 129.9, 128.1, 125.0, 121.4, 114.4, 78.7, 73.2, 66.8, 55.5, 31.4; **IR** (neat) 3272, 2923, 1512, 1293, 1164 cm⁻¹; **HRMS** (TOF MS ES+) m/z calcd for C₁₇H₁₅NO₃S (M + Na)⁺ 336.0670, found 336.0663; $[\alpha]^{24}$ +33 (c 0.5, CHCl₃); SFC analysis (OD-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 99:1 er: t_R (major) $= 16.1 \text{ min}, t_{\text{R}} \text{ (minor)} = 21.4 \text{ min}.$

Sultam (*R*)-3f was prepared according to Method A, using the following amounts of reagents: AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv), Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv), *tert*-butanol (21 μ L, 0.22 mmol, 1.1 equiv), potassium *tert*-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv), substrate 1f (46.6 mg, 0.200 mmol, 1.00 equiv), DMF (400 μ L), and

allenylboronic acid pincol ester (144 μ L, 0.800 mmol, 4.00 equiv). The resulting mixture was purified by flash column chromatography using 0–1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 5–20–40% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford the title compound as a white solid (35.4 mg, 0.130 mmol, 65%, 97:3 er). **TLC R**_f = 0.3 (20% EtOAc/hexanes, stains purple with PAA); **m.p.** = 126–127 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 7.6 Hz, 1H), 7.66 (td, *J* = 7.6, 1.1 Hz, 1H), 7.60–7.58 (m, 2H), 7.40 (d, *J* = 1.1 Hz, 1H), 6.48 (d, *J* = 3.3 Hz, 1H), 6.35 (dd, *J* = 3.3, 1.8 Hz, 1H), 5.29 (br s, 1H), 3.25 (dd, *J* = 17.0, 2.6 Hz, 1H), 3.19 (dd, *J* = 17.0, 2.6 Hz, 1H), 2.07 (t, *J* = 2.6 Hz, 1H); ¹³C NMR (125.7 MHz, CDCl₃) δ 152.1, 143.6, 139.7, 135.2, 133.5, 130.4, 124.8, 121.5, 110.8, 108.8, 77.8, 73.1, 63.3, 30.6; **IR** (neat) 3283, 1295, 1166, 1132, 735 cm⁻¹; **HRMS** (TOF MS ES+) *m* / *z* calcd for C₁₄H₁₁NO₃S (M + Na)⁺ 296.0357, found 296.0363; **[a]**²⁶_D +7.0 (*c* 1.0, CDCl₃); **SFC** analysis (OD-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 97:3 er: t_R (minor) = 7.2 min, t_R (major) = 8.6 min.

Sultam 3g was prepared according to Method A, using the following amounts of reagents: AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv), Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv), tert-butanol (21 µL, 0.22 mmol, 1.1 equiv), potassium tert-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv), substrate 1g (59.9 mg, 0.200 mmol, 1.00 equiv), DMF (400 µL), and allenvlboronic acid pincol ester (144 uL, 0.800 mmol, 4.00 equiv). The resulting mixture was purified by flash column chromatography using 0-1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 5-10-20% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford the title compound as a pale vellow oil (46.7 mg, 0.138 mmol, 69%, 95:5 er). TLC $\mathbf{R}_{f} = 0.3$ (20% EtOAc/hexanes, stains purple with PAA); ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, J = 7.8 Hz, 1H), 7.77–7.73 (m, 2H), 7.67 (td, J = 7.6, 1.1 Hz, 1H), 7.62–7.56 (m, 2H), 7.45 (s, 1H), 7.34 (aquintd, J = 7.5, 1.4 Hz, 2H), 5.44 (s, 1H), 3.36 (dd, J = 17.1, 2.7 Hz, 1H), 3.29 (dd, J = 17.1, 2.7 Hz, 1H), 2.12 (t, J = 2.7 Hz, 1H); ¹³C NMR (125.7 MHz, CDCl₃) δ 145.5, 141.0, 139.9, 139.3, 134.9, 133.7, 130.5, 125.3, 124.9, 124.8, 124.3, 123.0, 122.5, 121.7, 77.8, 73.8, 65.4, 32.8; IR (neat) 3288, 1294, 1166, 1131, 726 cm⁻¹; HRMS (TOF MS ES+) m/z calcd for $C_{18}H_{13}NO_{2}S_{2}$ (M + Na)⁺ 362.0285, found 362.0279; $[\alpha]^{28}D$ +17 (c 1.1, CDCl₃); SFC analysis (AS-H, 20% IPA, 3.0 mL/min, 215 nm) indicated 95:5 er: t_R (major) = 11.0 min, t_R (minor) = 16.5 min.

Sultam (*R*)-3h was prepared according to Method A, using the following amounts of reagents: AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv), Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120

equiv), tert-butanol (21 µL, 0.22 mmol, 1.1 equiv), potassium tert-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv), substrate **1h** (49.9 mg, 0.200 mmol, 1.00 equiv), DMF (400 μ L), and allenylboronic acid pincol ester (144 µL, 0.800 mmol, 4.00 equiv). The resulting mixture was purified by flash column chromatography using 0-1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 5-10-20% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford the title compound as a yellow solid (51.3 mg, 0.177 mmol, 89%, 97:3 er). TLC $R_f = 0.3$ (20%) EtOAc/hexanes, stains purple with PAA); m.p. = 155–157 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 7.7 Hz, 1H), 7.66 (td, J = 7.6, 1.3 Hz, 1H), 7.59 (td, J = 7.5, 1.3 Hz, 1H), 7.54 (d, J = 7.5, 7.54 (d, J = 7.5, 7.54 (d, J = 7.5, 7.54 (d, J = 7.5), 7.54 (d, J = 7.5, 7.54 (d, J = 7.5), 7.54 (d, J = 7.5, 7.54 (d, J = 7.5), 7.54 (d, J = 7.5) 7.8 Hz, 1H), 7.30 (dd, J = 5.1, 1.3 Hz, 1H), 7.18 (dd, J = 3.7, 1.3 Hz, 1H), 6.98 (dd, J = 5.1, 3.7 Hz, 1H), 5.34 (br s, 1H), 3.27 (d, J = 2.6 Hz, 2H), 2.09 (t, J = 2.6 Hz, 1H); ¹³C NMR (125.7 MHz, CDCl₃) δ 145.1, 141.6, 135.0, 133.6, 130.3, 127.4, 126.6, 126.2, 124.8, 121.5, 78.0, 73.5, 65.0, 33.2; IR (neat) 3305, 2925, 1302, 1168, 906, 728 cm⁻¹; HRMS (TOF MS ES+) m/z calcd for $C_{14}H_{11}NO_2S_2 (M + Na)^+$ 312.0129, found 312.0142; $[\alpha]^{28}D - 12 (c \ 0.9, CDCl_3)$; SFC analysis (OD-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 97:3 er: t_R (minor) = 12.5 min, t_R (major) = 15.7 min.

Sultam 5a was prepared according to Method A, using the following amounts of reagents: AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv), Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv), tert-butanol (21 µL, 0.22 mmol, 1.1 equiv), potassium tert-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv), substrate 4a (44.7 mg, 0.200 mmol, 1.00 equiv), DMF (400 µL), and allenvlboronic acid pincol ester (144 uL, 0.800 mmol, 4.00 equiv). The resulting mixture was purified by flash column chromatography using 0-1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 5-10% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford the title compound as a colorless oil (44.3 mg, 0.168 mmol, 84%, 99:1 er). TLC $R_f = 0.6$ (20%) EtOAc/hexanes, stains pink with PAA); ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, J = 7.8 Hz, 1H), 7.65 (t, J = 7.6, 1.0 Hz, 1H), 7.56 (t, J = 7.7, 0.9 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H), 4.87 (s, 1H), 2.82 (dd, J = 16.9, 2.7 Hz, 1H), 2.77 (dd, J = 16.9, 2.7 Hz, 1H), 2.13 (t, J = 2.7 Hz, 1H), 2.14-2.08 (m, 1H), 2.02–1.96 (m, 1H), 1.45–1.35 (m, 1H), 1.34–1.24 (m, 2H), 1.04–0.96 (m, 1H), 0.86 (t, J = 7.3 Hz, 3H); ¹³C NMR (125.7 MHz, CDCl₃) δ 141.9, 135.8, 133.4, 129.8, 123.6, 121.6, 78.8, 72.8, 65.2, 38.5, 31.8, 25.8, 22.7, 14.0; IR (neat) 3306, 2959, 1289, 1168, 907, 728 cm⁻¹; **HRMS** (TOF MS ES+) m/z calcd for C₁₄H₁₇NO₂S (M + Na)⁺ 286.0878, found 286.0884; [α]²⁸_D -2.4 (c 1.1, CDCl₃); SFC analysis (AS-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 99:1 er: t_R (major) = 7.5 min, t_R (minor) = 8.3 min.

Sultam (R)-5b was prepared according to Method A, using the following amounts of reagents: AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv), Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv), tert-butanol (21 µL, 0.22 mmol, 1.1 equiv), potassium tert-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv), substrate 4b (36.2 mg, 0.200 mmol, 1.00 equiv), DMF (400 µL), and allenylboronic acid pincol ester (144 µL, 0.800 mmol, 4.00 equiv). The resulting mixture was purified by flash column chromatography using 0-1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 5–10–20% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford the title compound as a white solid (35.7 mg, 0.161 mmol, 80%, 99:1 er). TLC $R_f = 0.3$ (20%) EtOAc/hexanes, stains pink with PAA); m.p. = 91–93 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, J = 7.8 Hz, 1H), 7.65 (td, J = 7.8, 1.1 Hz, 1H), 7.56 (td, J = 7.7, 1.0 Hz, 1H), 7.51 (d, J = 7.8 Hz, 1H)Hz, 1H), 4.93 (s, 1H), 2.82 (dd, J = 17.0, 2.7 Hz, 1H), 2.77 (dd, J = 17.0, 2.7 Hz, 1H), 2.15 (t, J = 17.0, 2.7 Hz, 2.7 Hz, 1H), 1.76 (s, 3H); ¹³C NMR (125.7 MHz, CDCl₃) δ 143.3, 135.6, 133.5, 129.8, 123.4, 121.5, 78.8, 72.7, 62.0, 32.6, 26.9; **IR** (neat) 3274, 2980, 2342, 1281, 1156, 1132 cm⁻¹; **HRMS** (TOF MS ES+) m/z calcd for C₁₁H₁₁NO₂S (M + Na)⁺ 244.0408, found 244.0410; $[\alpha]^{27}$ +16 (c 0.9. CDCl₃): SFC analysis (OD-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 99:1 er: t_R (minor) $= 5.8 \text{ min}, t_{R} \text{ (major)} = 6.3 \text{ min}.$

Sultam (R)-5c was prepared according to Method A, using the following amounts of reagents: AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv), Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv), tert-butanol (21 µL, 0.22 mmol, 1.1 equiv), potassium tert-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv), substrate 4c (53.5 mg, 0.200 mmol, 1.00 equiv), DMF (400 μ L), and allenylboronic acid pincol ester (144 µL, 0.800 mmol, 4.00 equiv). The resulting mixture was purified by flash column chromatography using 0-1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 10-20-30% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford the title compound as a white solid (43.9 mg, 0.143 mmol, 72%, 98:2 er). TLC $R_f = 0.2$ (20%) EtOAc/hexanes, stains yellow then pink with PAA); m.p. = 128-129 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, J = 7.7 Hz, 1H), 7.64 (t, J = 7.7 Hz, 1H), 7.57–7.53 (m, 2H), 5.86 (s, 1H), 4.87 $(t, J = 3.8 \text{ Hz}, 1\text{H}), 4.03-3.95 \text{ (m, 2H)}, 3.91-3.83 \text{ (m, 2H)}, 2.83 \text{ (dd}, J = 17.0, 2.7 \text{ Hz}, 1\text{H}), 2.77 \text{ Hz}, 100 \text$ (dd, J = 17.0, 2.7 Hz, 1H), 2.33–2.20 (m, 2H), 2.14 (t, J = 2.7 Hz, 1H), 1.70–1.63 (m, 1H), 1.62– 1.56 (m, 1H); ¹³C NMR (125.7 MHz, CDCl₃) δ 141.7, 136.4, 133.3, 129.9, 123.8, 121.5, 103.2, 79.0, 72.7, 65.3, 65.2, 64.6, 32.4, 31.1, 27.5; **IR** (neat) 3269, 2890, 1286, 1164, 1131, 729 cm⁻¹; **HRMS** (TOF MS ES+) m/z calcd for C₁₅H₁₇NO₄S (M + Na)⁺ 330.0776, found 330.0781; $[\alpha]^{27}$ _D -26 (c 1.2, CDCl₃); SFC analysis (AS-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 98:2 er: t_R $(major) = 12.4 \text{ min}, t_R (minor) = 13.8 \text{ min}.$

Sultam 5d was prepared according to Method A, using the following amounts of reagents: AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv), Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv), tert-butanol (21 µL, 0.22 mmol, 1.1 equiv), potassium tert-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv), substrate 4d (44.3 mg, 0.200 mmol, 1.00 equiv), DMF (400 µL), and allenvlboronic acid pincol ester (144 uL, 0.800 mmol, 4.00 equiv). The resulting mixture was purified by flash column chromatography using 0-1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 5-10% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford the title compound as a white solid (46.2 mg, 0.177 mmol, 88%, 98:2 er). TLC $R_f = 0.4$ (20%) EtOAc/hexanes, stains pink with PAA); m.p. = 80–81 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.8 Hz, 1H), 7.66 (td, J = 7.6, 1.3 Hz, 1H), 7.57 (td, J = 7.6, 1.0 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H)Hz, 1H), 5.79–5.69 (m, 1H), 5.02–4.93 (m, 3H), 2.86–2.76 (m, 2H), 2.27–2.16 (m, 2H), 2.15 (t, J = 2.6 Hz, 1H), 2.13–2.05 (m, 1H), 1.87–1.76 (m, 1H); ¹³C NMR (125.7 MHz, CDCl₃) δ 141.4, 137.0, 135.8, 133.4, 129.9, 123.6, 121.6, 115.7, 78.6, 72.9, 65.0, 37.8, 32.0, 28.0; IR (neat) 3273, 1285, 1165, 1131, 730 cm⁻¹; **HRMS** (TOF MS ES+) m/z calcd for C₁₄H₁₅NO₂S (M + Na)⁺ 284.0721, found 284.0728; [α]²⁴_D +0.5 (c 1.3, CDCl₃); SFC analysis (AS-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 98:2 er: t_R (major) = 7.5 min, t_R (minor) = 8.6 min.

Sultam 11a was prepared according to Method A, using the following amounts of reagents: AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv), Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv), tert-butanol (21 µL, 0.22 mmol, 1.1 equiv), potassium tert-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv), substrate 10a (39.4 mg, 0.200 mmol, 1.00 equiv), DMF (400 μ L), and allenylboronic acid pincol ester (144 µL, 0.800 mmol, 4.00 equiv). The resulting mixture was purified by flash column chromatography using 0-1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 5-10-20% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford the title compound as a clear oil (36.1 mg, 0.152 mmol, 76%, 99:1 er). TLC $\mathbf{R}_{f} = 0.5$ (20%) EtOAc/hexanes, stains pink with PAA); ¹H NMR (500 MHz, CDCl₃) δ 7.33 (td, J = 7.7, 2.5 Hz, 1H), 7.27–7.21 (m, 2H), 7.04 (d, J = 8.0 Hz, 1H), 4.00 (br s, 1H), 3.04 (dd, J = 17.2, 2.5 Hz, 1H), 2.80 (dd, J = 17.2, 2.5 Hz, 1H), 2.12 (t, J = 2.5 Hz, 1 H), 1.81 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) § 150.2, 130.0, 126.5, 125.9, 125.6, 119.5, 78.0, 73.4, 61.8, 33.2, 28.6; IR (neat) 3272, 2923, 1512, 1293, 1164 cm⁻¹; **HRMS** (TOF MS ES+) m / z calcd for C₁₁H₁₁NO₃S (M + Na)⁺ 260.0357, found 260.0356; [α]²⁶_D +35 (c 0.9, CHCl₃); SFC analysis (AD-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 99:1 er: t_R (minor) = 5.4 min, t_R (major) = 6.0 min.

Sultam 11b was prepared according to Method A, using the following amounts of reagents: AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv), Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv), tert-butanol (21 µL, 0.22 mmol, 1.1 equiv), potassium tert-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv), substrate **10b** (42.2 mg, 0.200 mmol, 1.00 equiv), DMF (400 μ L), and allenylboronic acid pincol ester (144 µL, 0.800 mmol, 4.00 equiv). The resulting mixture was purified by flash column chromatography using 0-1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 5-10-20% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford the title compound as a clear oil (25.6 mg, 0.102 mmol, 51%, 99:1 er). TLC $R_f = 0.6$ (20%) EtOAc/hexanes, stains purple with PAA); ¹H NMR (500 MHz, CDCl₃) δ 7.33 (td, J = 7.4, 2.4 Hz, 1H), 7.28–7.22 (m, 2H), 7.06 (d, J = 8.4 Hz, 1H), 4.71 (br s, 1H), 3.03 (dd, J = 17.5, 2.6 Hz, 1H), 2.87 (dd, J = 17.9, 3.0 Hz, 1H), 2.22 (sextet, J = 7.1 Hz, 1H), 2.11 (t, J = 2.5 Hz, 1H), 2.08 (sextet, J = 7.2 Hz, 1H), 0.93 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 150.7, 129.9, 126.5, 125.9, 125.0, 119.5, 78.4, 73.3, 64.8, 32.9, 30.9, 7.9; IR (neat) 3294, 1485, 1417, 1364 cm⁻¹; **HRMS** (TOF MS ES+) m / z calcd for C₁₂H₁₃NO₃S (M + Na)⁺ 274.0514, found 274.0509; $[\alpha]_{D}^{26}$ +25 (c 0.5, CHCl₃); SFC analysis (AD-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 99:1 er: t_R (minor) = 4.7 min, t_R (major) = 5.1 min.

D. GENERAL PROCEDURES FOR STARTING MATERIAL SYNTHESIS

Note: When possible, Method D was preferentially used instead of Method C in order to minimize side reactions and obtain reaction mixtures that were easier to purify. The yields for starting material synthesis are unoptimized.

METHOD C: GRIGNARD ADDITION INTO SACCHARIN

$$R-Br \xrightarrow{Mg^{0}} R-MgBr + \bigvee_{O \\ V \\ THF} VH \xrightarrow{O \\ V \\ O \\ O \\ C \\ to rt \\ O \\ C \\ THF \\ R$$

Prepared according to a modified procedure described by Hayashi and co-workers.⁵ The Grignard reagent was typically prepared using flame-dried magnesium turnings (2.0 equiv) with a few crystals of I₂ in anhydrous THF (10 mL). The aryl halide (1.0 equiv) was added to the solution until initiation of the Grignard reagent, after which the remaining aryl halide was added dropwise at 0 °C. The reaction was stirred 2 h at rt, then titrated.¹

The Grignard reagent (2.0 equiv) was then slowly added to a solution of saccharin (1.0 equiv) in THF (6 mL) at 0 °C. The reaction was allowed to warm to rt and stirred at 22 °C overnight. The reaction was quenched at 0 °C with saturated aqueous NH₄Cl (20 mL) and extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The product was purified either by recrystallization (if the unpurified material was already crystalline) or by flash column chromatography using silica gel (generally, the unpurified material was first adsorbed onto silica).

METHOD D: ORGANOLITHIUM ADDITION INTO SACCHARIN

Prepared according to a modifed procedure described by Bode and co-workers.⁶ The organolithium reagent was typically prepared by slow addition of *n*-butyllithium (2.75 equiv) to a solution of heterocycle (2.5 equiv) in anhydrous THF (10 mL) at -78 °C. The reaction was stirred at -78 °C for 15 min then used directly in the next step.

To this mixture was slowly added a solution of saccharin (1.0 equiv) in THF (6 mL) via syringe at -78 °C. The reaction was allowed to warm to rt slowly over several hours, then stirred at 22 °C overnight. The reaction was quenched at 0 °C with saturated aqueous NH₄Cl (20 mL) and extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The product was purified either by recrystallization (if the unpurified material was already crystalline) or by flash column chromatography using silica gel (generally, the unpurified material was first adsorbed onto silica).

Note: In the case of compounds 4a or 4b, *n*-butyllithium or methyllithium (2.2 equiv) was slowly added directly to a solution of saccharin (1.0 equiv) in THF at -78 °C.

METHOD E: CHLOROSULFONYL ISOCYANATE CONDENSATION

Prepared according to a modified procedure described by Hayashi and co-workers.⁷ To a flamedried round-bottom flask was added chlorosulfonyl isocyanate (2.0 equiv), followed by anhydrous formic acid (2.0 equiv) added dropwise via syringe at 0 °C. Upon addition, a white solid was formed along with vigorous gas evolution. The viscous reaction was stirred for 10 min, until gas evolution ceased.

To this mixture was added neat 2-hydroxyketone (1.0 equiv) dropwise via syringe at rt, and the reaction was stirred for 10 min, then cooled to 0 °C. Anhydrous DMA (7 mL) was slowly added and the reaction mixture was warmed to rt and stirred 10 min. One portion of a solution of sodium hydride (1.2 equiv) in DMA (3 mL) was added to the reaction, followed by the other portion after 30 min. The reaction mixture was stirred 1 h at rt, then warmed to 50 °C and stirred 12 h. The reaction was quenched with H₂O (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The product was purified by flash column chromatography using silica gel (the unpurified material was first adsorbed onto silica).

N-Sulfonyl ketimine 1a was prepared according Method C, using the following amounts of reagents: saccharin (1.10 g, 6.00 mmol, 1.00 equiv), phenylmagnesium bromide (6.0 mL, 12 mmol, 2.0 M in THF, 2.0 equiv) and THF (25 mL). The product was recrystallized from hot Et₂O in CHCl₃ (1:1 Et₂O/CHCl₃) to afford the title compound as a white solid (0.715 g, 2.94 mmol, 49% yield). Analytical data are consistent with literature values.⁵ TLC $\mathbf{R}_{\mathbf{f}} = 0.2$ (20% EtOAc/hexanes, UV active); m.p. = 163–165 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 7.5 Hz, 1H), 7.98 (d, *J* = 7.3 Hz, 2H), 7.91 (d, *J* = 7.3 Hz, 1H), 7.80 (t, *J* = 7.3 Hz, 1H), 7.75 (t, *J* = 7.3 Hz, 1H), 7.71 (t, *J* = 7.5 Hz, 1H), 7.62 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 141.3, 133.8, 133.6, 133.5, 130.7, 130.6, 129.7, 129.4, 126.7, 123.3; IR (neat) 1599, 1531, 1332, 1171 cm⁻¹; HRMS (TOF MS ES+) *m* / *z* calcd for C₁₃H₉NO₂S (M + Na)⁺ 266.0252, found 266.0255.

N-Sulfonyl ketimine 1b was prepared according Method C, using the following amounts of reagents: saccharin (1.28 g, 7.00 mmol, 1.00 equiv), 3,4-difluorophenylmagnesium bromide (11.2 mL, 14.0 mmol, 1.25 M in THF, 2.00 equiv) and THF (20 mL). The product was recrystallized from hot Et₂O in CHCl₃ (1:1 Et₂O/CHCl₃) to afford the title compound as a yellow solid (0.235 g, 0.840 mmol, 12%). Analytical data are consistent with literature values.⁵ TLC R_f = 0.2 (20% EtOAc/hexanes, UV active); m.p. = 170–171 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 7.5 Hz, 1H), 7.89–7.76 (m, 5H), 7.43 (q, *J* = 8.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 169.0, 153.9 (dd, *J* = 258.9, 12.5 Hz), 150.8 (dd, *J* = 252.9, 13.4 Hz), 141.3, 134.0, 133.9, 130.0, 127.5 (dd, *J* = 6.0, 4.2 Hz), 126.7 (dd, *J* = 7.4, 3.7), 126.3, 123.6, 119.2 (d, *J* = 19.4 Hz), 118.7 (d, *J* = 18.0 Hz); ¹⁹F NMR (376.5 MHz, CDCl₃) δ –128.4 (m), –134.3 (dt, *J* = 20.7, 9.2 Hz); IR (neat) 1738, 1511, 1335, 1173 cm⁻¹; HRMS (TOF MS ES+) *m* / *z* calcd for C₁₃H₇F₂NO₂S (M + Na)⁺ 302.0063, found 302.0052.

N-Sulfonyl ketimine 1c was prepared according Method C, using the following amounts of reagents: saccharin (0.824 g, 4.50 mmol, 1.00 equiv), 3-chlorophenylmagnesium bromide (6.0 mL, 9.0 mmol, 1.5 M in THF, 2.0 equiv) and THF (15 mL). The product was recrystallized from hot Et₂O in CHCl₃ (1:1 Et₂O/CHCl₃) to afford the title compound as a white solid (0.700 g, 2.52 mmol, 56%). Analytical data are consistent with literature values.⁵ TLC $\mathbf{R}_{f} = 0.2$ (20%

EtOAc/hexanes, UV active); **m.p.** = 149–151 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 8.03 (d, J = 7.2 Hz, 1H), 7.96 (s, 1H), 7.87 (t, J = 7.5 Hz, 2H), 7.82 (t, J = 7.2 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.68 (d, J = 8.3 Hz, 1H), 7.57 (t, J = 8.1 Hz, 1H); ¹³C **NMR** (125 MHz, CDCl₃) δ 170.0, 141.2, 135.6, 134.0, 133.8, 133.5, 132.2, 130.7, 130.2, 129.5, 127.7, 126.4, 123.5; **IR** (neat) 1537, 1332, 1173 cm⁻¹; **HRMS** (TOF MS ES+) m / z calcd for C₁₃H₈ClNO₂S (M + Na)⁺ 299.9862, found 299.9863.

N-Sulfonyl ketimine 1d was prepared according Method C, using the following amounts of reagents: saccharin (0.46 g, 2.5 mmol, 1.0 equiv), (3-(trifluoromethyl)phenyl)magnesium iodide (4.00 mL, 5.00 mmol, 1.25 M in THF, 2.00 equiv) and THF (2.5 mL). The product was recrystallized from hot Et₂O in CHCl₃ (1:1 Et₂O/CHCl₃) to afford the title compound as a pale yellow solid (0.21 g, 0.68 mmol, 27%). TLC R_f = 0.4 (20% EtOAc/hexanes, UV active); m.p. = 154–156 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.22 (s, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 8.04 (d, *J* = 7.8 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.84–7.81 (m, 2H), 7.80–7.76 (m, 2H); ¹³C NMR (125.7 MHz, CDCl₃) δ 169.9, 141.3, 134.1, 133.9, 132.7, 132.2 (q, *J* = 33.3 Hz), 131.5, 130.14, 130.09, 129.9 (q, *J* = 3.7 Hz), 126.4 (q, *J* = 3.7 Hz), 126.3, 123.55, 123.54 (q, *J* = 272.8 Hz); ¹⁹F NMR (376.5 MHz, CDCl₃) δ –62.9; IR (neat) 1614, 1325, 1281, 1166, 1123 cm⁻¹; HRMS (TOF MS ES+) *m*/*z* calcd for C₁₄H₈F₃NO₂S (M + Na)⁺ 334.0125, found 334.0131.

N-Sulfonyl ketimine 1e was prepared according Method C, using the following amounts of reagents: saccharin (1.37 g, 7.50 mmol, 1.00 equiv), 4-methoxyphenylmagnesium bromide (7.5 mL, 15 mmol, 2.0 M in THF, 2.0 equiv) and THF (25 mL). The product was recrystallized from hot Et₂O in CHCl₃ (1:1 Et₂O/CHCl₃) to afford the title compound as a light green solid (1.00 g, 3.68 mmol, 49%). Analytical data are consistent with literature values.⁵ TLC **R**_f = 0.1 (20% EtOAc/hexanes, UV active); **m.p.** = 205–206 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.05–8.00 (m, 3H), 7.96 (d, *J* = 7.3 Hz, 1H), 7.76 (dt, *J* = 18.2, 7.5 Hz, 2H), 7.10 (d, *J* = 8.7 Hz, 2H), 3.94 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 164.3, 141.5, 133.6, 133.3, 132.1, 131.1, 126.7, 123.2, 123.0, 114.9, 55.8; **IR** (neat) 1599, 1503, 1316, 1254, 1159 cm⁻¹; **HRMS** (TOF MS ES+) *m*/*z* calcd for C₁₄H₁₁NO₃S (M + Na)⁺ 296.0357, found 296.0362.

N-Sulfonyl ketimine 1f was prepared according Method D, using the following amounts of reagents: furan (0.910 mL, 12.5 mmol, 2.50 equiv), *n*-BuLi (5.50 mL, 13.8 mmol, 2.50 M in hexanes, 2.75 equiv), saccharin (0.92 g, 5.0 mmol, 1.0 equiv), and THF (15 mL). The product was recrystallized from hot Et₂O in CHCl₃ (1:1 Et₂O/CHCl₃) to afford the title compound as a yellow solid (0.16 g, 0.70 mmol, 14%). Analytical data are consistent with literature values.⁵ TLC R_f = 0.2 (20% EtOAc/hexanes, UV active); ¹H NMR (500 MHz, CDCl₃) δ 8.49 (dd, *J* = 5.5, 3.0 Hz, 1H), 7.98 (dd, *J* = 5.5, 3.0 Hz, 1H), 7.91 (s, 1H), 7.79–7.76 (m, 3H), 6.79 (dd, *J* = 3.7, 1.6 Hz, 1H); ¹³C NMR (125.7 MHz, CDCl₃) δ 158.1, 149.4, 148.2, 141.0, 133.9, 133.6, 129.8, 127.6, 122.8, 122.2, 114.1; IR (neat) 1600, 1571, 1516, 1320, 1165 cm⁻¹; HRMS (TOF MS ES+) *m*/*z* calcd for C₁₁H₇NO₃S (M + Na)⁺ 256.0044, found 256.0043.

N-Sulfonyl ketimine 1g was prepared according Method D, using the following amounts of reagents: benzothiophene (1.46 mL, 12.5 mmol, 2.50 equiv), *n*-BuLi (5.50 mL, 13.8 mmol, 2.50 M in hexanes, 2.75 equiv), saccharin (0.92 g, 5.0 mmol, 1.0 equiv), and THF (16 mL). The product was purified by flash column chromatography using 20–30–50% EtOAc/hexanes to afford the title compound as a yellow solid (0.29 g, 0.96 mmol, 19%). TLC $\mathbf{R}_{\mathbf{f}} = 0.2$ (20% EtOAc/hexanes, UV active); m.p. = 266–268 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.46 (s, 1H), 8.30–8.28 (m, 1H), 8.05–8.03 (m, 1H), 7.99 (d, *J* = 8.1 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.83–7.81 (m, 2H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (125.7 MHz, CDCl₃) δ 164.0, 142.9, 141.4, 139.2, 133.9, 133.7, 132.7, 130.4, 128.6, 126.1, 126.0, 125.8, 123.3, 122.9; IR (neat) 1593, 1526, 1316, 1171, 744 cm⁻¹; HRMS (TOF MS ES+) *m*/*z* calcd for C₁₅H₉NO₂S₂ (M + Na)⁺ 321.9973, found 321.9986.

N-Sulfonyl ketimine 1h was prepared according Method C, using the following amounts of reagents: saccharin (0.92 g, 5.0 mmol, 1.0 equiv), 2-thienylmagnesium bromide (8.00 mL, 10.0 mmol, 1.25 M in THF, 2.00 equiv) and THF (5 mL). The product was recrystallized from hot Et₂O in CHCl₃ (1:1 Et₂O/CHCl₃) to afford the title compound as an orange solid (0.22 g, 0.90 mmol, 18%). Analytical data are consistent with literature values.⁶ TLC R_f = 0.2 (20% EtOAc/hexanes, UV active); ¹H NMR (500 MHz, CDCl₃) δ 8.23 (d, *J* = 3.9 Hz, 1H), 8.21–8.18 (m, 1H), 8.03–8.00 (m, 1H), 7.88 (d, *J* = 5.0 Hz, 1H), 7.82–7.77 (m, 2H), 7.34 (t, *J* = 4.4 Hz, 1H); ¹³C NMR (125.7 MHz, CDCl₃) δ 163.1, 141.4, 135.8, 135.3, 134.0, 133.8, 133.6, 130.5,

129.2, 125.8, 123.2; **IR** (neat) 1594, 1416, 1316, 1164, 725 cm⁻¹; **HRMS** (TOF MS ES+) m/z calcd for C₁₁H₇NO₂S₂ (M + Na)⁺ 271.9816, found 271.9816.

N-Sulfonyl ketimine 4a was prepared according Method D, using the following amounts of reagents: saccharin (0.92 g, 5.0 mmol, 1.0 equiv), *n*-BuLi (5.50 mL, 13.8 mmol, 2.50 M in hexanes, 2.75 equiv), and THF (18 mL). The product was purified by flash column chromatography using 20% EtOAc/hexanes to afford the title compound as a yellow solid (0.40 g, 1.8 mmol, 36%). Analytical data are consistent with literature values.⁶ TLC $\mathbf{R}_{f} = 0.4$ (20% EtOAc/hexanes, stains with KMnO₄); ¹H NMR (400 MHz, CDCl₃) δ 7.93–7.90 (m, 1H), 7.77–7.68 (m, 3H), 2.97 (t, J = 7.4 Hz, 2H), 1.88 (quint, J = 7.4 Hz, 2H), 1.51 (sext, J = 7.4 Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H); ¹³C NMR (125.7 MHz, CDCl₃) δ 176.5, 140.0, 134.0, 133.6, 131.5, 124.0, 122.6, 31.0, 27.6, 22.5, 13.9; IR (neat) 2342, 1604, 1558, 1332, 1172 cm⁻¹; HRMS (TOF MS ES+) m/z calcd for C₁₁H₁₃NO₂S (M + Na)⁺ 246.0565, found 246.0568.

N-Sulfonyl ketimine 4b was prepared according Method D, using the following amounts of reagents: saccharin (1.83 g, 10.0 mmol, 1.00 equiv), MeLi (15.7 mL, 22.0 mmol, 1.40 M in Et₂O, 2.20 equiv) and THF (10 mL). The product was purified by flash column chromatography using 20% EtOAc/hexanes to afford the title compound as a white solid (1.13 g, 6.21 mmol, 62%). Analytical data are consistent with literature values.⁶ TLC $\mathbf{R}_{\mathbf{f}} = 0.3$ (20% EtOAc/hexanes, stains with KMnO₄); ¹H NMR (500 MHz, CDCl₃) δ 7.99–7.97 (m, 1H), 7.84–7.79 (m, 2H), 7.76–7.75 (m, 1H), 2.73 (s, 3H); ¹³C NMR (125.7 MHz, CDCl₃) δ 173.4, 139.7, 134.1, 133.7, 131.7, 124.3, 122.5, 17.7; IR (neat) 2341, 1558, 1316, 1168, 771 cm⁻¹; HRMS (TOF MS ES+) *m*/*z* calcd for C₈H₇NO₂S (M + Na)⁺ 204.0095, found 204.0098.

N-Sulfonyl ketimine 4c was prepared according Method C, using the following amounts of reagents: saccharin (1.2 g, 6.5 mmol, 1.0 equiv), (2-(1,3-dioxolan-2-yl)ethyl)magnesium bromide (14.0 mL, 13.0 mmol, 0.900 M in THF, 2.00 equiv) and THF (17 mL). The product was purified by flash column chromatography using 50% EtOAc/hexanes to afford the title compound as a white solid (0.80 g, 3.0 mmol, 46%). TLC $\mathbf{R}_{\mathbf{f}} = 0.5$ (50% EtOAc/hexanes, UV active); $\mathbf{m.p.} = 68-70 \text{ °C}$; ¹H NMR (400 MHz, CDCl₃) δ 7.93–7.90 (m, 1H), 7.77–7.71 (m, 3H), 5.07 (t, J = 4.0 Hz, 1H), 4.01–3.95 (m, 2H), 3.93–3.87 (m, 2H), 3.12 (t, J = 7.4 Hz, 2H), 2.31 (td, J = 7.4, 4.0 Hz, 2H); ¹³C NMR (125.7 MHz, CDCl₃) δ 176.2, 139.8, 134.0, 133.6, 131.3, 124.1, 122.5,

102.6, 65.2, 29.0, 25.1; **IR** (neat) 1607, 1333, 1172, 909, 726 cm⁻¹; **HRMS** (TOF MS ES+) m/z calcd for C₁₂H₁₃NO₄S (M + Na)⁺ 290.0463, found 290.0465.

N-Sulfonyl ketimine 4d was prepared according Method C, using the following amounts of reagents: saccharin (0.82 g, 4.5 mmol, 1.0 equiv), 4-butenylmagnesium bromide (5.0 mL, 4.5 mmol, 0.90 M in THF, 1.0 equiv) and THF (6 mL). The product was purified by flash column chromatography using 10–20% EtOAc/hexanes to afford the title compound as a white solid (0.16 g, 0.71 mmol, 16%). Analytical data are consistent with literature values.⁸ TLC R_f = 0.3 (20% EtOAc/hexanes, stains with KMnO₄); m.p. = 81 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.93–7.88 (m, 1H), 7.78–7.68 (m, 3H), 5.99–5.89 (m, 1H), 5.15 (dd, *J* = 17.1, 1.5 Hz, 1H), 5.09 (dd, *J* = 10.2, 1.4 Hz, 1H), 3.07 (t, *J* = 7.5 Hz, 2H), 2.69–2.63 (m, 2H); ¹³C NMR (125.7 MHz, CDCl₃) δ 175.7, 139.9, 135.9, 134.1, 133.7, 131.3, 124.0, 122.6, 116.7, 30.6, 29.2; IR (neat) 2923, 2257, 1558, 1334, 907, 726 cm⁻¹; HRMS (TOF MS ES+) *m* / *z* calcd for C₁₁H₁₁NO₂S (M + Na)⁺ 244.0408, found 244.0419.

N-Sulfonyl ketimine 10a was prepared according Method E, using the following amounts of reagents: chlorosulfonyl isocyanate (1.74 mL, 20.0 mmol, 2.00 equiv), anhydrous formic acid (0.750 mL, 20.0 mmol, 2.00 equiv), 2-hydroxyacetophenone (1.20 mL, 10.0 mmol, 1.00 equiv), sodium hydride (0.576 g, 24.0 mmol, 2.4 equiv) and DMA (25 mL). The product was purified by flash column chromatography using 20% EtOAc/hexanes to afford the title compound as a light yellow solid (0.690 g, 3.50 mmol, 34%). Analytical data are consistent with literature values.⁷ TLC R_f = 0.3 (20% EtOAc/hexanes, UV active); m.p. = 112–114 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.81 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.72 (td, *J* = 7.6, 1.6 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 8.3 Hz, 1H), 2.74 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.4, 153.6, 137.2, 128.6, 126.0, 119.3, 116.6, 23.9; IR (neat) 1594, 1556, 1367, 1323 cm⁻¹; HRMS (TOF MS ES+) *m*/*z* calcd for C₈H₇NO₃S (M + Na)⁺ 220.0044, found 220.0046.

N-Sulfonyl ketimine 10b was prepared according Method E, using the following amounts of reagents: chlorosulfonyl isocyanate (1.74 mL, 20.0 mmol, 2.00 equiv), anhydrous formic acid (0.750 mL, 20.0 mmol, 2.00 equiv), 2-hydroxypropiophenone (1.74 mL, 10.0 mmol, 1.00 equiv),

sodium hydride (0.576 g, 24.0 mmol, 2.4 equiv) and DMA (25 mL). The product was purified by flash column chromatography using 20% EtOAc/hexanes to afford the title compound as a light yellow solid (1.06 g, 5.02 mmol, 50%). Analytical data are consistent with literature values.⁷ **TLC R**_f = 0.4 (20% EtOAc/hexanes, UV active); **m.p.** = 79–81 °C ¹**H NMR** (500 MHz, CDCl₃) δ 7.82 (dd, J = 8.0, 1.2 Hz, 1H), 7.71 (td, J = 7.6, 1.6 Hz, 2H), 7.39 (d, J = 7.3 Hz, 1H), 7.30 (t, J = 78.0 Hz, 1H), 7.36 (d, J = 7.2 Hz, 1H), 3.10 (t, J = 7.3 Hz, 2H), 1.36 (t, J = 7.2 Hz, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 180.9, 153.6, 136.9, 1279, 126.0, 119.4, 116.2, 29.4, 9.8; **IR** (neat) 1596, 1553, 1373, 1360 cm⁻¹; **HRMS** (TOF MS ES+) m/z calcd for C₉H₉NO₃S (M + Na)⁺ 234.0201, found 234.0202.

F. SYNTHETIC TRANSFORMATIONS OF HOMOPROPARGYLIC SULTAMS (SCHEME 3)

1) ENYNE RING-CLOSING METATHESIS TO FORM 6

Sultam 6 was prepared according to a modified procedure described by Mori and co-workers.⁹ To a flame-dried 7 mL reaction vial equipped with a N₂ line and Grubbs 1st generation catalyst (6.0 mg, 0.0070 mmol, 0.050 equiv) was added substrate 5d (36.8 mg, 0.140 mmol, 1.00 equiv) in anhydrous CH₂Cl₂ (5 mL). The N₂ atmosphere was exchanged with ethylene (1 atm, balloon), taking care to fully purge the vial of N₂. After stirring 24 h at room temperature, the reaction mixture was concentrated in vacuo. The product was purified by flash column chromatography using 5–10% EtOAc/hexanes (1% TEA) to afford the title compound as a colorless oil (28.0 mg, 0.110 mmol, 76%). Enantiomeric ratio could not be determined for the title compound using chiral SFC instrumentation due to lack of separation of the enantiomers. TLC $R_f = 0.4$ (20%) EtOAc/hexanes, stains blue with PAA); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.7 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 6.42 (dd, J = 17.6, 10.9 Hz, 1H), 5.94 (s, 1H), 5.04–4.97 (m, 2H), 4.72 (s, 1H), 2.69 (d, J = 17.4 Hz, 1H), 2.58–2.49 (m, 2H), 2.45–2.37 (m, 1H), 2.07–1.94 (m, 2H); ¹³C NMR (125.7 MHz, CDCl₃) δ 144.6, 138.6, 135.5, 133.6, 133.2, 129.6, 128.7, 123.4, 121.6, 111.7, 61.9, 37.0, 33.3, 23.4; IR (neat) 3455, 3251, 2926, 1161, 1061, 744 cm⁻¹; HRMS (TOF MS ES+) m/z calcd for C₁₄H₁₅NO₂S (M + Na)⁺ 284.0721, found 284.0712; $[\alpha]^{24}$ -14 (c 0.9, CDCl₃).

2) SONOGASHIRA CROSS-COUPLING REACTION TO FORM 7

Sultam 7 was prepared according to a modified procedure described by Hoppe and co-workers.¹⁰ To a flame-dried 7 mL reaction vial equipped with a N₂ line, substrate **5b** (22.1 mg, 0.100 mmol, 1.00 equiv), bis(triphenylphosphine)palladium(II) dichloride (2.1 mg, 0.0030 mmol, 0.030 equiv), and copper(I) iodide (2.9 mg, 0.015, 0.15 equiv) was added anhydrous THF (0.7 mL) then anhydrous TEA (0.3 mL). Ethyl 4-iodobenzoate (37 μ L, 0.20 mmol, 2.0 equiv) was added via syringe. After stirring 1 h at room temperature, the reaction mixture was quenched with 1 M HCl (2 mL), extracted with EtOAc (3 x 2 mL), rinsed with brine, dried with Na₂SO₄, filtered, and concentrated in vacuo. The product was purified by flash column chromatography using 5–30% EtOAc/hexanes (1% TEA) to afford the title compound as a yellow solid (29.8 mg, 0.0807 mmol, 80%, 99:1 er). **TLC R_f** = 0.2 (20% EtOAc/hexanes, UV active, stains pink with PAA); **m.p.** = 162–164 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.80 (d, *J* = 7.7 Hz, 10.00 mmol, 10.00 mm

1H), 7.67 (td, J = 7.7, 1.0 Hz, 1H), 7.57 (td, J = 7.7, 1.0 Hz, 1H), 7.52 (d, J = 8.0 Hz, 3H), 7.42 (d, J = 8.4, 2H), 4.83 (br s, 1H), 4.38 (q, J = 7.1 Hz, 2H), 3.08–3.00 (m, 2H), 1.82 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H); ¹³C NMR (125.7 MHz, CDCl₃) δ 166.0, 143.3, 135.7, 133.4, 131.6, 130.1, 129.8, 129.5, 127.1, 123.3, 121.5, 87.0, 83.9, 62.4, 61.2, 33.7, 27.2, 14.4; **IR** (neat) 3254, 2982, 1713, 1606, 1274, 1172 cm⁻¹; **HRMS** (TOF MS ES+) m / z calcd for C₂₀H₁₉NO₄S (M + Na)⁺ 392.0933, found 392.0932; $[\alpha]^{24}_{D}$ +8 (c 0.8, CDCl₃); **SFC** analysis (OD-H, 20% IPA, 3.0 mL/min, 215 nm) indicated 99:1 er: t_R (minor) = 5.8 min, t_R (major) = 6.3 min.

3) LINDLAR REDUCTION TO FORM 8

Sultam 8 was prepared according to a modified procedure described by Jarvo and co-workers.¹¹ To a flame-dried 7 mL reaction vial equipped with a N₂ line, substrate **3a** (41.0 mg, 0.145 mmol, 1.00 equiv), and palladium, 5% on calcium carbonate, lead poisoned (6.4 mg, 2 mol % palladium relative to 3a) was added anhydrous MeOH (2 mL). The N₂ atmosphere was exchanged with H₂ (1 atm, balloon) and the reaction was allowed to stir at room temperature. After 22 min, the H₂ atmosphere was exchanged with N₂ and the reaction mixture was filtered through a pad of Celite using 50% EtOAc/hexanes, and then concentrated in vacuo. The product was purified by flash column chromatography using 5-10% EtOAc/hexanes (1% TEA) to afford the title compound as a white solid (38.2 mg, 0.134 mmol, 92%, 97:3 er). TLC $\mathbf{R}_{f} = 0.1$ (10% EtOAc/hexanes, stains blue with PAA); m.p. = 125–127 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, J = 7.8 Hz, 1H), 7.62–7.58 (m, 3H), 7.52 (t, J = 7.7 Hz, 1H), 7.38 (t, J = 7.9 Hz, 3H), 7.30 (m, 1H), 5.66–5.57 (m, 1H), 5.28–5.21 (m, 2H), 5.00 (s, 1H), 3.25 (dd, J = 14.3, 6.6 Hz, 1H), 3.03 (dd, J = 14.3, 7.7 Hz, 1H); ¹³C NMR (125.7 MHz, CDCl₃) δ 143.2, 141.7, 134.8, 133.5, 131.7, 129.6, 129.1 128.3, 126.3, 124.6, 122.0, 121.6, 67.7, 45.2; **IR** (neat) 3290, 3069, 1295, 1168, 906, 729 cm⁻¹; **HRMS** (TOF MS ES+) m/z calcd for C₁₆H₁₅NO₂S (M + Na)⁺ 308.0721, found 308.0723; [α]²⁴_D +72 (*c* 0.9, CDCl₃); SFC analysis (OD-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 97:3 er: t_R (minor) $= 9.9 \text{ min}, t_{\text{R}} \text{ (major)} = 12.6 \text{ min}.$

Sultam 9. To a flame-dried 7 mL reaction vial equipped with a N₂ line and palladium, 10% on carbon (6.3 mg, 5 mol % palladium relative to **3a**) was added substrate **3a** (32.3 mg, 0.114 mmol, 1.00 equiv) in anhydrous MeOH (1.0 mL). The vial was evacuated and refilled with N₂ three times. The N₂ atmosphere was exchanged with H₂ (1 atm, balloon) and the reaction was allowed to stir at room temperature. After 18 h, the H₂ atmosphere was exchanged with N₂ and the reaction mixture was filtered through a pad of Celite using MeOH, and then concentrated in vacuo. The product was purified by flash column chromatography using 5–10–20% EtOAc/hexanes (1% TEA) to afford the title compound as a white solid (29.2 mg, 0.102 mmol, 89%, 98:2 er). **TLC R_f** = 0.5 (20% EtOAc/hexanes, stains blue with PAA); **m.p.** = 160–162 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.7 Hz, 1H), 7.60–7.49 (m, 4H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.29 (t, *J* = 7.0 Hz, 2H), 4.86 (br s, 1H), 2.44–2.36 (m, 1H), 2.33–2.26 (m, 1H), 1.57–1.46 (m, 1H), 1.24–1.02 (m, 1H), 0.94 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (125.7 MHz, CDCl₃) δ 143.6, 142.5, 134.5, 133.5, 129.4, 129.1, 128.2, 126.1, 124.4, 121.4, 68.9, 42.6, 17.5, 14.1; **IR** (neat) 3251, 2958, 1450, 1281, 1157, 765 cm⁻¹; **HRMS** (TOF MS ES+) *m*/*z* calcd for C₁₆H₁₇NO₂S (M + Na)⁺ 310.0878, found 310.0883; [**a**]²⁵_D +95 (*c* 0.9, CDCl₃); **SFC** analysis (OD-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 98:2 er: t_R (minor) = 11.0 min, t_R (major) = 13.9 min.

G. MECHANISTIC STUDIES (TABLE 2)

1) SYNTHESIS OF PROPARGYL BOROLANE REAGENT 12

Scheme SI-2. Synthesis of propargyl borolane 12.

2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxoborolane SI-1 was prepared according to a modified procedure described by Brown and co-workers,¹² using the following amounts of reagents: 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (17.7 mL, 86.9 mmol, 1.00 equiv), diiodomethane (7.00 mL, 86.9 mmol, 1.00 equiv), methyllithium (52.3 mL, 86.9 mmol, 1.66 M in Et₂O, 1.00 equiv), THF (45 mL), and anhydrous HCl (93.0 mL, 93.0 mmol, 1.00 M in Et₂O, 1.07 equiv). The resulting red solution was filtered through a plug of silica gel (40 mL) eluting with 10% Et₂O/pentanes and concentrated in vacuo. Distillation twice through a short path distillation apparatus onto activated 4Å molecular sieves at 13.7 mmHg and $T_{vap} = 95$ °C provided the title compound as a clear, colorless liquid (7.64 g, 28.5 mmol, 33%). Analytical data are consistent with literature values.¹² **TLC R**_f = 0.7 (10% Et₂O/pentanes, stains blue with PAA); ¹**H NMR** (CDCl₃, 400 MHz) δ 2.16 (s, 2H), 1.28 (s, 12 H); ¹³**C NMR** (CDCl₃, 125.7 MHz) δ 84.1, 24.5; ¹¹**B NMR** (CDCl₃, 160.2 MHz) δ 31.7; **IR** (neat) 2977, 1322, 1142, 844, 673, 577 cm⁻¹; **HRMS** (TOF MS CI+) *m* / *z* calcd for C₇H₁₄BIO₂ (M)⁺ 268.0133, found 268.0143.

Propargylboronic acid pinacol ester 12 was prepared according to a literature procedure by Fandrick and co-workers,⁴ using the following amounts of reagents: **SI-1** (2.0 mL, 11 mmol, 1.0 equiv), ethynylmagnesium bromide (19.8 mL, 11.2 mmol, 0.566 M in THF, 1.02 equiv), THF (15 mL), and 1:1 THF/DMSO (24 mL). Distillation using a Kugelrohr distillation apparatus at 3–6 torr and $T_{vap} = 60$ °C provided the title compound as a 96:4 mixture of propargyl borolane **12** and allenyl borolane **2** as a clear, colorless oil (0.37 g, 2.2 mmol, 20%). Analytical data for allenyl borolane **2** are consistent with literature values.³ **TLC R**_f = 0.9 (10% Et₂O/hexanes, stains blue with PAA); ¹H NMR (400 MHz, DMF- d_7) δ 4.90 (t, J = 7.0 Hz, 1H), 4.71 (d, J = 7.0 Hz, 2H), 1.26 (s, 12H). Analytical data for propargyl borolane **12** are consistent with literature values.⁴ ¹H NMR (400 MHz, DMF- d_7) δ 2.46 (t, J = 2.9 Hz, 1H), 1.78 (d, J = 2.9 Hz, 2H), 1.26 (s, 12H); ¹³C NMR (125.7 MHz, DMF- d_7) δ 84.9, 81.9, 69.5, 25.3.

Note: We found that in order to obtain high ratios of propargyl borolane to allenyl borolane, it was necessary to use precisely 1.02 equivalents of ethynylmagnesium bromide relative to iodomethyl borolane **SI-1**. Excess Grignard reagent (1.1 equivalents) causes isomerization to allenyl borolane, while fewer than 1.0 equivalents of Grignard reagent results in low conversion to product (Figure SI-1).

Figure SI-1. Isomerization of propargyl borolane 12 to allenyl borolane 2 in the presence of excess Grignard reagent.

I) ISOMERIZATION IN PRESENCE OF 8 MOL % BASE

In a glovebox, a flame-dried vial was charged with potassium *tert*-butoxide (1.7 mg, 0.015 mmol, 0.076 equiv). *N*,*N*-Dimethylformamide- d_7 (+0.05% V/V TMS, 0.6 mL) was added from an ampule opened in the glovebox and the solution was transferred into an oven-dried NMR tube. The NMR tube was capped with a rubber septum, sealed with parafilm, and removed from the glovebox. Phenyltrimethylsilane (PhTMS, internal standard) (17.2 µL, 0.100 mmol, 0.500 equiv) was added via syringe to the NMR tube through the septum, and the NMR tube was inverted to mix. An initial ¹H NMR spectrum was collected of the solution, after which propargyl borolane **12** (72 µL, 0.40 mmol, 2.0 equiv) was added via syringe to the NMR tube was inverted to mix. A ¹H NMR spectrum was collected (1 minute after adding **12**, Figure SI-2a), followed by sequential ¹H NMR spectra collected at the time points listed below:

Time elapsed	Ratio 12 : 2	
1 min	96:4	
4 min	96:4	
7 min	96:4	
9 min	96:4	
10 min	96:4	
15 min	96:4	
20 min	96:4	
30 min	96:4	
40 min	96:4	
1 h	96:4	
3 h	96:4	
6 h	96:4	

Figure SI-2. Absence of isomerization of propargyl borolane **12** in the presence of 8 mol % KO*t*-Bu at RT.

In a glovebox, a flame-dried vial was charged with potassium *tert*-butoxide (4.5 mg, 0.040 mmol, 0.20 equiv). *N*,*N*-Dimethylformamide- d_7 (+0.05% V/V TMS, 0.6 mL) was added from an ampule opened in the glovebox and the solution was transferred into an oven-dried NMR tube. The NMR tube was capped with a rubber septum, sealed with parafilm, and removed from the glovebox. Phenyltrimethylsilane (PhTMS, internal standard) (17.2 µL, 0.100 mmol, 0.500 equiv) was added via syringe to the NMR tube through the septum, and the NMR tube was inverted to mix. An initial ¹H NMR spectrum was collected, after which propargyl borolane **12** (72 µL, 0.40 mmol, 2.0 equiv) was added via syringe to the NMR tube through the septum, and the NMR tube was inverted to mix. A ¹H NMR spectrum was collected (1 minute after adding **12**, Figure SI-3a), followed by sequential ¹H NMR spectra collected at the time points listed below:

Time elapsed	Ratio 12 : 2
1 min	92:8
5 min	87:13
8 min	84:16
10 min	82:18
20 min	69:31
30 min	64:36
35 min	60:40
40 min	57:43
1 h	46:54
2 h	27:73
3 h	18:82
4 h	9:91

Figure SI-3. Isomerization of propargyl borolane **12** to allenyl borolane **2** in the presence of 20 mol % KO*t*-Bu at RT.

3) MECHANISTIC STUDIES WITH BOROLANE REAGENTS

We were interested in distinguishing between two of the most likely mechanisms for this propargylation reaction: transmetallation of the silver catalyst with the borolane reagent (Mechanism A), or Lewis acid catalysis (Mechanism B). To distinguish between these mechanisms, we examined reactions employing propargyl borolane reagent 12 while lowering the base loading to 8 mol %. This experimental modification was performed to minimize isomerization of 12 to allenyl borolane 2 (see Section 2-G-II, vide supra). We also performed the reactions in deuterated solvent in order to determine the ratio of 12 to 2 by ¹H NMR immediately after the reaction.

A control reaction using allenyl borolane 2 (Table 2, entry 1) demonstrated that under these conditions, alkyne **3a** was formed in 68% yield with 28% recovered starting material **1a** (vide infra). Using propargyl borolane **12** in the reaction (Table 2, entry 2) yielded alkyne **3a** in 64% yield with 32% recovered starting material **1a** (vide infra). This product distribution is most consistent with Mechanism A.

Note: All manipulations involving silver-catalyzed reactions were performed in the absence of direct light, using vials and NMR tubes wrapped in aluminum foil.

I) REACTION USING ALLENYL BOROLANE 2 (TABLE 2, ENTRY 1)

In a glovebox, an oven-dried 1.0 mL conical vial equipped with a triangular stir bar was charged with AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv) and Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.102 equiv). The vial was sealed with a screw-top cap fit with a septum and DMF- d_7 (+0.05% V/V TMS, 400 µL) was added from an ampule opened in the glovebox. The vial was removed from the glovebox and the solution was stirred for 5 min at rt. The N₂ line was then removed and the solution was stirred for 30 min at 70 °C, then cooled to rt over 15 min.

To the catalyst solution was added *tert*-butanol (21 μ L, 0.22 mmol, 1.1 equiv), followed by potassium *tert*-butoxide (1.7 mg, 0.015 mmol, 0.076 equiv) and phenyl ketimine **1a** (48.6 mg, 0.200 mmol, 1.00 equiv) under a flow of N₂. The reaction was stirred at rt for 5 min to dissolve the ketimine. Allenylboronic acid pinacol ester **2** (72 μ L, 0.40 mmol, 2.0 equiv) was added via syringe, followed by another portion of allenylboronic acid pincol ester (72 μ L, 0.40 mmol, 2.0 equiv) added via slow addition over 3 h using a syringe pump. The N₂ line was removed and the reaction was stirred at 22 °C for another 3 h. The reaction mixture in DMF-*d*₇ was transferred to an NMR tube and the ratio of allenyl borolane **2** to propargyl borolane **12** was determined to be 94:6 by ¹H NMR (Figure SI-4). The mixture was then filtered through a plug of silica gel eluting with 100% Et₂O to remove the catalyst. Et₂O was removed in vacuo and the resulting residue

was purified by silica gel chromatography using 0–1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 5–10–20% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford alkyne **3a** as a white solid (38.5 mg, 0.136 mmol, 68%, 98:2 er). Analytical data are consistent with the values listed in Section II-C (vide supra). **SFC** analysis (OD-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 98:2 er: t_R (minor) = 11.8 min, t_R (major) = 13.7 min.

Figure SI-4. Unpurified reaction mixture in DMF-*d*₇.

II) REACTION USING PROPARGYL BOROLANE 12 (TABLE 2, ENTRY 2)

In a glovebox, an oven-dried 1.0 mL conical vial equipped with a triangular stir bar was charged with AgPF₆ (5.0 mg, 0.020 mmol, 0.10 equiv) and Walphos W001-1 (22.3 mg, 0.0240 mmol, 0.120 equiv). The vial was sealed with a screw-top cap fit with a septum and DMF- d_7 (+0.05% V/V TMS, 400 µL) was added from an ampule opened in the glovebox. The vial was removed from the glovebox and the solution was stirred for 5 min at rt. The N₂ line was then removed and the solution was stirred for 30 min at 70 °C, then cooled to rt over 15 min.

To the catalyst solution was added *tert*-butanol (21 µL, 0.22 mmol, 1.1 equiv), followed by potassium tert-butoxide (1.7 mg, 0.015 mmol, 0.076 equiv) and phenyl ketimine 1a (48.6 mg, 0.200 mmol, 1.00 equiv) under a flow of N₂. The reaction was stirred at rt for 5 min to dissolve the ketimine. Propargylboronic acid pinacol ester 12 (72 µL, 0.40 mmol, 2.0 equiv) was added via syringe, followed by another portion of propargylboronic acid pincol ester (72 µL, 0.40 mmol, 2.0 equiv) added via slow addition over 3 h using a syringe pump. The N₂ line was removed and the reaction was stirred at 22 °C for another 3 h. The reaction mixture in DMF- d_7 was transferred to an NMR tube and the ratio of propargyl borolane 12 to allenyl borolane 2 was determined to be 94:6 by ¹H NMR (Figure SI-5). The mixture was then filtered through a plug of silica gel eluting with 100% Et₂O to remove the catalyst. Et₂O was removed in vacuo and the resulting residue was purified by silica gel chromatography using 0-1% TEA/benzene to separate product from unreacted starting material. The mixture was purified again by flash column chromatography using 5–10–20% EtOAc/hexanes (1% TEA) to separate product from excess ligand and afford alkyne 3a as a white solid (36.5 mg, 0.129 mmol, 64%, 93:7 er). Analytical data are consistent with the values listed in Section II-C (vide supra). SFC analysis (OD-H, 10% IPA, 3.0 mL/min, 215 nm) indicated 93:7 er: t_R (minor) = 11.8 min, t_R (major) = 13.7 min.

Figure SI-5. Unpurified reaction mixture in DMF-*d*₇.

III. REFERENCES

- ¹ Krasovskiy, A.; Knochel, P. *Synthesis* 2006, *5*, 890.
 ² Love, B. E.; Jones, E. G. *J. Org. Chem.* 1999, *64*, 3755.
 ³ Tonogaki, K.; Itami, K.; Yoshida, J.-i. *J. Am. Chem. Soc.* 2006, *128*, 1464.
 ⁴ Fandrick, D. R.; Saha, J.; Fandrick, K. R.; Sanyal, S.; Ogikubo, J.; Lee, H.; Roschangar, F.; ⁵ Nishimura, T.; Noishiki, A.; Tsui, G. C.; Hayashi, T. J. Am. Chem. Soc. 2012, 134, 5056.
 ⁶ Rommel, M.; Fukuzumi, T.; Bode, J. W. J. Am. Chem. Soc. 2008, 130, 17266,
 ⁷ Jiang, C.; Lu, Y.; Hayashi, T. Angew. Chem., Int. Ed. 2014, 53, 9936.
 ⁸ Paderes M. C.; Chemler, S. R. Org. Lett. 2009, 11, 1915.
 ⁹ Mori, M.; Sakakibara N.; Kinoshita, A. J. Org. Chem. 1998, 63, 6082.

- ¹⁰ Oestreich, M.; Fröhlich, R.; Hoppe, D. J. Org. Chem. 1999, 64, 8616.
 ¹¹ Harris, M. R.; Konev, M. O.; Jarvo, E. R. J. Am. Chem. Soc. 2014, 136, 7825.
 ¹² Roy, C. D.; Soundararajan, R.; Brown, H. C. Monatsch. Chem. 2008, 139, 241.

IV. CRYSTALLOGRAPHIC DATA

A. X-ray Data Collection, Structure Solution and Refinement for (S)-3a:

CCDC 1405841

A single crystal was grown from Et₂O with slow diffusion of pentanes at room temperature. A colorless crystal of approximate dimensions $0.250 \times 0.196 \times 0.182$ mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (60 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The diffraction symmetry was 4/m and the systematic absences were consistent with the tetragonal space group $P4_3$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were located from a difference-Fourier map and refined (x,y,z and U_{iso}).

At convergence, wR2 = 0.0661 and Goof = 1.065 for 233 variables refined against 3225 data (0.74 Å), R1 = 0.0269 for those 3084 data with I > $2.0\sigma(I)$. The absolute structure was assigned by refinement of the Flack parameter⁶.

References.

- 1. APEX2 Version 2014.9-0, Bruker AXS, Inc.; Madison, WI 2014.
- 2. SAINT Version 8.34a, Bruker AXS, Inc.; Madison, WI 2013.
- 3. Sheldrick, G. M. SADABS, Version 2014/4, Bruker AXS, Inc.; Madison, WI 2014.
- 4. Sheldrick, G. M. SHELXTL, Version 2014/7, Bruker AXS, Inc.; Madison, WI 2014.
- 5. International Tables for Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.
- 6. Parsons, S., Flack, H. D., Wagner, T. Acta Cryst. B69, 249-259, 2013.

Definitions:

$$wR2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$$

$$R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$$

Goof = S = $[\Sigma[w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$ where n is the number of reflections and p is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 50% probability level.

Identification code	erj21 (Thomas Endean)	
Empirical formula	$C_{16}H_{13}NO_2S$	
Formula weight	283.33	
Temperature	133(2) K	
Wavelength	0.71073 Å	
Crystal system	Tetragonal	
Space group	P43	
Unit cell dimensions	a = 10.7582(6) Å	a= 90°.
	b = 10.7582(6) Å	b= 90°.
	c = 11.4283(7) Å	g = 90°.
Volume	1322.70(17) Å ³	
Z	4	
Density (calculated)	1.423 Mg/m ³	
Absorption coefficient	0.245 mm ⁻¹	
F(000)	592	
Crystal color	colorless	
Crystal size	0.250 x 0.196 x 0.182 m	m ³
Theta range for data collection	1.893 to 28.656°	
Index ranges	$-13 \le h \le 13, -14 \le k \le 1$	4, $-14 \le l \le 15$
Reflections collected	15344	
Independent reflections	3225 [R(int) = 0.0270]	
Completeness to theta = 25.500°	100.0 %	
Absorption correction	Numerical	
Max. and min. transmission	1.0000 and 0.9257	
Refinement method	Full-matrix least-squares	s on F ²
Data / restraints / parameters	3225 / 1 / 233	
Goodness-of-fit on F ²	1.065	
Final R indices [I>2sigma(I) = 3084 data]	R1 = 0.0269, wR2 = 0.00	645
R indices (all data, 0.74 Å)	R1 = 0.0295, WR2 = 0.00	661

Table 1. Crystal data and structure refinement for erj21.

Absolute structure parameter

-0.04(3)

Largest diff. peak and hole 0.306 and -0.185 e.Å⁻³

	х	у	Z	U(eq)
S(1)	7902(1)	4294(1)	1443(1)	13(1)
O(1)	7584(2)	5501(1)	978(1)	21(1)
O(2)	8458(2)	4312(1)	2587(1)	20(1)
N(1)	6713(2)	3349(2)	1387(2)	15(1)
C(1)	8771(2)	3469(2)	396(2)	13(1)
C(2)	9948(2)	3779(2)	-26(2)	15(1)
C(3)	10465(2)	3013(2)	-878(2)	18(1)
C(4)	9807(2)	1980(2)	-1283(2)	18(1)
C(5)	8630(2)	1691(2)	-859(2)	17(1)
C(6)	8104(2)	2453(2)	-4(2)	14(1)
C(7)	6834(2)	2280(2)	570(2)	13(1)
C(8)	6822(2)	1046(2)	1277(2)	16(1)
C(9)	7837(2)	986(2)	2134(2)	16(1)
C(10)	8653(2)	950(2)	2833(2)	20(1)
C(11)	5777(2)	2333(2)	-340(2)	14(1)
C(12)	4743(2)	1553(2)	-280(2)	16(1)
C(13)	3790(2)	1650(2)	-1105(2)	20(1)
C(14)	3859(2)	2518(2)	-2002(2)	22(1)
C(15)	4885(2)	3302(2)	-2060(2)	24(1)
C(16)	5830(2)	3214(2)	-1232(2)	21(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for erj21. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(2)	1.4373(16)
S(1)-O(1)	1.4446(15)
S(1)-N(1)	1.6351(17)
S(1)-C(1)	1.758(2)
N(1)-C(7)	1.487(3)
N(1)-H(1)	0.81(3)
C(1)-C(6)	1.386(3)
C(1)-C(2)	1.395(3)
C(2)-C(3)	1.392(3)
C(2)-H(2)	0.91(3)
C(3)-C(4)	1.396(3)
C(3)-H(3)	0.98(3)
C(4)-C(5)	1.391(3)
C(4)-H(4)	0.94(3)
C(5)-C(6)	1.395(3)
C(5)-H(5)	0.90(3)
C(6)-C(7)	1.527(3)
C(7)-C(11)	1.542(3)
C(7)-C(8)	1.554(3)
C(8)-C(9)	1.469(3)
C(8)-H(8A)	0.94(2)
C(8)-H(8B)	1.01(3)
C(9)-C(10)	1.187(3)
C(10)-H(10)	0.93(4)
C(11)-C(16)	1.393(3)
C(11)-C(12)	1.395(3)
C(12)-C(13)	1.397(3)
C(12)-H(12)	0.89(3)

Table 3. Bond lengths [Å] and angles [°] for erj21.

C(13)-C(14)	1.388(3)
С(13)-Н(13)	0.87(3)
C(14)-C(15)	1.391(3)
C(14)-H(14)	0.90(3)
C(15)-C(16)	1.392(3)
С(15)-Н(15)	0.92(4)
С(16)-Н(16)	0.95(3)
O(2)-S(1)-O(1)	114.86(10)
O(2)-S(1)-N(1)	111.71(10)
O(1)-S(1)-N(1)	111.03(10)
O(2)-S(1)-C(1)	113.88(9)
O(1)-S(1)-C(1)	109.23(9)
N(1)-S(1)-C(1)	94.34(9)
C(7)-N(1)-S(1)	115.92(13)
C(7)-N(1)-H(1)	116.9(19)
S(1)-N(1)-H(1)	112(2)
C(6)-C(1)-C(2)	122.99(19)
C(6)-C(1)-S(1)	110.32(15)
C(2)-C(1)-S(1)	126.66(16)
C(3)-C(2)-C(1)	117.60(19)
C(3)-C(2)-H(2)	118.0(16)
C(1)-C(2)-H(2)	124.4(16)
C(2)-C(3)-C(4)	120.00(19)
C(2)-C(3)-H(3)	119.5(16)
C(4)-C(3)-H(3)	120.5(16)
C(5)-C(4)-C(3)	121.6(2)
C(5)-C(4)-H(4)	119.2(19)
C(3)-C(4)-H(4)	119.2(19)
C(4)-C(5)-C(6)	118.9(2)

C(4)-C(5)-H(5)	121(2)
C(6)-C(5)-H(5)	120(2)
C(1)-C(6)-C(5)	118.95(18)
C(1)-C(6)-C(7)	114.70(17)
C(5)-C(6)-C(7)	126.34(18)
N(1)-C(7)-C(6)	104.68(15)
N(1)-C(7)-C(11)	109.29(16)
C(6)-C(7)-C(11)	111.43(16)
N(1)-C(7)-C(8)	109.52(16)
C(6)-C(7)-C(8)	109.54(16)
C(11)-C(7)-C(8)	112.11(16)
C(9)-C(8)-C(7)	112.23(17)
C(9)-C(8)-H(8A)	106.2(15)
C(7)-C(8)-H(8A)	111.0(14)
C(9)-C(8)-H(8B)	111.6(14)
C(7)-C(8)-H(8B)	109.0(14)
H(8A)-C(8)-H(8B)	106.7(19)
C(10)-C(9)-C(8)	179.2(2)
С(9)-С(10)-Н(10)	178(2)
C(16)-C(11)-C(12)	118.56(19)
C(16)-C(11)-C(7)	119.24(18)
C(12)-C(11)-C(7)	122.16(19)
C(11)-C(12)-C(13)	120.5(2)
С(11)-С(12)-Н(12)	121.3(17)
С(13)-С(12)-Н(12)	118.2(17)
C(14)-C(13)-C(12)	120.6(2)
С(14)-С(13)-Н(13)	119(2)
С(12)-С(13)-Н(13)	120(2)
C(13)-C(14)-C(15)	119.1(2)
C(13)-C(14)-H(14)	121.6(18)

C(15)-C(14)-H(14)	119.3(18)
C(14)-C(15)-C(16)	120.4(2)
С(14)-С(15)-Н(15)	124(2)
С(16)-С(15)-Н(15)	116(2)
C(15)-C(16)-C(11)	120.9(2)
C(15)-C(16)-H(16)	120.1(16)
C(11)-C(16)-H(16)	119.0(16)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	16(1)	12(1)	12(1)	0(1)	0(1)	1(1)
O(1)	30(1)	14(1)	20(1)	2(1)	4(1)	5(1)
O(2)	22(1)	22(1)	14(1)	-2(1)	-3(1)	-2(1)
N(1)	15(1)	16(1)	14(1)	-2(1)	3(1)	-1(1)
C(1)	15(1)	14(1)	11(1)	0(1)	-1(1)	3(1)
C(2)	14(1)	16(1)	16(1)	2(1)	-3(1)	-1(1)
C(3)	12(1)	23(1)	18(1)	4(1)	1(1)	3(1)
C(4)	19(1)	20(1)	16(1)	0(1)	1(1)	6(1)
C(5)	20(1)	16(1)	15(1)	-1(1)	0(1)	2(1)
C(6)	13(1)	14(1)	13(1)	2(1)	-1(1)	1(1)
C(7)	13(1)	15(1)	13(1)	-1(1)	1(1)	0(1)
C(8)	15(1)	15(1)	17(1)	2(1)	0(1)	-2(1)
C(9)	18(1)	13(1)	18(1)	1(1)	2(1)	-1(1)
C(10)	22(1)	20(1)	19(1)	2(1)	-2(1)	-1(1)
C(11)	13(1)	17(1)	13(1)	-2(1)	2(1)	2(1)
C(12)	17(1)	18(1)	14(1)	0(1)	2(1)	0(1)
C(13)	13(1)	25(1)	20(1)	-4(1)	1(1)	-1(1)
C(14)	16(1)	32(1)	16(1)	-2(1)	-3(1)	6(1)
C(15)	22(1)	30(1)	21(1)	9(1)	0(1)	3(1)
C(16)	17(1)	24(1)	22(1)	6(1)	1(1)	-1(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for erj21. The anisotropicdisplacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	х	у	Z	U(eq)
H(1)	6440(30)	3200(20)	2030(30)	20(7)
H(2)	10390(20)	4460(20)	210(20)	14(6)
H(3)	11290(30)	3210(20)	-1190(30)	22(7)
H(4)	10170(30)	1470(30)	-1850(30)	34(8)
H(5)	8220(30)	1010(30)	-1120(30)	34(8)
H(8A)	6080(20)	960(20)	1700(20)	11(6)
H(8B)	6850(20)	320(20)	710(20)	13(6)
H(10)	9310(30)	910(30)	3360(30)	46(9)
H(13)	3150(30)	1150(30)	-1080(30)	24(7)
H(14)	3250(30)	2590(30)	-2540(30)	23(7)
H(15)	5000(30)	3890(30)	-2640(30)	42(9)
H(16)	6510(30)	3780(30)	-1250(20)	22(7)
H(12)	4680(20)	970(30)	270(30)	20(6)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for erj21.

Table 6. Torsion angles [°] for erj21.

O(2)-S(1)-N(1)-C(7)	-117.33(15)
O(1)-S(1)-N(1)-C(7)	113.04(15)
C(1)-S(1)-N(1)-C(7)	0.52(16)
O(2)-S(1)-C(1)-C(6)	116.77(15)
O(1)-S(1)-C(1)-C(6)	-113.34(15)
N(1)-S(1)-C(1)-C(6)	0.71(16)
O(2)-S(1)-C(1)-C(2)	-65.2(2)
O(1)-S(1)-C(1)-C(2)	64.6(2)
N(1)-S(1)-C(1)-C(2)	178.70(19)
C(6)-C(1)-C(2)-C(3)	-0.8(3)
S(1)-C(1)-C(2)-C(3)	-178.56(16)
C(1)-C(2)-C(3)-C(4)	0.3(3)
C(2)-C(3)-C(4)-C(5)	0.2(3)
C(3)-C(4)-C(5)-C(6)	-0.3(3)
C(2)-C(1)-C(6)-C(5)	0.8(3)
S(1)-C(1)-C(6)-C(5)	178.84(15)
C(2)-C(1)-C(6)-C(7)	-179.80(18)
S(1)-C(1)-C(6)-C(7)	-1.7(2)
C(4)-C(5)-C(6)-C(1)	-0.2(3)
C(4)-C(5)-C(6)-C(7)	-179.56(19)
S(1)-N(1)-C(7)-C(6)	-1.5(2)
S(1)-N(1)-C(7)-C(11)	-120.91(16)
S(1)-N(1)-C(7)-C(8)	115.92(16)
C(1)-C(6)-C(7)-N(1)	2.0(2)
C(5)-C(6)-C(7)-N(1)	-178.63(19)
C(1)-C(6)-C(7)-C(11)	120.00(19)
C(5)-C(6)-C(7)-C(11)	-60.6(3)
C(1)-C(6)-C(7)-C(8)	-115.36(19)

C(5)-C(6)-C(7)-C(8)	64.0(3)
N(1)-C(7)-C(8)-C(9)	-59.2(2)
C(6)-C(7)-C(8)-C(9)	55.0(2)
C(11)-C(7)-C(8)-C(9)	179.28(17)
N(1)-C(7)-C(11)-C(16)	74.1(2)
C(6)-C(7)-C(11)-C(16)	-41.1(2)
C(8)-C(7)-C(11)-C(16)	-164.25(19)
N(1)-C(7)-C(11)-C(12)	-103.7(2)
C(6)-C(7)-C(11)-C(12)	141.10(19)
C(8)-C(7)-C(11)-C(12)	17.9(3)
C(16)-C(11)-C(12)-C(13)	0.6(3)
C(7)-C(11)-C(12)-C(13)	178.41(19)
C(11)-C(12)-C(13)-C(14)	0.4(3)
C(12)-C(13)-C(14)-C(15)	-0.8(3)
C(13)-C(14)-C(15)-C(16)	0.2(3)
C(14)-C(15)-C(16)-C(11)	0.8(4)
C(12)-C(11)-C(16)-C(15)	-1.2(3)
C(7)-C(11)-C(16)-C(15)	-179.1(2)

Table 7. Hydrogen bonds for erj21 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

B. X-ray Data Collection, Structure Solution and Refinement for (*R*)-3f:

CCDC 1405894

A single crystal was grown from EtOAc with slow diffusion of pentanes at room temperature. A colorless crystal of approximate dimensions $0.202 \times 0.333 \times 0.426$ mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (15 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The diffraction symmetry was *mmm* and the systematic absences were consistent with the orthorhombic space group $P2_12_12_1$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms H(1) and H(10) were located from a difference-Fourier map and refined (x,y,z and U_{iso}). The remaining hydrogen atoms were included using a riding model. O(3) and C(12) were disordered and included using partial site-occupancy-factors. The disorder was included to account for the approximate distribution of carbon (50%) and oxygen (50%) over the two sites.

At convergence, wR2 = 0.0909 and Goof = 1.070 for 180 variables refined against 3100 data (0.74 Å), R1 = 0.0363 for those 2870 data with I > $2.0\sigma(I)$. The absolute structure was assigned by refinement of the Flack parameter⁶.

References.

- 1. APEX2 Version 2014.11-0, Bruker AXS, Inc.; Madison, WI 2014.
- 2. SAINT Version 8.34a, Bruker AXS, Inc.; Madison, WI 2013.
- 3. Sheldrick, G. M. SADABS, Version 2014/5, Bruker AXS, Inc.; Madison, WI 2014.
- 4. Sheldrick, G. M. SHELXTL, Version 2014/7, Bruker AXS, Inc.; Madison, WI 2014.
- 5. International Tables for Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.
- 6. Parsons, S., Flack, H. D., Wagner, T. Acta Cryst. B69, 249-259, 2013.

Definitions:

$$wR2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$$

$$R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$$

Goof = S = $[\Sigma[w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$ where n is the number of reflections and p is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 30% probability level.

Identification code	erj23 (Charlotte Osborne)	
Empirical formula	$C_{14}H_{11}NO_3S$	
Formula weight	273.30	
Temperature	133(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 7.5472(5) Å	a= 90°.
	b = 10.3052(7) Å	b= 90°.
	c = 16.2327(10) Å	g = 90°.
Volume	1262.51(14) Å ³	
Z	4	
Density (calculated)	1.438 Mg/m ³	
Absorption coefficient	0.259 mm ⁻¹	
F(000)	568	
Crystal color	colorless	
Crystal size	0.426 x 0.333 x 0.202 mm ³	
Theta range for data collection	2.341 to 28.839°	
Index ranges	$-10 \le h \le 10, -13 \le k \le 13, -21$	$\leq l \leq 20$
Reflections collected	15206	
Independent reflections	3100 [R(int) = 0.0274]	
Completeness to theta = 25.500°	99.9 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.8621 and 0.8165	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3100 / 0 / 180	
Goodness-of-fit on F ²	1.070	
Final R indices [I>2sigma(I) = 2870 data]	R1 = 0.0363, wR2 = 0.0881	
R indices (all data, 0.74Å)	R1 = 0.0403, wR2 = 0.0909	

Table 1. Crystal data and structure refinement for erj23.

Absolute structure parameter

0.04(2)

Largest diff. peak and hole 0.298 and -0.366 e.Å⁻³

	Х	У	Z	U(eq)
S(1)	3053(1)	7602(1)	8953(1)	25(1)
N(1)	4347(4)	6393(2)	9154(2)	36(1)
O(1)	1714(3)	7709(3)	9570(1)	58(1)
O(2)	4026(4)	8766(2)	8781(1)	48(1)
O(3)	3159(3)	3886(2)	9539(2)	38(1)
C(1)	2206(3)	6903(2)	8057(2)	24(1)
C(2)	897(3)	7416(3)	7551(2)	37(1)
C(3)	430(4)	6713(3)	6868(2)	47(1)
C(4)	1240(4)	5532(3)	6696(2)	46(1)
C(5)	2551(4)	5035(3)	7203(2)	33(1)
C(6)	3040(3)	5741(2)	7897(1)	22(1)
C(7)	4499(3)	5402(2)	8508(1)	20(1)
C(8)	6309(3)	5461(3)	8061(2)	28(1)
C(9)	7799(3)	5308(2)	8617(2)	28(1)
C(10)	8994(4)	5223(3)	9089(2)	34(1)
C(11)	4214(3)	4100(2)	8891(2)	22(1)
C(12)	4765(3)	2981(2)	8580(1)	32(1)
C(13)	4119(3)	1987(3)	9100(2)	31(1)
C(14)	3160(4)	2544(3)	9680(2)	33(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for erj23. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(1)	1.426(2)	
S(1)-O(2)	1.435(2)	
S(1)-N(1)	1.616(2)	
S(1)-C(1)	1.745(3)	
N(1)-C(7)	1.468(3)	
O(3)-C(11)	1.338(3)	
O(3)-C(14)	1.402(4)	
C(1)-C(6)	1.378(3)	
C(1)-C(2)	1.389(4)	
C(2)-C(3)	1.371(5)	
C(3)-C(4)	1.390(5)	
C(4)-C(5)	1.385(4)	
C(5)-C(6)	1.391(4)	
C(6)-C(7)	1.522(3)	
C(7)-C(11)	1.494(3)	
C(7)-C(8)	1.548(3)	
C(8)-C(9)	1.451(4)	
C(9)-C(10)	1.186(4)	
C(11)-C(12)	1.326(3)	
C(12)-C(13)	1.414(3)	
C(13)-C(14)	1.319(4)	
O(1)-S(1)-O(2)	115.75(16)	
O(1)-S(1)-N(1)	110.28(16)	
O(2)-S(1)-N(1)	112.00(15)	
O(1)-S(1)-C(1)	110.97(13)	
O(2)-S(1)-C(1)	111.74(12)	
N(1)-S(1)-C(1)	94.07(12)	

Table 3.	Bond lengths	[Å]	and angles	[°]	for	erj23.
	6	E -				

C(7)-N(1)-S(1)	116.09(18)
C(11)-O(3)-C(14)	106.9(2)
C(6)-C(1)-C(2)	123.0(3)
C(6)-C(1)-S(1)	110.40(18)
C(2)-C(1)-S(1)	126.6(2)
C(3)-C(2)-C(1)	117.4(3)
C(2)-C(3)-C(4)	120.8(3)
C(5)-C(4)-C(3)	121.3(3)
C(4)-C(5)-C(6)	118.5(3)
C(1)-C(6)-C(5)	119.1(2)
C(1)-C(6)-C(7)	114.0(2)
C(5)-C(6)-C(7)	126.8(2)
N(1)-C(7)-C(11)	108.4(2)
N(1)-C(7)-C(6)	104.41(19)
C(11)-C(7)-C(6)	111.9(2)
N(1)-C(7)-C(8)	112.1(2)
C(11)-C(7)-C(8)	111.0(2)
C(6)-C(7)-C(8)	108.93(19)
C(9)-C(8)-C(7)	112.8(2)
C(10)-C(9)-C(8)	177.4(3)
C(12)-C(11)-O(3)	110.0(2)
C(12)-C(11)-C(7)	125.2(2)
O(3)-C(11)-C(7)	124.2(2)
C(11)-C(12)-C(13)	107.2(2)
C(14)-C(13)-C(12)	107.5(2)
C(13)-C(14)-O(3)	108.3(2)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	26(1)	19(1)	30(1)	-2(1)	8(1)	2(1)
N(1)	44(1)	26(1)	38(1)	-13(1)	-19(1)	10(1)
O(1)	38(1)	91(2)	45(1)	-20(1)	19(1)	1(1)
O(2)	74(2)	19(1)	50(1)	4(1)	-6(1)	-12(1)
O(3)	38(1)	28(1)	48(1)	4(1)	21(1)	3(1)
C(1)	19(1)	22(1)	32(1)	6(1)	2(1)	0(1)
C(2)	24(1)	35(2)	53(2)	18(1)	-2(1)	5(1)
C(3)	36(2)	52(2)	53(2)	23(2)	-24(2)	-9(1)
C(4)	50(2)	48(2)	39(2)	10(1)	-26(2)	-16(2)
C(5)	38(2)	30(1)	32(1)	2(1)	-11(1)	-7(1)
C(6)	21(1)	21(1)	25(1)	5(1)	-4(1)	-2(1)
C(7)	23(1)	18(1)	20(1)	-2(1)	-3(1)	2(1)
C(8)	24(1)	28(1)	31(1)	6(1)	0(1)	-4(1)
C(9)	25(1)	25(1)	35(1)	5(1)	3(1)	-2(1)
C(10)	24(1)	38(2)	40(2)	10(1)	-2(1)	-4(1)
C(11)	18(1)	25(1)	23(1)	4(1)	-5(1)	-2(1)
C(12)	44(1)	25(1)	27(1)	-6(1)	12(1)	-10(1)
C(13)	29(1)	22(1)	43(2)	-1(1)	-4(1)	-5(1)
C(14)	36(1)	33(1)	31(1)	9(1)	4(1)	-9(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for erj23. The anisotropicdisplacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	Х	у	Z	U(eq)
H(1)	5160(50)	6570(30)	9490(20)	44(10)
H(2B)	346	8222	7674	45
H(3A)	-457	7037	6507	57
H(4A)	887	5056	6223	55
H(5A)	3105	4230	7079	40
H(8A)	6353	4769	7639	33
H(8B)	6414	6306	7774	33
H(10)	9950(60)	5160(40)	9500(30)	69(13)
H(12A)	5464	2869	8098	38
H(13A)	4336	1084	9042	38
H(14A)	2571	2110	10117	40

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for erj23.

Table 6. Hydrogen bonds for erj23 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(1)#1	0.84(4)	2.06(4)	2.888(3)	167(3)

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2,-y+3/2,-z+2

C. X-ray Data Collection, Structure Solution and Refinement for (R)-3h:

CCDC 1405895

A single crystal was grown from EtOAc with slow diffusion of pentanes at room temperature. A colorless crystal of approximate dimensions $0.573 \times 0.369 \times 0.266$ mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (5 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The diffraction symmetry was *mmm* and the systematic absences were consistent with the orthorhombic space group *P*2₁2₁2₁ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. S(2) and C(12) were disordered and included using partial site-occupancy-factors. The disorder was included to account for the approximate distribution of carbon (25%) / sulfur (75%) at the position of S(2) and carbon (75%) / sulfur (25%) at the position of C(12). H(1) and H(10) were located from a difference-Fourier map and refined (x,y,z and U_{iso}). All other hydrogen atoms were included using a riding model.

At convergence, wR2 = 0.0762 and Goof = 1.076 for 180 variables refined against 3338 data (0.73 Å), R1 = 0.0275 for those 3263 data with I > $2.0\sigma(I)$. The absolute structure was assigned by refinement of the Flack parameter⁶.

References.

- 1. APEX2 Version 2014.11-0, Bruker AXS, Inc.; Madison, WI 2014.
- 2. SAINT Version 8.34a, Bruker AXS, Inc.; Madison, WI 2013.
- 3. Sheldrick, G. M. SADABS, Version 2014/5, Bruker AXS, Inc.; Madison, WI 2014.
- 4. Sheldrick, G. M. SHELXTL, Version 2014/7, Bruker AXS, Inc.; Madison, WI 2014.
- 5. International Tables for Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.
- 6. Parsons, S., Flack, H. D., Wagner, T. Acta Cryst. B69, 249-259, 2013.

Definitions:

$$wR2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$$

$$R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$$

Goof = S = $[\Sigma[w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$ where n is the number of reflections and p is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 50% probability level.

Identification code	erj24 (Charlotte Osborne)	
Empirical formula	$C_{14}H_{11}NO_2S_2$	
Formula weight	289.36	
Temperature	88(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 7.5169(3) Å	a= 90°.
	b = 10.5263(5) Å	b= 90°.
	c = 16.5993(8) Å	g = 90°.
Volume	1313.42(10) Å ³	
Z	4	
Density (calculated)	1.463 Mg/m ³	
Absorption coefficient	0.401 mm ⁻¹	
F(000)	600	
Crystal color	colorless	
Crystal size	0.573 x 0.369 x 0.266 mm ³	
Theta range for data collection	2.291 to 29.140°	
Index ranges	$-9 \le h \le 10, -14 \le k \le 14, -22 \le$	$l \le 22$
Reflections collected	16368	
Independent reflections	3338 [R(int) = 0.0221]	
Completeness to theta = 25.500°	99.9 %	
Absorption correction	Numerical	
Max. and min. transmission	0.9277 and 0.8316	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3338 / 0 / 180	
Goodness-of-fit on F ²	1.076	
Final R indices [I>2sigma(I) = 3263 data]	R1 = 0.0275, wR2 = 0.0754	
R indices (all data, 0.73Å)	R1 = 0.0283, wR2 = 0.0762	

Table 1. Crystal data and structure refinement for erj24.

Absolute structure parameter

0.040(17)

Largest diff. peak and hole

0.529 and -0.343 e.Å⁻³

	х	у	Z	U(eq)
S(1)	3023(1)	2396(1)	1085(1)	14(1)
S(2)	2903(1)	6156(1)	301(1)	14(1)
O(1)	1668(2)	2128(2)	496(1)	25(1)
O(2)	4157(2)	1338(1)	1302(1)	23(1)
N(1)	4166(2)	3658(2)	827(1)	15(1)
C(1)	2139(3)	3119(2)	1943(1)	14(1)
C(2)	841(3)	2609(2)	2448(1)	20(1)
C(3)	343(3)	3334(2)	3112(1)	23(1)
C(4)	1123(3)	4508(2)	3257(1)	21(1)
C(5)	2439(3)	4994(2)	2750(1)	17(1)
C(6)	2945(3)	4280(2)	2079(1)	13(1)
C(7)	4410(3)	4602(2)	1480(1)	12(1)
C(8)	6241(3)	4446(2)	1908(1)	15(1)
C(9)	7722(3)	4540(2)	1342(1)	18(1)
C(10)	8858(3)	4545(2)	845(2)	24(1)
C(11)	4195(2)	5919(2)	1128(1)	12(1)
C(12)	4882(2)	7120(2)	1456(1)	23(1)
C(13)	4238(3)	8128(2)	940(1)	21(1)
C(14)	3182(3)	7740(2)	320(1)	22(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for erj24. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3.	Bond lengths	[Å] and	angles [°]	for erj24	1.
----------	--------------	---------	------------	-----------	----

S(1)-O(1)	1.4387(15)
S(1)-O(2)	1.4478(16)
S(1)-N(1)	1.6393(18)
S(1)-C(1)	1.747(2)
S(2)-C(14)	1.682(2)
S(2)-C(11)	1.6990(19)
N(1)-C(7)	1.482(2)
C(1)-C(6)	1.382(3)
C(1)-C(2)	1.394(3)
C(2)-C(3)	1.392(3)
C(3)-C(4)	1.389(3)
C(4)-C(5)	1.396(3)
C(5)-C(6)	1.396(3)
C(6)-C(7)	1.522(3)
C(7)-C(11)	1.513(3)
C(7)-C(8)	1.557(3)
C(8)-C(9)	1.460(3)
C(9)-C(10)	1.187(3)
C(11)-C(12)	1.470(2)
C(12)-C(13)	1.447(3)
C(13)-C(14)	1.363(3)
O(1)-S(1)-O(2)	115.80(10)
O(1)-S(1)-N(1)	110.63(10)
O(2)-S(1)-N(1)	112.31(10)
O(1)-S(1)-C(1)	111.70(10)
O(2)-S(1)-C(1)	110.87(9)
N(1)-S(1)-C(1)	93.38(9)

C(14)-S(2)-C(11)	93.42(10)					
C(7)-N(1)-S(1)	114.66(13)					
C(6)-C(1)-C(2)	123.30(19)					
C(6)-C(1)-S(1)	110.61(14)					
C(2)-C(1)-S(1)	126.07(16)					
C(3)-C(2)-C(1)	117.0(2)					
C(4)-C(3)-C(2)	120.8(2)					
C(3)-C(4)-C(5)	121.4(2)					
C(6)-C(5)-C(4)	118.5(2)					
C(1)-C(6)-C(5)	119.15(18)					
C(1)-C(6)-C(7)	114.06(16)					
C(5)-C(6)-C(7)	126.69(18)					
N(1)-C(7)-C(11)	108.54(15)					
N(1)-C(7)-C(6)	103.80(15)					
C(11)-C(7)-C(6)	112.32(15)					
N(1)-C(7)-C(8)	111.86(16)					
C(11)-C(7)-C(8)	111.52(16)					
C(6)-C(7)-C(8)	108.58(15)					
C(9)-C(8)-C(7)	111.95(16)					
C(10)-C(9)-C(8)	174.7(2)					
C(12)-C(11)-C(7)	127.37(16)					
C(12)-C(11)-S(2)	111.95(13)					
C(7)-C(11)-S(2)	120.48(14)					
C(13)-C(12)-C(11)	107.10(15)					
C(14)-C(13)-C(12)	114.98(18)					
C(13)-C(14)-S(2)	112.53(16)					
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
-------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------
S(1)	15(1)	12(1)	16(1)	-1(1)	-2(1)	0(1)
S(2)	20(1)	11(1)	12(1)	3(1)	-5(1)	-2(1)
O(1)	21(1)	31(1)	24(1)	-9(1)	-7(1)	-2(1)
O(2)	25(1)	14(1)	31(1)	2(1)	0(1)	4(1)
N(1)	18(1)	12(1)	14(1)	-2(1)	3(1)	-1(1)
C(1)	13(1)	15(1)	15(1)	2(1)	-1(1)	2(1)
C(2)	15(1)	23(1)	23(1)	7(1)	-1(1)	-4(1)
C(3)	17(1)	32(1)	21(1)	11(1)	4(1)	1(1)
C(4)	20(1)	30(1)	13(1)	3(1)	3(1)	7(1)
C(5)	17(1)	19(1)	14(1)	0(1)	0(1)	3(1)
C(6)	11(1)	15(1)	12(1)	3(1)	-2(1)	2(1)
C(7)	13(1)	11(1)	12(1)	-1(1)	1(1)	0(1)
C(8)	13(1)	16(1)	16(1)	3(1)	-1(1)	1(1)
C(9)	15(1)	17(1)	22(1)	5(1)	-5(1)	1(1)
C(10)	15(1)	27(1)	29(1)	7(1)	2(1)	2(1)
C(11)	11(1)	13(1)	13(1)	2(1)	1(1)	1(1)
C(12)	21(1)	24(1)	24(1)	7(1)	1(1)	2(1)
C(13)	22(1)	13(1)	28(1)	-2(1)	8(1)	-1(1)
C(14)	20(1)	22(1)	22(1)	10(1)	3(1)	2(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for erj24. The anisotropicdisplacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	х	у	Z	U(eq)
H(1)	4980(40)	3440(30)	590(20)	34(9)
H(2B)	321	1803	2344	24
H(3A)	-542	3022	3470	28
H(4A)	754	4991	3711	25
H(5A)	2977	5793	2858	20
H(8A)	6368	5112	2325	18
H(8B)	6283	3610	2180	18
H(10)	9730(50)	4590(40)	510(20)	55(11)
H(12A)	5610	7216	1920	27
H(13A)	4530	8995	1027	25
H(14A)	2661	8303	-61	26

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for erj24.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(1)#1	0.76(3)	2.28(3)	3.008(2)	159(3)
C(8)-H(8A)O(2)#2	0.99	2.65	3.590(3)	158.9
C(13)-H(13A)O(2)#3	0.95	2.52	3.432(3)	160.2

Table 6. Hydrogen bonds for erj24 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2,-y+1/2,-z #2 -x+1,y+1/2,-z+1/2 #3 x,y+1,z

D. X-ray Data Collection, Structure Solution and Refinement for (R)-5b:

CCDC 1410049

A single crystal was grown from Et_2O with slow diffusion of pentanes at room temperature. A colorless crystal of approximate dimensions 0.284 x 0.299 x 0.489 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (10 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The diffraction symmetry was *mmm* and the systematic absences were consistent with the orthorhombic space group $P2_12_12_1$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were located from a difference-Fourier map and refined (x,y,z and U_{iso}).

At convergence, wR2 = 0.0679 and Goof = 1.058 for 180 variables refined against 2571 data (0.74Å), R1 = 0.0259 for those 2521 data with I > $2.0\sigma(I)$. The absolute structure was assigned by refinement of the Flack parameter⁶.

References.

- 1. APEX2 Version 2014.11-0, Bruker AXS, Inc.; Madison, WI 2014.
- 2. SAINT Version 8.34a, Bruker AXS, Inc.; Madison, WI 2013.
- 3. Sheldrick, G. M. SADABS, Version 2014/5, Bruker AXS, Inc.; Madison, WI 2014.
- 4. Sheldrick, G. M. SHELXTL, Version 2014/7, Bruker AXS, Inc.; Madison, WI 2014.
- 5. International Tables for Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.
- 6. Parsons, S., Flack, H. D., Wagner, T. Acta Cryst. B69, 249-259, 2013.

Definitions:

$$wR2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$$

$$R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$$

Goof = S = $[\Sigma[w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$ where n is the number of reflections and p is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 50% probability level.

Identification code	erj26 (Charlotte Osborne	2)		
Empirical formula C ₁₁ H ₁₁ N O ₂ S				
Formula weight	221.27			
Temperature	133(2) K			
Wavelength	0.71073 Å			
Crystal system	Orthorhombic			
Space group	P212121			
Unit cell dimensions	a = 8.0916(6) Å	a= 90°.		
	b = 9.4218(7) Å	b= 90°.		
	c = 13.8016(10) Å	g = 90°.		
Volume	1052.20(13) Å ³			
Z	4			
Density (calculated)	1.397 Mg/m ³			
Absorption coefficient	0.285 mm ⁻¹			
F(000)	464			
Crystal color	colorless			
Crystal size	0.489 x 0.299 x 0.284 m	m ³		
Theta range for data collection	2.617 to 28.724°			
Index ranges	$-10 \le h \le 10, -12 \le k \le 1$	2, $-18 \le l \le 18$		
Reflections collected	12648			
Independent reflections	2571 [R(int) = 0.0277]			
Completeness to theta = 25.500°	99.9 %			
Absorption correction	Numerical			
Max. and min. transmission	1.0000 and 0.8521			
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²		
Data / restraints / parameters	2571 / 0 / 180	2571 / 0 / 180		
Goodness-of-fit on F ²	1.058			
Final R indices [I>2sigma(I) = 2521 data]	R1 = 0.0259, wR2 = 0.06	572		

Table 1. Crystal data and structure refinement for erj26.

R indices (all data, 0.74Å)	R1 = 0.0265, wR2 = 0.0679
Absolute structure parameter	0.01(3)
Largest diff. peak and hole	0.314 and -0.279 e.Å ⁻³

	Х	У	Z	U(eq)
S(1)	995(1)	3781(1)	7431(1)	14(1)
O(1)	639(2)	4308(2)	8386(1)	21(1)
O(2)	360(2)	2389(1)	7201(1)	22(1)
N(1)	370(2)	4924(2)	6611(1)	14(1)
C(1)	3091(2)	3848(2)	7115(1)	15(1)
C(2)	4403(2)	3209(2)	7592(1)	22(1)
C(3)	5950(3)	3368(2)	7180(1)	26(1)
C(4)	6157(2)	4107(2)	6320(1)	24(1)
C(5)	4813(2)	4700(2)	5835(1)	19(1)
C(6)	3250(2)	4566(2)	6245(1)	14(1)
C(7)	1612(2)	5056(2)	5812(1)	14(1)
C(8)	1157(2)	4018(2)	4982(1)	17(1)
C(9)	-448(2)	4300(2)	4531(1)	18(1)
C(10)	-1745(2)	4511(2)	4149(1)	23(1)
C(11)	1642(3)	6587(2)	5455(1)	19(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for erj26. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3.	Bond lengths	[Å] and	angles [°]	for	erj26.
----------	--------------	---------	------------	-----	--------

S(1)-O(1)	1.4377(13)
S(1)-O(2)	1.4438(14)
S(1)-N(1)	1.6418(16)
S(1)-C(1)	1.7524(17)
N(1)-C(7)	1.497(2)
N(1)-H(1)	0.77(3)
C(1)-C(6)	1.384(2)
C(1)-C(2)	1.388(3)
C(2)-C(3)	1.384(3)
C(2)-H(2)	0.93(3)
C(3)-C(4)	1.386(3)
C(3)-H(3)	0.91(3)
C(4)-C(5)	1.394(3)
C(4)-H(4)	0.95(3)
C(5)-C(6)	1.392(2)
C(5)-H(5)	0.94(3)
C(6)-C(7)	1.525(2)
C(7)-C(11)	1.525(2)
C(7)-C(8)	1.550(2)
C(8)-C(9)	1.464(3)
C(8)-H(8A)	1.01(2)
C(8)-H(8B)	0.95(2)
C(9)-C(10)	1.192(3)
С(10)-Н(10)	0.92(3)
C(11)-H(11A)	0.98(3)
C(11)-H(11B)	0.93(3)
C(11)-H(11C)	0.97(3)

O(1)-S(1)-O(2)	116.34(8)
O(1)-S(1)-N(1)	110.12(8)
O(2)-S(1)-N(1)	109.58(8)
O(1)-S(1)-C(1)	114.17(8)
O(2)-S(1)-C(1)	108.82(9)
N(1)-S(1)-C(1)	95.88(8)
C(7)-N(1)-S(1)	110.82(12)
C(7)-N(1)-H(1)	113.8(19)
S(1)-N(1)-H(1)	107.4(18)
C(6)-C(1)-C(2)	123.60(16)
C(6)-C(1)-S(1)	108.88(13)
C(2)-C(1)-S(1)	127.35(14)
C(3)-C(2)-C(1)	116.72(17)
С(3)-С(2)-Н(2)	120.5(15)
C(1)-C(2)-H(2)	122.6(15)
C(2)-C(3)-C(4)	121.09(18)
С(2)-С(3)-Н(3)	121.4(17)
С(4)-С(3)-Н(3)	117.5(17)
C(3)-C(4)-C(5)	121.24(18)
C(3)-C(4)-H(4)	120.9(17)
C(5)-C(4)-H(4)	117.9(17)
C(6)-C(5)-C(4)	118.52(17)
C(6)-C(5)-H(5)	121.0(16)
C(4)-C(5)-H(5)	120.5(16)
C(1)-C(6)-C(5)	118.79(16)
C(1)-C(6)-C(7)	114.00(15)
C(5)-C(6)-C(7)	127.10(15)
N(1)-C(7)-C(11)	109.09(14)
N(1)-C(7)-C(6)	105.65(13)
C(11)-C(7)-C(6)	113.48(15)

N(1)-C(7)-C(8)	109.46(14)
C(11)-C(7)-C(8)	111.19(14)
C(6)-C(7)-C(8)	107.79(14)
C(9)-C(8)-C(7)	114.22(15)
C(9)-C(8)-H(8A)	109.7(14)
C(7)-C(8)-H(8A)	108.6(14)
C(9)-C(8)-H(8B)	109.7(15)
C(7)-C(8)-H(8B)	109.1(14)
H(8A)-C(8)-H(8B)	105.1(19)
C(10)-C(9)-C(8)	178.6(2)
С(9)-С(10)-Н(10)	177.4(18)
C(7)-C(11)-H(11A)	109.3(16)
C(7)-C(11)-H(11B)	114.0(15)
H(11A)-C(11)-H(11B)	109(2)
С(7)-С(11)-Н(11С)	109.1(17)
H(11A)-C(11)-H(11C)	107(2)
H(11B)-C(11)-H(11C)	108(2)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	13(1)	16(1)	14(1)	1(1)	3(1)	0(1)
O(1)	21(1)	27(1)	14(1)	1(1)	5(1)	4(1)
O(2)	22(1)	17(1)	26(1)	3(1)	4(1)	-4(1)
N(1)	14(1)	15(1)	14(1)	0(1)	2(1)	1(1)
C(1)	12(1)	19(1)	15(1)	-4(1)	1(1)	0(1)
C(2)	20(1)	30(1)	15(1)	-1(1)	-2(1)	5(1)
C(3)	15(1)	41(1)	22(1)	-6(1)	-6(1)	6(1)
C(4)	12(1)	36(1)	23(1)	-9(1)	1(1)	-2(1)
C(5)	16(1)	25(1)	16(1)	-3(1)	3(1)	-4(1)
C(6)	14(1)	16(1)	14(1)	-4(1)	-1(1)	-2(1)
C(7)	14(1)	16(1)	12(1)	0(1)	2(1)	-1(1)
C(8)	18(1)	19(1)	14(1)	-3(1)	-1(1)	0(1)
C(9)	20(1)	20(1)	14(1)	-1(1)	1(1)	-2(1)
C(10)	21(1)	28(1)	19(1)	1(1)	-3(1)	-3(1)
C(11)	23(1)	16(1)	18(1)	2(1)	2(1)	-1(1)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for erj26. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2hk a^{*}b^{*}U^{12}]$

	x	у	Z	U(eq)
H(1)	190(30)	5630(30)	6875(19)	20(6)
H(2)	4280(30)	2750(30)	8185(18)	23(6)
H(3)	6870(30)	2970(30)	7450(20)	28(6)
H(4)	7230(30)	4240(30)	6048(19)	32(7)
H(5)	4960(30)	5170(30)	5240(20)	34(7)
H(8A)	2060(30)	4060(30)	4474(18)	21(6)
H(8B)	1180(30)	3070(20)	5224(17)	18(5)
H(10)	-2740(40)	4630(30)	3840(20)	36(7)
H(11A)	2430(30)	6670(30)	4925(19)	28(6)
H(11B)	1900(30)	7240(30)	5932(18)	23(6)
H(11C)	570(40)	6830(30)	5200(20)	36(7)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for erj26.

Table 6. Torsion angles [°] for erj26.

O(1)-S(1)-N(1)-C(7)	138.66(12)
O(2)-S(1)-N(1)-C(7)	-92.16(13)
C(1)-S(1)-N(1)-C(7)	20.23(13)
O(1)-S(1)-C(1)-C(6)	-126.43(12)
O(2)-S(1)-C(1)-C(6)	101.75(14)
N(1)-S(1)-C(1)-C(6)	-11.27(14)
O(1)-S(1)-C(1)-C(2)	58.3(2)
O(2)-S(1)-C(1)-C(2)	-73.50(18)
N(1)-S(1)-C(1)-C(2)	173.48(17)
C(6)-C(1)-C(2)-C(3)	2.9(3)
S(1)-C(1)-C(2)-C(3)	177.46(15)
C(1)-C(2)-C(3)-C(4)	-1.4(3)
C(2)-C(3)-C(4)-C(5)	-0.7(3)
C(3)-C(4)-C(5)-C(6)	1.6(3)
C(2)-C(1)-C(6)-C(5)	-2.1(3)
S(1)-C(1)-C(6)-C(5)	-177.56(13)
C(2)-C(1)-C(6)-C(7)	174.41(17)
S(1)-C(1)-C(6)-C(7)	-1.05(18)
C(4)-C(5)-C(6)-C(1)	-0.2(3)
C(4)-C(5)-C(6)-C(7)	-176.18(17)
S(1)-N(1)-C(7)-C(11)	-144.84(13)
S(1)-N(1)-C(7)-C(6)	-22.51(16)
S(1)-N(1)-C(7)-C(8)	93.30(15)
C(1)-C(6)-C(7)-N(1)	14.5(2)
C(5)-C(6)-C(7)-N(1)	-169.29(17)
C(1)-C(6)-C(7)-C(11)	134.01(16)
C(5)-C(6)-C(7)-C(11)	-49.8(2)
C(1)-C(6)-C(7)-C(8)	-102.40(17)

C(5)-C(6)-C(7)-C(8)	73.8(2)
N(1)-C(7)-C(8)-C(9)	61.96(19)
C(11)-C(7)-C(8)-C(9)	-58.6(2)
C(6)-C(7)-C(8)-C(9)	176.40(14)

Table 7. Hydrogen bonds for erj26 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(2)#1	0.77(3)	2.14(3)	2.903(2)	171(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x,y+1/2,-z+3/2

E. X-ray Data Collection, Structure Solution and Refinement for (R)-5c:

CCDC 1405843

A single crystal was grown from EtOAc with slow diffusion of pentanes at room temperature. A colorless crystal of approximate dimensions 0.288 x 0.160 x 0.108 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (60 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The diffraction symmetry was *mmm* and the systematic absences were consistent with the orthorhombic space group $P2_12_12_1$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were located from a difference-Fourier map and refined (x,y,z and U_{iso}).

At convergence, wR2 = 0.0706 and Goof = 1.040 for 258 variables refined against 3562 data (0.75 Å), R1 = 0.0294 for those 3283 data with I > $2.0\sigma(I)$. The absolute structure was assigned by refinement of the Flack parameter⁶.

References.

- 1. APEX2 Version 2014.11-0, Bruker AXS, Inc.; Madison, WI 2014.
- 2. SAINT Version 8.34a, Bruker AXS, Inc.; Madison, WI 2013.
- 3. Sheldrick, G. M. SADABS, Version 2014/5, Bruker AXS, Inc.; Madison, WI 2014.
- 4. Sheldrick, G. M. SHELXTL, Version 2014/7, Bruker AXS, Inc.; Madison, WI 2014.
- 5. International Tables for Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.
- 6. Flack, H. D. Acta. Cryst., A39, 876-881, 1983.

Definitions:

 $wR2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$

$$R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$$

Goof = S = $[\Sigma[w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$ where n is the number of reflections and p is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 50% probability level.

Identification code	erj22 (Charlotte Osborne)	
Empirical formula	C ₁₅ H ₁₇ NO ₄ S	
Formula weight	307.35	
Temperature	133(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 7.7171(5) Å	a= 90°.
	b = 7.9486(5) Å	b= 90°.
	c = 23.8160(14) Å	g = 90°.
Volume	1460.88(16) Å ³	
Z	4	
Density (calculated)	1.397 Mg/m ³	
Absorption coefficient	0.237 mm ⁻¹	
F(000)	648	
Crystal color	colorless	
Crystal size	0.288 x 0.160 x 0.108 mm ³	
Theta range for data collection	1.710 to 28.288°	
Index ranges	$-10 \le h \le 10, -10 \le k \le 10, -31 \le l \le 3$	
Reflections collected	17581	
Independent reflections	3562 [R(int) = 0.0306]	
Completeness to theta = 25.500°	100.0 %	
Absorption correction	Numerical	
Max. and min. transmission	0.9980 and 0.9400	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3562 / 0 / 258	
Goodness-of-fit on F ²	1.040	
Final R indices [I>2sigma(I) = 3283 data]	R1 = 0.0294, wR2 = 0.0678	
R indices (all data, 0.75 Å)	R1 = 0.0342, wR2 = 0.0706	

Table 1. Crystal data and structure refinement for erj22.

Absolute structure parameter

0.07(2)

Largest diff. peak and hole 0.316 and -0.247 e.Å⁻³

	X	У	Z	U(eq)
S(1)	9619(1)	2605(1)	9054(1)	17(1)
N(1)	10456(2)	3214(2)	8456(1)	18(1)
O(1)	10861(2)	1665(2)	9377(1)	25(1)
O(2)	7974(2)	1792(2)	8972(1)	25(1)
O(3)	7309(2)	5275(2)	6830(1)	22(1)
O(4)	5065(2)	4151(2)	7301(1)	20(1)
C(1)	9266(2)	4647(2)	9298(1)	14(1)
C(2)	8545(3)	5077(3)	9810(1)	19(1)
C(3)	8250(3)	6771(3)	9908(1)	22(1)
C(4)	8676(3)	7967(3)	9505(1)	21(1)
C(5)	9407(2)	7505(2)	8996(1)	17(1)
C(6)	9706(2)	5809(2)	8890(1)	13(1)
C(7)	10489(3)	5054(2)	8361(1)	15(1)
C(8)	12367(3)	5666(3)	8281(1)	23(1)
C(9)	13497(3)	5248(3)	8757(1)	24(1)
C(10)	14373(3)	4848(3)	9138(1)	34(1)
C(11)	9414(3)	5506(3)	7836(1)	16(1)
C(12)	7675(3)	4603(3)	7816(1)	16(1)
C(13)	6485(3)	5257(3)	7365(1)	16(1)
C(14)	4400(3)	4455(4)	6752(1)	30(1)
C(15)	5922(3)	5167(4)	6424(1)	30(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for erj22. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3.	Bond lengths	[Å] a	nd angles	[°] for	erj22.
----------	--------------	-------	-----------	---------	--------

S(1)-O(2)	1.4379(16)
S(1)-O(1)	1.4383(15)
S(1)-N(1)	1.6361(18)
S(1)-C(1)	1.746(2)
N(1)-C(7)	1.480(3)
O(3)-C(13)	1.425(2)
O(3)-C(15)	1.445(3)
O(4)-C(13)	1.413(2)
O(4)-C(14)	1.425(3)
C(1)-C(2)	1.383(3)
C(1)-C(6)	1.384(3)
C(2)-C(3)	1.385(3)
C(3)-C(4)	1.390(3)
C(4)-C(5)	1.387(3)
C(5)-C(6)	1.391(3)
C(6)-C(7)	1.521(3)
C(7)-C(8)	1.541(3)
C(7)-C(11)	1.543(3)
C(8)-C(9)	1.468(3)
C(9)-C(10)	1.175(3)
C(11)-C(12)	1.523(3)
C(12)-C(13)	1.505(3)
C(14)-C(15)	1.519(3)
O(2)-S(1)-O(1)	115.30(10)
O(2)-S(1)-N(1)	111.35(9)
O(1)-S(1)-N(1)	110.84(10)
O(2)-S(1)-C(1)	108.98(9)
O(1)-S(1)-C(1)	114.11(9)

N(1)-S(1)-C(1)	94.39(9)
C(7)-N(1)-S(1)	115.63(13)
C(13)-O(3)-C(15)	105.46(17)
C(13)-O(4)-C(14)	105.85(16)
C(2)-C(1)-C(6)	123.63(18)
C(2)-C(1)-S(1)	125.90(16)
C(6)-C(1)-S(1)	110.34(14)
C(1)-C(2)-C(3)	117.03(19)
C(2)-C(3)-C(4)	120.6(2)
C(5)-C(4)-C(3)	121.3(2)
C(4)-C(5)-C(6)	118.85(18)
C(1)-C(6)-C(5)	118.58(17)
C(1)-C(6)-C(7)	114.62(16)
C(5)-C(6)-C(7)	126.80(17)
N(1)-C(7)-C(6)	104.84(15)
N(1)-C(7)-C(8)	110.31(17)
C(6)-C(7)-C(8)	110.57(16)
N(1)-C(7)-C(11)	110.20(16)
C(6)-C(7)-C(11)	111.43(15)
C(8)-C(7)-C(11)	109.42(16)
C(9)-C(8)-C(7)	113.10(18)
C(10)-C(9)-C(8)	177.2(3)
C(12)-C(11)-C(7)	112.91(16)
C(13)-C(12)-C(11)	113.39(17)
O(4)-C(13)-O(3)	104.82(15)
O(4)-C(13)-C(12)	109.61(16)
O(3)-C(13)-C(12)	111.66(17)
O(4)-C(14)-C(15)	104.84(18)
O(3)-C(15)-C(14)	104.59(18)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	19(1)	12(1)	18(1)	1(1)	-6(1)	0(1)
N(1)	21(1)	17(1)	18(1)	-4(1)	-2(1)	6(1)
O(1)	28(1)	20(1)	27(1)	4(1)	-9(1)	5(1)
O(2)	26(1)	18(1)	32(1)	1(1)	-9(1)	-7(1)
O(3)	22(1)	31(1)	12(1)	5(1)	-3(1)	-6(1)
O(4)	17(1)	26(1)	17(1)	4(1)	-4(1)	-5(1)
C(1)	14(1)	13(1)	16(1)	0(1)	-3(1)	-1(1)
C(2)	17(1)	24(1)	15(1)	3(1)	1(1)	-5(1)
C(3)	22(1)	28(1)	15(1)	-6(1)	4(1)	0(1)
C(4)	24(1)	18(1)	21(1)	-4(1)	-2(1)	4(1)
C(5)	18(1)	16(1)	18(1)	1(1)	-2(1)	-2(1)
C(6)	11(1)	17(1)	11(1)	1(1)	-3(1)	-1(1)
C(7)	14(1)	16(1)	14(1)	-1(1)	0(1)	1(1)
C(8)	16(1)	34(1)	18(1)	-2(1)	3(1)	-3(1)
C(9)	14(1)	31(1)	28(1)	-8(1)	3(1)	-1(1)
C(10)	23(1)	43(1)	34(1)	-10(1)	-8(1)	4(1)
C(11)	17(1)	19(1)	12(1)	1(1)	0(1)	-1(1)
C(12)	19(1)	17(1)	14(1)	2(1)	0(1)	-1(1)
C(13)	17(1)	15(1)	16(1)	0(1)	0(1)	0(1)
C(14)	24(1)	45(2)	22(1)	9(1)	-8(1)	-5(1)
C(15)	33(1)	37(1)	19(1)	9(1)	-10(1)	-12(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for erj22. The anisotropicdisplacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	Х	у	Z	U(eq)
H(1)	11280(40)	2610(40)	8381(11)	34(7)
H(2B)	8200(40)	4230(40)	10076(12)	37(8)
H(3A)	7770(30)	7090(30)	10250(10)	20(6)
H(4A)	8440(30)	9070(40)	9586(11)	28(7)
H(5A)	9700(30)	8340(30)	8715(10)	27(7)
H(8A)	12820(30)	5150(30)	7952(11)	23(6)
H(8B)	12330(30)	6880(40)	8216(10)	24(6)
H(10)	15060(40)	4580(40)	9411(13)	51(9)
H(11A)	9240(30)	6750(30)	7845(9)	21(6)
H(11B)	10110(30)	5230(30)	7509(10)	15(5)
H(12A)	7860(30)	3410(30)	7749(10)	20(6)
H(12B)	7070(30)	4720(30)	8154(11)	23(6)
H(13A)	6040(30)	6350(30)	7452(9)	12(5)
H(14A)	3410(40)	5190(40)	6780(12)	40(8)
H(14B)	4030(50)	3470(50)	6598(15)	67(11)
H(15A)	6290(40)	4470(40)	6122(14)	55(10)
H(15B)	5690(30)	6250(30)	6278(11)	27(7)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for erj22.

Z-restored spin-echo 13C spectrum with 1H decoupling

200

ppm

150

100

50

Ò

ppm

Ò

19F spectrum

mqq

-20

ppm

-40

-60

-80

-100

-120

-140

-160

Current Data	a Parameters	
USER	endean	
NAME TBI	E-I-120-prop	o-char
EXPNO	3	
PROCNO	1	
F2 - Acquisi	ition Paramet	ers
Date	20141124	
Time	13.59	
INSTRUM	drx400	
PROBHD 5 m	m ONP H/F/P	
PULPROG	zqflan30	
TD	65536	
SOLVENT	CDC13	
NS	48	
DS	2	
SWH	75187.969	Hz
FIDRES	1 147277	H ₇
AO	0.4358644	sec
RG	3251	
DW	6 650	11960
קת	9.46	11000
7P	207 0	V
n1	2 00000000	200
<i>D1</i>	2.00000000	200
CH2	ANNEL fl ===:	
NUCI	197	
p1	22 50	11960
PT.1	-6.00	dB
SF01	376 4646491	MH ₇
01 01	5701101010101	
F2 - Process	sing paramete	ers
ST	65536	
SF	376 4984640	MH 7
WDW	57011501010 FM	
SSR	0	
1.0	1 00	U.7
GR	1.00	112
0D	1 00	
rc	1.00	
1D NMR plot	narameters	
CV Mat proc	22.80	am
CV.	15 00	am
21D	1 000	DDDD
r1r 171	376 50	U7
F2D	_100.000	0000
F2F F2	-71534 71	U7
DDMCM	8 37710	nnm/am
U7/M	3154 00040	Uz/cm
IIIICH	5151.00045	1127 GIII

-180

Z-restored spin-echo 13C spectrum with 1H decoupling

100

50

Ò

ppm

200

150

Z-restored spin-echo 13C spectrum with 1H decoupling

100

50

Ò

ppm

200

150

mqq
19F spectrum with 1H decoupling

-62.606 -62.613 -62.621 -62.627 -62.634 -62.640 -62.646

mqq

ppm

ppm

150

mqq

100

50

SI-115

200

ppm

	bata 2015923 bata 2015923 Time 18.52 Time 18.52 TINTENM ccyo530 PROBHD 5 mm CPYC1 H- PULARCG Splithopg03p, prd TD 65315 SOLVENT CDC13 NS 251 DB 0.462308 Hz AQ 1.081340 sec RG 7298.2 DW 16.500 usec TE 298.0 K D1 0.25000000 sec d11 0.0300000 sec d11 0.0300000 sec d12 0.000000 sec HT 16.55 usec P1 16.55 usec P1 16.55 usec P1 10.55 usec P1 10.0300000 sec P1 10.55 usec P1 10.57.942548 Min SP1 2.70 dB SP1 2.70 dB SP1 2.70 dB SP0FP1 0.00 Hz
	====== CHEANNEL £2 CCDDERG2 waltz16 NUCC2 100.00 usec PCED2 100.00 dB PCED2 100.00 dB PL12 1.60 dB PL12 24.50 dB SF02 500.2225011 MHz ===== GRADIENT CHANNEL ===== GRNAM SINE.100 GP21 0.00 % GP21 0.00 % GP21 0.00 % GP22 50.00 % GP22 50.00 % GP22 50.00 % GP21 0.00 % GP22 50.00 % GP22 50.00 % GP21 0.00 % GP21 0.00 % GP2 Processing parameters SI 65356 SF 125.7804127 MHz WDW EB SSB 0 LB 1.00 Hz GB 0 PC 2.00 PC 2.00 PC <td< th=""></td<>

100

150

50

ò

50

Ò

ppm

200

150

200

ppm

150

100

50

Z-restored spin-echo 13C spectrum with 1H de	ecoupling			
udđ	141.71 136.41 136.41 133.33 129.90 123.79		27.40 31.05 27.51 24.96	Current Data Parameters USER obborn NAME CAO-III-123B-SI EXEMO 2 PROCNO 1 F2 Acquisition Parameters Date 2015031 Time 15.09
				Institute Summer Procession PROBEND 5 mm CPTC1 H PULERGG SpinEchopg30gp.prd TD 65336 SOLFENT CDC13 NS 81 DS 16 SWH 30303.031 Hz FIDRES 0.462388 Hz AQ 1.0813440 sec DE 6.00 usec DE 6.00 usec DE 6.00 usec DI 0.25000000 sec D16 0.00020000 sec D16 0.00020000 sec D17 0.00019600 sec MCREST 0.001500000 sec MCWEK 0.01500000 sec P2 33.10 usec
				CHANNEL F1 F1 ====== P1 15 55 usec P1 500.00 usec 15 P1 500.00 usec 120.00 ds P1 1.00.00 usec 120.00 ds FL1 -1.00 ds SF01 125.794254 MHz SP1 2.70 ds S21 2.70 ds SPNAM1 Crp60.0.5,20.1 SPNAM2 Crp60.00.16,20.1 SPOFP1 0.00 Hz SPOFF1 0.00 Hz SPOFF1 0.00 Hz
				CHANNEL f2 CCDDRC2 waltz16 NUC2 1H PCPD2 100.00 usec PL2 1.60 dB PL12 24.50 dB SF02 2225011 MHz
				GPNAML SINE.100 GPNAML SINE.100 GPX1M 0.00 % GPX1 0.00 % GPX2 0.00 % GPY1 0.00 % GPY2 0.00 % GPY2 0.00 % GPZ2 5.00.00 % GPZ2 5.00.00 weec pl5 500.00 usec
				F2 - Processing parameters SI 65536 SF 125.7804122 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 2.00
				1D NMR plot parameters CX 22.80 cm CY 15.65 cm FIP 230.637 ppm F1 2509.66 Hz F2P -10.287 ppm F2 -1293.96 Hz F2 -1293.96 Hz PPMCM 10.56688 ppm/cm HZCM 1329.10693 Hz/cm
որ ու ամենու անդանունու, վանունեն իրում երկումներ, դեկուները կատարել ու իրությունը պիտիսնությունը։ Մությունել անդանում երկունեն կերբում երկինությունը հետ հետ չեկ որ ու որ թուցերությունը։ Արանդունը հետ երկումներ	الله ((۲۰۱۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۱۲ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲ ۲۰۰۲ ۲۰۰۰	n Leinen of Maria and Ala an star provide da na star Maria di a parto da and star ang ang ang ang ang ang ang a Pang ang an tagang ang ang ang ang ang ang ang ang an	it provident tales (n	

50

SI-123

Ò

ppm

200

150

200

ppm

150

E
р.
ρ.

	141.44 137.03 135.76 133.42 133.42 133.45 123.57 121.55	78.62	
o o o o o o o o o o o o o o o o o o o			Current Data Parameters USER osborn NAME CAO-III-228B-SI EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20150714 Time 22.58 INSTRUM drx400 PROBHD 5 mm QUP H/F/P PULPROG z9dc30 TD 65536 SOLVENT CDC13 NS 1024 DS 4 SWH 24154.590 Hz FIDBES 0.368570 Hz AQ 1.3566452 sec RG 9195.2 DW 20.770 usec DE 20.39 usec TE 288.0 K D1 0.10000000 sec MCREST 0.0000000 sec MCREST 100.6237964 MHz ====== CHANNEL f2 ======= CPDPRC2 ulev16 NUC2 1H PCPD2 90.00 usec PL2 0.00 usec PL2 1.7.70 dB SF02 400.1328009 MHz

homoallenylic sultam

V

100

50

 AC
 1.500-72
 20

 RG
 9195.2
 20

 DW
 20.700
 usec

 DE
 20.30
 usec

 TE
 298.0 K
 Dl

 DL
 0.10000000 sec
 dl1

 MCREST
 0.00000000 sec

 MCREST
 0.00000000 sec

 MCREST
 0.00000000 sec

 NUC1
 13C

 P1
 7.75 usec

 PL1
 -3.00 dB

 SF01
 10.6237964 MHz

 =======
 CPDPRC2

 PL2
 0.00 usec

 PL2
 0.00 dB

 SF02
 400.1328009 MHz

 F2
 Processing parameters

 SI
 65356

 SF
 10.6127646 MHz

 NUW
 EM

 SSB
 0

 LB
 1.00 Hz

 GB
 0

 PC
 1.00 Hz

 CB
 0

 PC
 1.0579 pm

 F2
 -10647 Pm

 P12
 2304964 pm

SI-125

ΰ

100

Ò

150

ppm

100

Ò

ppm

200

150

4

ż

2

 $\begin{array}{r} 1.0000\\ \hline 1.0143\\ \hline 1.0218\\ \hline 1.0324\\ \hline 0.9786\\ \hline 2.0301\\ \end{array}$

8

1 1 1 1 1

6

7

1 1 1 1 1

1 1 1 1 1

5

ppm

1 1 1 1

Ò

.

.

200

ppm

171.20

mqq

150

-141.28-133.57-133.56-133.56-133.56-133.56-130.59-120.681229.681229.681229.73-122122.28

<u>U</u>

77.41 77.16 76.91

0.15

Current Data Parameters USER NAME EXPNO endean TBDE-I-96-charicterization 2 1 PROCNO F2 - Acquisition Parameters Date_ 20141116 Time 15.16 INSTRUM cryo500
 IINSTRUM
 cryo500

 PROBHD
 5 mm CPTCI

 PULPROG
 SpinEchopg30gp.prd

 TD
 65536

 SOLVENT
 CDCl3

 NS
 1024
 NS DS SWH FIDRES 16 30303.031 Hz 0.462388 Hz 1.0813940 sec 5792.6 16.500 usec 6.00 usec 0.30000000 sec 0.00019600 sec 0.00000000 sec 0.0000000 sec 3.10 usec 16 AQ RG DW DE TE D1 d11 D16 d17 MCREST MCWRK P2 33.10 usec
 NUC1
 13C

 P1
 16.55 usec

 P1
 200.00 usec

 P1
 2000.00 usec

 P1
 10.00 dB

 NUC1
 13C

 Pl
 16.75

 16.75
 100

 Pl1
 500.00

 Pl2
 200.00

 SU00.00
 102

 FL1
 -1.00

 SP1
 2.70

 SP2
 2.70

 SPRMMI
 Crp60.05,20.1

 SPGPF1
 2.70

 SPGPF2
 0.00

 SPGPF2
 0.00
 CPDPRG2 NUC2 PCPD2 1H 100.00 usec PL2 PL12 1.60 dB 24.50 dB 500.2225011 MHz SF02 ====== GRADIENT CHANNEL ====== NT CHANNEL ==== SINE.100 0.00 % 0.00 % 0.00 % 30.00 % 50.00 % 500.00 wsec 1000.00 wsec CDN2M1 GPNAM2 GPX1 GPX2 GPY1 GPY2 GPZ1 GPZ2 p15 p16 F2 - Processing parameters SI 65536 SF 125.7804085 MHz WDW EM 0 SSB LB GB PC 1.00 Hz 0 2.00 1D NMR plot parameters 1D NME CX CY F1P F1 F2P F2 PPMCM 22.80 cm 60.00 cm 230.000 ppm 28929.49 Hz -10.000 ppm -1257.80 Hz 10.52632 ppm/cm 1324.00439 Hz/cm HZCM

100

1 50 SI-131

Λ

ppm

Λ

19F spectrum

Ality Hilder A

Ò

ppm

-20

-40

-60

-100

-80

-120

mqq

-140

-160

-180

0	Jurrent Da	ta Parameters	
τ	JSER	endean	
1	NAME T	BDE-I-51-char	
Ţ	EXPNO	4	
1	ROCNO	1	
-	riocivo	+	
1	72 - Acqui	sition Parame	ters
I	Date_	20141124	
1	ſime	14.03	
1	INSTRUM	drx400	
I	ROBHD 5	mm ONP H/F/P	
Ţ	PIILPROG	zaflan30	
	TD	65536	
		00000	
-	SOLVENT	CDC13	
1	45	96	
I	JS	2	
5	SWH	75187.969	Hz
H	FIDRES	1.147277	Hz
1	40	0.4358644	sec
1	20	2298 8	
Ť	าผ	6 650	11000
-		0.000	usec
1	JE	9.40	usec
1	re	298.0	K
I	01	2.0000000	sec
	C	HANNEL fl ===	=====
1	JUC1	19F	
Ţ	P1	22.50	usec
1	PT.1	-6.00	dB
	3801	376 4646491	MH7
	,101	570.1010191	PHILD
	n)		
1	12 - Proce	ssing paramet	ers
2	51	05530	
5	SF	376.4984640	MHz
1	NDW	EM	
5	SSB	0	
I	ΔB	1.00	Hz
(3B	0	
1	PC	1 00	
		2.00	
	D NMD pla	t novemetowa	
	ID MMR DIO	r baramerers	
(,X.	22.80	Cm
(CY	15.00	cm
H	71P	10.000	ppm
H	71	3764.99	Hz
H	72P	-190.000	ppm
Ŧ	32	-71534.71	Hz
ī	PPMCM	8 77193	nnm/cm
1	17/04	2202 61041	In / om
1	14011	3302.01841	nz/CIII

SI-134

ż

4

2

Ò

6 5

8

7

ppm

200

ppm

150

141.17 135.64 135.64 133.97 133.83 133.50 133.50 133.50 133.73 130.73 130.73 130.73 130.73 130.73 129.52 129.52 123.45 77.41 77.16 76.91 0.14 mqq Current Data Parameters USER endean NAME TBDE-I-81-charicterization EXEMNO 2 PROCNO 1 169. $\langle \rangle$
 PROCID
 1

 F2 - Acculation Parameters Date.
 2014116

 Date.
 2014116

 Distrim
 reside

 PORBHD 5 mm CPCI1
 11

 FUEROD SplnEchops000, prof
 10

 D
 65536

 SOLVENT
 CC13

 NS
 8

 AG
 1.0613940 acc

 RG
 7298.2

 DH
 16.500 usec

 E
 6.00 usec

 E
 6.00 usec

 E
 6.00 usec

 E
 0.0000000 acc

 11
 0.2500000 acc

 121
 0.2500000 acc

 121
 0.3000000 acc

 121
 0.500000 acc

 121
 0 0 S'N CI 1c : CHANNEL 1 13C 16.5 Susec 2000.00 usec 120.00 dB 125.7942348 MHz 2.70 dB 2.70 dB 2.70 dB 2.70 dB 0.00 Hz 0.00 Hz NUC1 P1 P12 PL0 PL1 SF01 SP1 SP2 SPNAM1 SPNAM2 SPOFF1 SPOFF2 CPDPRG2 NUC2 PCPD2 CHANNEL f2 ======= waltz16 1H 100.00 usec PL2 PL12 SF02 1.60 dB 24.50 dB 500.2225011 MHz
 SPUG
 JUG_JEADVIE
 average

 GRNAM
 SINE.100
 GRNAM

 GRNAM
 SINE.100
 GRX1

 GRNAM
 SINE.100
 GRX2

 GRX
 0.00 %
 GRY1

 GRY2
 0.00 %
 GRY2

 GRY2
 0.00 %
 GRY2

 GRY2
 500.00 %
 GRY2

 F2
 Processing parameters

 SI
 6536

 SF
 125.7804009 MHz

 WUW
 EM

 SSB
 0

 LB
 1.00 Hz

 GB
 0

 PC
 2.00

 ID INME plot parameters

 CX
 22.80 cm

 CY
 15.65 cm

 FlP
 230.000 ppm

 Fl
 28292.49 Ex

 F2P
 -10.000 ppm

 F2
 -1257.80 Ex

 PPMCM
 10.52632 ppm/cm

 HZCM
 1324.00439 Ex/cm

100

Ò

1 50

200

ppm

150

100

50

19F spectrum with 1H decoupling

mqq

SI-139

ppm	-20	-40	-60	-80	-100	-120	-140	-160	-180

ppm

6

5

4

ż

2

200

ppm

150

<equation-block><page-header><equation-block><page-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></page-header></equation-block></page-header></equation-block>		11.11.		Current Data Parameters USER osborn NAME CAO-III-37-pure EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ Date_ 20140818 Time 13.28 INSTEIM cryo500 PROCNO 1 PROCNO 5535 SpinEchop30gp.prd 0 TD 65355 SOLVENT CDC13 NS 151 DS 16 SMH 30301.031 Hz FIDRES 0.462388 Hz AQ 1.0813940 sec TE 298.0 K D1 0.02500000 sec d1 0.3000000 sec d17 0.0019600 sec MCREXT 0.0150000 sec P1 15.50 usec P1 15.00 usec P2 2000.00 usec P1 15.00 usec P1 15.00 usec P1 15.00 usec <td< th=""></td<>
				S12 S120 GB SPNAM1 Crp60.0.5,20.1 SPNAM2 Crp60comp.4 SPOFF1 0.00 Hz SPOFF2 0.00 Hz SPOFF2 0.00 Hz CPDPEC2 0.00 Hz CPDPEC2 0.00 Hz CPDPEC2 10.00 Usec FL2 1.60 dB FL2 1.60 dB SF02 500.2225011 MHz ====== GRADIENT CHANNEL ===== GRADIENT CHANNEL ===== GRAM1 SINE.100 GPV1 0.00 % GPV2 0.00 % GPV2 0.00 % GPV1 0.00 %
ne operation han ha menen allemation atten site anticident attendend attenden angine kan verse menen ander ekse The paper and a specific particular and a specific person and a specific person of the set and the second operation and a second operations and a second operation a	sty d.a., affin start, d. dai Latificta, Jakus, ad Latificta, and a start, a start, and a start, a neg a start, inweg, d. ang tang tang tang tang tang tang tang	n de La de la Maria de Maria de La de L La de La d La de La d	Палія на проблитивни во политивни и разполівни, на на полити в та и политивни политивни политивни во политивни Палія на проблитивни в политивни политивни в политивни политивни политивни разполитивни в политивни политивни по Палія на политивни политивни политивни в политивни политивни политивни политивни политивни политивни политивни п	F2P -10.287 ppm F2 -1233.96 Hz PPMCM 10.55668 ppm/cm HZCM 1329.10693 Hz/cm

100

50

ò

1 1 1 1

4

ppm

8

7

6

5

1 1 1 1 1

3

2

SI-144

1 1 1 1

Ò

.
-164.04

udd

142.86 141.36 139.15 133.90 133.70 133.70 132.66 130.38 128.55 128.55 128.55 128.55 128.55 128.55 128.55 122.95 122.90

77.41 77.16 76.91

 $\left(\right)$

200

ppm

1000	e e la e ser	
JSER	OSDOLII	
AME	CAU-111-164-51	
SXPNO	4	
PROCNO	1	
72 - Acqu	isition Parameters	
Date_	20150529	
Cime	17.43	
NOTDIM	aruo E 0.0	
DODUD	CIYOSUU	
ROBHD	5 mm CPICI IH-	
PULPROG	SpinEchopg30gp.prd	
rD .	65536	
SOLVENT	CDC13	
10	706	
10	100	
5	10	
SWH	30303.031 Hz	
FIDRES	0.462388 Hz	
10	1.0813940 sec	
a di	7298 2	
	16 600 1000	
20	10.500 usec	
JE	6.00 used	
re	298.0 K	
01	0.25000000 sec	
111	0 03000000 sec	
16	0.00020000 800	
110	0.00020000 Sec	
11/	0.00019600 sec	
ICREST	0.00000000 sec	
ICWRK	0.01500000 sec	
22	33 10 11660	
-	55.10 usec	
	ann 51	
	CHANNEL II ======	
WC1	13C	
21	16.55 usec	
211	500.00 usec	
012	2000 00 11860	
12	2000.00 usec	
200	120.00 dB	
261	-1.00 dB	
SF01	125.7942548 MHz	
3P1	2.70 dB	
202	2 70 dB	
1DN13-M1	Gum 60 0 E 20 1	
SPNAMI	Crp60,0.5,20.1	
SPNAM2	Crp60comp.4	
וססמי	0 00 **	
PUTTI	0.00 HZ	
SPOFF1	0.00 Hz	
SPOFF2	0.00 Hz	
SPOFF2	0.00 Hz 0.00 Hz	
SPOFF2	0.00 Hz 0.00 Hz CHANNEL f2 =======	
SPOFF2	0.00 Hz 0.00 Hz CHANNEL f2 ====== waltz16	
SPOFF2 SPOFF2 CPDPRG2 WC2	0.00 Hz 0.00 Hz CHANNEL f2 ======= waltz16 1H	
SPOFF2 SPOFF2 CPDPRG2 UC2 PCPD2	0.00 HZ 0.00 HZ CHANNEL f2 ======= waltz16 1H 100.00 usec	
SPOFF2 SPOFF2 CPDPRG2 NUC2 PCPD2 2012	0.00 HZ 0.00 HZ CHANNEL f2 ======= waltz16 1H 100.00 usec 1.60 dB	
CPDPRG2 UC2 PCPD2 PL2 V12	0.00 HZ 0.00 HZ CHANNEL f2 ======= waltz16 1H 100.00 usec 1.60 dB	
SPOFF1 SPOFF2 CPDPRG2 RUC2 PCPD2 PL12 PL12	0.00 Hz 0.00 Hz CHANNEL f2 ======= waltz16 1H 100.00 usec 1.60 dB 24.50 dB	
SPOFF1 SPOFF2 CPDPRG2 NUC2 PCPD2 PL2 PL12 SFO2	0.00 Hz 0.00 Hz CHANNEL f2 ====== uklz16 1H 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz	
SPOFF1 SPOFF2 UC2 SPCPD2 PL2 PL12 SFO2	0.00 HZ 0.00 HZ CHANNEL f2 ======= waltz16 11 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHZ	
SPOFF1 SPOFF2 TUC2 PL2 PL2 PL12 SFO2 GF	0.00 Hz 0.00 Hz CHANNEL f2 ======= waltz16 1H 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz RADIENT CHANNEL =====	
SPOFF1 SPOFF2 TUC2 PL2 PL12 SFO2 SFO2 SFO2 SPNAM1	0.00 Hz 0.00 Hz CHANNEL f2 waltz16 1H 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz RADIENT CHANNEL SINE.100	
SPOFF1 SPOFF2 UC2 PCPD2 PL2 PL12 SFO2 SFO2 SPNAM1 SPNAM1	0.00 Hz 0.00 Hz CHANNEL f2 ======= waltz16 1H 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz RADIENT CHANNEL ===== SINE.100 SINE 100	
POFF1 SPOFF2 UC2 PCPD2 PL2 PL2 SF02 SF02 SF02 SPNAM1 SPNAM2 SPNAM2 SPNAM2	0.00 Hz 0.00 Hz CHANNEL f2 ======= walt16 14 100.00 usec 1.60 dB 500.2225011 MHz RADIENT CHANNEL SINE.100 SINE.100	
POFF1 SPOFF2 UC2 CCPD2 PL2 SF02 SF02 SF02 SPNAM1 SPNAM2 SPX1	0.00 Hz 0.00 Hz CHANNEL f2 ======= 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz SINE.100 SINE.100 0.00 %	
SPOFF1 SPOFF2 SPOFF2 SPCPD2 SPL2 SPL2 SPCD2 SPL3 SPNAM1 SPNAM2 SPNAM2 SPX1 SPX2	0.00 Hz 0.00 Hz CHANNEL f2 ======= walt16 110.00 usec 1.60 dB 500.2225011 MHz RADIENT CHANNEL SINE.100 SINE.100 0.00 % 0.00 %	
SPOFF1 SPOFF2 SPOPRG2 NUC2 SPCPD2 PL12 SFO2 SFO2 SPNAM1 SPNAM1 SPNAM2 SPX1 SPX1 SPX2 SPY1	0.00 Hz 0.00 Hz CHANNEL f2 ======= 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz SINE.100 SINE.100 SINE.100 0.00 % 0.00 %	
JPDFF1 JPDPRG2 JUC2 VL2 VL2 JPL2 JPC2 JPC2 JPC2 JPC2 JPC2 JPC2 JPC2 JPC	0.00 Hz 0.00 Hz CHANNEL É2 Maltzl6 11 100.00 usec 1.60 dB 24.50 dB 50.02225011 MHz RADIENT CHANNEL SINE.100 SINE.100 0.00 % 0.00 % 0.00 %	
SPOFF2 SPOFF2 SPOFF2 UC2 VL2 VL2 SPO2 SFO2 SFO2 SPNAM1 SPNAM1 SPNAM2 SPX1 SPX1 SPX1 SPX1 SPX1 SPX1 SPX1 SPX1	0.00 Hz 0.00 Hz CHANNEL f2 ======== waltz16 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz SINE.100 SINE.100 SINE.100 0.00 % 0.00 %	
FOFF1 SPOFF2 SPOFF2 UC2 VC2D2 PL2 PL2 PL2 SFO2 SFO2 SFO2 SPNAM1 SPNAM2 SPX1 SPX1 SPX1 SPY1 SPY2 SP21	0.00 Hz 0.00 Hz CHANNEL f2 ======= 11 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz SINE.100 SINE.100 SINE.100 SINE.100 SINE.00 % 0.00 % 0.00 % 0.00 % 0.00 %	
PFOFF1 PFOFF2	0.00 Hz 0.00 Hz CHANNEL f2 ======== waltz16 14 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 50.00 % 50.00 %	
FORF1 FFOFF2 FFDPRG2 FFDPRG2 FFDPRG2 FFDPRG2 FFDPRG2 FFDPRG2 FFDPRG2 FFDPRG2 FFDPRG2 FFDF2 FFDF2 FFDPRG2 FFDF2 FFDPRG2 FFDF2 FFDPRG2 FFDFPRG2 FFDFPRG2 FFDFFDFFPRG2 FFDFFPRG	0.00 Hz 0.00 Hz CHANNEL f2 ======= 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz CHANNEL ===== SINE.100 SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 50.00 % 50.00 % 50.00 %	
JPOFF2 JPOFF2 JPDPRG2 JUC2 PCPD2 PL2 PL12 JPC2	0.00 Hz 0.00 Hz CHANNEL É2 Maltz16 11 100.00 usec 1.60 dB 24.50 dB 24.50 dB 500.2225011 MHz SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 0.00 % 50.00 % 50.00 %	
FOFF1 SPOFF2 SPOFF2 UC2 CCPD2 PL2 SFO2 SFP2 SPNAM1 SPNAM2 SPX1 SPX1 SP21 SP21 SPX1 SP21 SP31 SP40 SP40 </td <td>0.00 Hz 0.00 Hz CHANNEL f2 ======= 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz SINE.100 SINE.100 SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 0.00 % 50.00 % 50.00 usec</td> <td></td>	0.00 Hz 0.00 Hz CHANNEL f2 ======= 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz SINE.100 SINE.100 SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 0.00 % 50.00 % 50.00 usec	
FOFF1 FPOFF2 FPDPRG2 FUC2 CCPD2 FL2 FFO2	0.00 Hz 0.00 Hz CHANNEL £2 Maltz16 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz RADIENT CHANNEL SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 500.00 % 500.00 k 500.00 usec 	
PPOFP1 PPOPP2 PPOPP2 PCPD2 PL2 PL2 PL2 PL2 PL2 PL2 PL2 PL	0.00 Hz 0.00 Hz CHANNEL f2 ======= 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz SINE.100 SINE.100 SINE.100 SINE.100 SINE.100 SINE.100 SINE.00 % 0.00 % 0.00 % 50.00 % 50.00 usec 1000.00 usec 2000 usec	
PFOFF2 PPDPRG2 PCPD2 PL2 PL2 PL2 PFO2	0.00 Hz 0.00 Hz CHANNEL f2 ======= 11 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz RADIENT CHANNEL ===== SINE.100 SINE.100 SINE.100 0.00 % 0.00 % 50.00 % 50.00 % 550.00 usec 100.00 usec 100.00 usec 100.00 usec	
PPOFP1 PPOFP2 PPOPP2 PCPD2 PL2 PL12 SFO2 SFO2 SFO3 SFNAM1 SPNAM1 SPNAM2 SPNAM1 SP	0.00 Hz 0.00 Hz CHANNEL É2 HI 100.00 Usec 1.60 dB 24.50 dB 24.50 dB 24.50 dB 500.2225011 MHz SINE.100 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 500.00 % 500.00 usec 1000.00 usec chessing parameters 65536 125.7804080 MHz	
PSOF1 PSOF2 PSOF2 PSOF2 PC2 PC2 PC2 PC2 PC2 PC2 PC2 PC	0.00 Hz 0.00 Hz CHANNEL f2 ======= 18 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz CHANNEL ===== SINE.100 SINE.100 SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 50.00 % 50.00 usec 100.00 usec 125.7804080 MHZ EM	
PFOFF1 PFOFF2 PFOFF2 PCPD2 PL2 PL2 PFO2 PL2 PFO2 PFO2 PFO2 PFNM1 PFNAM1 PFNAM2 PFNAM1 PFNAM2 PFN1 PFY2 PF2 PF2 PF2 PF2 PF2 PF2 PF2 PF	0.00 Hz 0.00 Hz CHANNEL £2 Maltz16 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz RADIENT CHANNEL SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 500.00 % 500.00 usec cessing parameters 65536 125.7804080 MHz EM 0	
PSOF1 PSOF2 PSOF2 PSOF2 PC2 PC2 PC2 PC2 PC2 PC2 PC2 PC	0.00 Hz 0.00 Hz CHANNEL f2 ======= waltz16 10.00 usec 1.60 dB 24.50 dB 500.2225011 MHz EXADIENT CHANNEL, ==== SINE.100 SINE.100 SINE.100 SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 50.00 usec 100.00 usec pessing parameters 125.7804080 MHz EM 10.00 T=	
PFOFF1 PFOFF2 PFOFF2 PCPD2 PL2 PL2 PFO2 PL2 PFO2 PFO2 PFO2 PFO2 PFO2 PFV1 PFV1 PFV2	0.00 Hz 0.00 Hz CHANNEL f2 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz RADIENT CHANNEL SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 500.00 % 500.00 % 500.00 usec ressing parameters 65536 125.7804080 MHz EM 0 1.00 Hz	
POOF1 PPOOF2 PPOOF2 VIC2 VIC2 VIC2 VIC2 VIC3 PIC3	0.00 Hz 0.00 Hz CHANNEL f2 H 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz SINE.100 SINE.200 0.00 % 0.00 %	
PROFF2 PPDFRG2 PCPD2 PL12 PCPD2 PL12 PCPD2 PL12 PF02	0.00 Hz 0.00 Hz CHANNEL f2 ======= 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz RADIENT CHANNEL ===== SINE.100 SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 500.00 usec 100.00 usec 100.00 usec 100.00 usec 100.00 usec 100.00 usec 100.00 usec 100.00 usec 100.00 usec 100.00 kz 0.00 %	
POPF2 PEPF2 PEPF2 VUC2 VL2 VL2 VL2 VL2 VL2 VL2 VL2 VL2 VL2 VL	CHANNEL 12	
POPP2 PO	0.00 Hz 0.00 Hz CHANNEL f2 ======= 100.00 usec 1.60 dB 24.50 dB 24.50 dB 500.2225011 MHz SINE.100 SINE.100 SINE.100 SINE.100 SINE.100 SINE.100 SINE.00 % 50.00 % 50.00 % 50.00 usec 125.7804080 MHz 0 1.00 Hz 0 2.00	
POPP2 PO	0.00 Hz 0.00 Hz CHANNEL £2	
POPP2 PO	0.00 Hz 0.00 Hz CHANNEL f2 ======= 18 100.00 usec 1.60 dB 24.50 dB 24.50 dB 500.2225011 MHz CHANNEL ===== SINE.100 SINE.100 SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 50.00 % 50.00 usec 125.7804080 MHz EM 0 1.00 Hz 0 2.00 L0 parameters 22.80 cm	
POPP2 PO	0.00 Hz 0.00 Hz CHANNEL f2	
POPP72 PEOPP72 PEOPP72 PEOPP72 PEOP22 PEO	0.00 Hz 0.00 Hz CHANNEL f2	
POPP2 PO	0.00 Hz 0.00 Hz CHANNEL f2 ======= 100.00 usec 1.60 dB 24.50 dB 500.2225011 MHz RADIENT CHANNEL ===== SINE.100 SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 0.00 % 500.00 usec 100.00 usec 100.00 usec 100.00 usec 100.00 usec 100.00 usec 100.00 Hz 0 2.00 Hz 0 2.00 cm 230.637 ppm 2009.66 Hz	
PUPPF2 PUPPF2	0.00 Hz 0.00 Hz CHANNEL £2	
PUPPR2 PUPPR2 PUPPR2 PUPPR2 PUPPR2 PUPPR2 PUPPR2 PUPPR2 PUPUPR2 PU	0.00 Hz 0.00 Hz CHANNEL f2 ======= 100.00 usec 1.60 dB 24.50 dB 24.50 dB 24.50 dB 500.2225011 MHz SINE.100 SINE.100 SINE.100 SINE.100 SINE.100 SINE.100 0.00 % 0.00 % 50.00 % 50.00 % 50.00 % 50.00 % 50.00 % 50.00 % 50.00 % 125.7804080 MHz 0 1.00 Hz 0 2.00 Hz 0 1.00 Hz 0 1.00 Hz 0 2.00 Hz 0 0.00 KHZ 0 1.00 Hz 0 0.00 KHZ 0 0.00 KHZ 0 2.00 Cm 2.00 Cm	
PUPPE2 PUPPE2	0.00 Hz 0.00 Hz CHANNEL £2	
PUPPE2 PUPPE2 PUPPE2 PUPPE2 PUPPE2 PUPPE2 PUPE2	0.000 Hz 0.000 Hz CHANNEL f2 ======= 100.000 usec 1.60 dB 24.50 dB 0.00 % 0.00 % 0.00 % 50.00 usec 1000.00 usec 1000.00 usec 125.7804080 Mtz 0 1.00 Hz 0 2.000 cm 230.637 ppm 29009.68 Hz -1129.36 Hz -129.36 Hz	m
Property Proper	0.00 Hz 0.00 Hz 0.00 Hz CHANNEL f2 ======= 100.00 usec 1.60 dB 24.50 dB 24.50 dB 500.2225011 MHz EXADIENT CHANNEL ===== SINE.100 SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 500.00 usec ressing parameters 65536 125.7804080 MHz 0 1.00 Hz 0 2.2.80 cm 2.30.637 ppm 2.30.637 ppm 2.30.637 ppm 1.0.56688 ppm/c 1.329.10589 Hz/cm	m
Proprint 2	0.00 Hz 0.00 Hz 0.00 Hz CHANNEL f2 ======= 11 100.00 usec 1.60 dB 24.50 dB 24.50 dB 500.2225011 MHz SINE.100 SINE.100 SINE.100 SINE.100 SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 50.00 % 50.00 usec 125.7804080 MHz EM 0 1.00 Hz 0 2.00 Lot parameters 22.80 cm 60.30 cm 2.00 cm 2.00 cm 2.203 ppm -10.287 ppm -1293 yf Hz/cm	m

Data Davamakawa

0.14

100

150

50

SI-145

Λ

Ò

ppm

200

ppm

150

163.12 141.40 135.76 135.76 135.76 133.96 133.96 133.59 133.59 133.59 133.59 133.59 133.59 133.59 133.59 133.59 125.85 77.42 77.16 76.91 0.14 mqq Current Data Parameters USER NAME osborn CAO-III-24-pure EXPNO PROCNO 1 F2 - Acquisition Parameters Date 20140818 Time 13.37 INSTRUM cryo500 PROBHD 5 mm CPTCI 1Ho v S N √ PULPROG SpinEchopg30gp.prd TD 65536 SOLVENT CDCl3 NS DS SWH FIDRES 276 276 16 30303.031 Hz 0.462388 Hz AQ RG DW DE TE D1 d11 D16 d17 1.0813940 sec 3649.1 16.500 usec 6.00 usec 298.0 K 1h 0.25000000 sec 0.03000000 sec 0.00020000 sec 0.00019600 sec 0.00000000 sec MCREST MCWRK 0.01500000 sec P2 31.00 usec ====== CHANNEL fl ======= NUC1 P1 P11 P12 PL0 PL1 SF01 13C 15.50 usec 500.00 usec 2000.00 usec 120.00 dB -1.00 dB 125.7942548 MHz SP1 SP2 SPNAM1 3.20 dB 3.20 dB 3.20 dB Crp60,0.5,20.1 Crp60comp.4 0.00 Hz 0.00 Hz SPNAM2 SPOFF1 SPOFF2 ====== CHANNEL f2 ======= CPDPRG2 waltz16 NUC2 1H 100.00 usec PCPD2 PL2 PL12 1.60 dB 24.60 dB SF02 500.2225011 MHz ====== GRADIENT CHANNEL ===== GPNAM1 GPNAM2 SINE.100 SINE.100 0.00 % 0.00 % 0.00 % 0.00 % 30.00 % GPX1 GPX2 GPY1 GPY2 GPZ1 GPZ2 50.00 % p15 p16 500.00 usec 1000.00 usec F2 - Processing parameters 65536 SI SF WDW SSB LB GB PC 125.7804085 MHz EM O 1.00 Hz 2.00
 ID NMR plot parameters

 CX
 22.80 cm

 CY
 35.00 cm

 FlP
 230.637 ppm

 F1
 29009.68 Hz

 F2P
 -10.287 ppm

 F2
 -1023.36 Hz

 PPRCM
 10.56688 ppm

 HZTM
 13.96 Hz
 10.56688 ppm/cm 1329.10693 Hz/cm HZCM ladan gala dikuna dina kanakana na pipakan pisiki aba ana antarikan su pantu dinta na panaka si antara a kamba k الألفين والافرار والمتحمين وأراعط والارمية فترقيم ومرابقة فالتقائص الألب وأمراك وأرتقاص ألفقان والمتحمية والمتعادير أفتسان فالممين يقريه فأطاعد المتقار ومتناط والملك ألجرا والمتقعمة والمواجد وأحداثك فالمتقاط والمراجع أراجه والمتقريب . The string be the second the static field with gale and a static for the production of the static production and the state of the static state of the والالموالية المتخلفة بسور أألر

100

50

SI-147

uđ	O S Me 4b	16.97 14.77	Current Data Parameters USER obsorm NAME CAC-III-118-SI EXPNO 2 PFOCNO 1 F2 - Acquisition Parameters Date_ 20150520 Time 15.18 INSTRUM cryo500 PFORHD 5 mc CTCI 11- PULEROG SpinEchop30g.pcd TD 65536 SOLVENT CTCI 13- PULEROG SpinEchop30g.pcd TD 65536 SOLVENT CTCI 14- PULEROG SPINER TD 1000000000000000000000000000000000000
			Fil -1.0.0 dB SF01 125.7942548 MHz SP1 2.70 dB SP2 2.70 dB SPNAMI Crp60,0.5,20.1 SPNAMI Crp60,0.5,20.1 SPNAMI SPOFF1 0.00 Hz SPOFF1 0.00 Hz """""" CHNNEL f2 """"" CHNNEL f2 """"" CHNNEL f2 """"" CHNNEL f2 """"" CHANGE NIC2 1 PCPD2 100.00 usec PL2 24.50 dB SPC2 SpC1
			===== GRADIENT CHANNEL ===== GPNAMI SIRE.100 GPNAM2 SIRE.100 GPX1 0.00 % GPX2 0.00 % GPY2 0.00 % GPY2 0.00 % GPY2 30.00 % GPY2 50.00 % GP22 50.00 % D15 500.00 usec p16 1000.00 usec
			F2 Processing parameters SI 65536 SF 125.7804103 MBW SSB SSB 0 LB 1.00 Hz GB 0 PC 2.00
			1D NMR plot parameters CX 22.80 cm CY 15.65 cm F1P 230.637 ppm F1 29009.68 Hz F2P -10.287 ppm F2 -10.287 ppm F2 -102.97 pm H2CM 10.56688 ppm/cm H2CM 1329.10693 Hz/cm

100

50

SI-151

ò

ppm

200

150

Z-restored spin-echo 13C spectrum with 1H decoupling

SI-153

Ò

ppm

200

100

13C spectrum with 1H decoupling

200

ppm

<image/> <equation-block><table-cell></table-cell></equation-block>		Current Data Parameters USER osborn NMME CAO-III-233-SI EXENDO 2 PROCNO 1 F2 Acquisition Parameters Date_ 20150719 Time 16.12 INSTRIM cryo500 PROCHO 5536 SOLVENT COCI3 NS 77 DS 16 SMH 30303.031 Hr FIDRES 0.42530000 sec RG 22500.3 DW 16.500 usec DE 6.00 usec DE 20.00000 sec D1 0.25500000 sec MCREST 0.0000000 sec D16 0.0000000 sec P1 16.00 usec P2 33.10 usec TIL 50.00 usec P1 150.00 usec P2 2.70 dB SCI 12.7942548 MHz SP1 1.00 dB P1 50.0000 sec P1 16.0000000 sec
	سال و مرافع المرافع المرافع مرافع مرافع مرافع المرافع المرافع المرافع المرافع المرافع المرافع المرافع المرافع ا	CPDPRC2 waltz16 NUC2 1.4 PCPD2 100.00 usec FL2 1.6 0 dB FL12 24.50 dB SF02 500.2225011 MHz

100

150

50

SI-161

ò

9966

5

2.0873

4

3.0561

2

699

2

3.2622

1.0171 1.0662 1.0469 2.0838

7

6

2.0000

8

ppm

SI-162

Z-restored spin-echo 13C spectrum with 1H decoupling				
Ppm 166.03	86.99 81.93 81.93 81.93 81.93 71.73 70.77	61.28	21.15	Current Data Parameters USER endean NMME TEDE-1-219-pure-paper-char EXCND 1 FROCNO 1 F2 - Acquisition Parameters Date_20150019 Time 16.17 INSTRU
Me 7				Difference Same Link State TD 65354 TD 65354 SUCVENT 65354 SS 1024 DS 16 SWH 31032 (313) Hz FIDERES 0.462388 Hz AD 1.6616. DW 1.6500 usec DE 6.000 usec DI 0.25200000 sec 116 0.0000000 sec 116 0.0000000 sec MCMERT 0.0000000 sec MCMERT 0.0000000 sec P2 3.10 usec
				micl 13 Pl 16.55 Pl 200.00 Pl2 2000.00 PL0 12.0 PL1 -1.00 SP01 12.79 SP1 2.70 SP1 2.70 SP1 2.70 SP1 2.70 SP1 2.70 SP2 0.00 SP0971 0.00 SP0972 0.00
				CPD962 Wallel f2 ====== CPD962 Wallel 6 NC2 12 10.00 usec EL2 1.60 dB FL2 4.50 dB FL2 500.223501 MHz SF02 500.223501 MHz CPD1FN CEANMEL ==== CPD1FN CEANMEL ===== CPD1FN CEANMEL ====================================
				GPX2 0.00 % GPY1 0.00 % GPY2 0.00 % GP22 30.00 % GP22 500.00 % p15 500.00 usec p16 1000.00 usec SI 65536 SP 125.7804190 Miz NUM NUM
		I		358 0 1.8 1.00 Hz GB 0 PC 2.00 1D NMR plot parameters 22.80 cm CX 75.00 cm F1 227.000 ppm F1 27.000 ppm F2 -10.000 ppm F2 -12.73.80 Hz F2 -12.73.70 Hz F2 -12.73.70 ppm F2 -12.73.70 ppm F2 -12.75.70 ppm F3 500 MM F3 700 mm
				EZCM 1268.83765 Hz/cm
الله الله والعند ومرد المرواح والمراجع المرواح المراجع المراجع المراجع المراجع المراجع والمراجع المراجع والمرواح والمراجع وولم والمراجع والمراجع والمراجع والمراجع	مة الإعمارة معادية إلى من إلى من منابع المعادية المعاد	يد ويتشارك ومراقع المريحة ومناجع المريحة والمريحة والمريحة والمريحة والمريحة والمريحة والمريحة والمريحة والمريحة	netta linetta circulta contrato	المراجع والانتهام والمراجع وال
And a series of the production	a the physical free by a straight of the physical straight of the physi	All of preserved and have a second preserved on the second second second second second second second second sec	(lan), yu (seedan), _{ye} u ariyiya ariyiya ari	

100

200

ppm

150

50

-

1

Ò

.

200

ppm

ы ца ца	14, 15, 14, 14, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	61.77 61.77 61.77		Current Data Parameters USER osborn NAME CAO-III-248C-SI EXPNO 2 PROCNO 1
				F2 Acquisition Parameters Date016007 20150007 INSTRUM 9,16 INSTRUM Gravos PROBHD 5 mm CPTC1 H- PULENG SpinEchopg30gp.prd TD 65536 SOLVENT CDC13 NS 135 DS 16 SWH 30303.031 Hz FIDRES 0.462388 Hz AQ 1.0813940 sec RG 7298.2 DW 16.500 usec DE 6.00 usec DE 0.400000 sec d11 0.020000 sec d17 0.0010400 sec MCREST 0.0000000 sec
				NUC1 13C P1 16.55 usec P12 2000.00 usec P10 120.00 db P11 500.10 usec P10 120.00 db P11 -1.00 db SP01 125.7942548 MHz SP1 -2.70 db SP1 2.70 db SP1 Crp60.0.5,20.1 SPNAM1 SPOPP2 0.00 Hz SPOFP2 0.00 Hz
				CHANNEL f2 CPDPRG2 waltzl6 NUC2 1H PCPD2 100.00 usec PL2 1.60 dB PL12 24.50 dB SFO2 500.2225011 MHz
				GRADIENT CHANNEL GPNAMI SINE.100 GPNAMI SINE.100 GPX1 0.00 % GPX2 0.00 % GPY1 0.00 % GPZ1 0.00 % GPZ2 0.00 % GPZ1 30.00 % GPZ2 50.00 % GPZ5 500.00 usec p16 1000.00 usec
				F2 - Processing parameters SI 65536 SF 125.7804094 MHz WGW EM SSB 0 LB 1.00 Hz GB 0 PC 2.00
				1D NMR plot parameters CX 22.80 cm CY 15.65 cm FIP 230.637 ppm F1 29009.68 Hz F2P -10.287 ppm F2 -120.387 ppm F2 -120.386 ppm/cm HZCM 1329.10693 Hz/cm
ουναί διάγμαδημά δετο πλοτοπογολογικό το ματό το του που του του του ματροπού του του του του του του του του Τα που του του του του του του του του του τ	re for der belefte freihet geberen eine eine Verlande Mensen wirden sowen zu der eine bereinen zweister eine me Geschlich sowen wirder wersen eine Verlande Verlande Mensen wirden zweise jegen zu geberen werteren werder verla Geschlich sowen wirder wersen eine Verlande Verlande Mensen wirden zweise jegen zu geberen werteren werder verla	an a	la na sana dalam da kana ang mana ang manana kana na kana na kana kana kana k	SI-165

100

150

50

ò

200

ppm

150

100

50

SI-167

1H spectrum

8

ppm

mqq

2

L

1.000

- 4

5

6

1 1 1 1

Ò

12.515

1H spectrum

mqq

'ar

ppm

8

0.046

- 4

5

6

1 1 1 1

1 1 1

Ò

12.140

000

.

2

0.856

200

ppm

150

100

50

SI-170

1H spectrum

udd

ppm

8

Current I	Data	Pa	ra	met osì	ters	
NAME	CA	0-	I -	12	3 SI	
EXPNO					1	
PROCNO					1	
F2 - Acqu	uisit	io	n	Pai	rame	ters
Date_			20	12	1017	
TIME				dr:	4.45 -400	
PROBHD	5 mm	0	NP	H.	/F/P	
PULPROG					zg30	
TD				6	5536	
SOLVENT				CI	DC13	
NS DS					8 2	
SWH			64	10	.256	Hz
FIDRES			Ο.	09'	7813	Hz
AQ		5	.1	118	3579	sec
RG				70	16	
DW				18	1 50	usec
TE				2	98.0	K
Dl		0.	10	000	0000	sec
MCREST		0.	00	000	0000	sec
MCWRK		0.	01	500	1000	sec
	CHAN	NE:	L	f1	===:	
NUC1					1H	
P1				12	2.00	usec
SEU1	4	0.0	1	-1	3000	CLB MH 7
5101	-		• +	521		1112
F2 - Prod	cessi	ng	p	ara	amet	ers
SI				6	5536	
SF	4	00	. 1	295	9870 FM	MHZ
SSB					0	
LB				- (1.30	Hz
GB					0	
PC				-	2.00	
1D NMR p	lot p	ar	am	ete	ers	
CX .				2	2.80	cm
CY				1!	5.00	cm
FTD FTD			2	9.	.000	ppm uz
F2P			5	-0	.500	nz
F2			-	201	0.06	Hz
PPMCM			0	. 42	1667	ppm/cm
HZCM		1	66	.72	2083	Hz/cm

-2.15992

Ż

.27537

200

ppm

mqq

150

100

-84.131

-24.481

50

Curren USER NAME EXPNO PROCNO	t Data Parameters osborn CAO-I-123 SI 8 1	
F2 - AI Date_ Time INSTRUI PROBHD PULPROI TD SOLVEN NS DS SWH FIDRES AQ RG DW DE TE D1 d11 d11 d16 d17 MCREST MCWRK P2	cquisition Paramet 20121017 19.28 M cryo500 5 mm CPTCI 1H- 3 SpinEchog30gp 5 mm CPTCI 1H- 3 SpinEchog30gp 65536 T crcC13 65536 1 65536 1 65556 1 65556 1 655676 1 6556776 1 65567676 1 65567676 1 655676 1 655676 1 655676776 1 655676776 1 655676776 1 655676776 1 655676776 1 6556776 1 6556776 1 6556776 1 6556776 1 6556776 1 6556776 1 6556776776 1 65567777777777777777777777777777777777	Hz Hz Hz sec usec usec K sec sec sec sec sec sec usec usec
NUC1 P1 P11 P12 PL0 PL1 SF01 SP1 SP2 SPNAM1 SPNAM2 SPOFF1 SPOFF2	== CHANNEL f1 ==== 12C 500.00 2000.00 120.00 -1.00 125.7942548 3.20 Crp60,0.5,20.1 Crp60comp.4 0.00 0.00	usec usec dB dB MHz dB dB dB Hz Hz
CPDPRG NUC2 PCPD2 PL2 PL12 SF02	== CHANNEL f2 ===: 2 waltz16 1H 100.00 1.60 24.60 500.2225011	usec dB dB MHz
GPNAM1 GPNAM2 GPX1 GPX2 GPY1 GPY2 GPZ1 GPZ2 p15 p16	GRADIENT CHANNEL SINE.100 SINE.00 0.00 0.00 0.00 0.00 30.00 50.00 50.00 1000.00	ssec usec usec
F2 - P: SI SF WDW SSB LB GB PC	rocessing paramete 65536 125.7804190 EM 0 1.00 0 2.00	ers MHz Hz
1D NMR CX CY F1P F1 F2P F2 PPMCM HZCM	plot parameters 22.80 15.65 230.637 29009.68 -10.287 -1293.96 10.56688 1329.10706	cm cm ppm Hz ppm Hz ppm/cm Hz/cm

ò

11B spectrum with 1H decoupling with background suppression

50

100

ppm

-31.709 mqq Current Data Parameters USER osborn NAME CAO-I-123 SI EXPNO 5 0 Β PROCNO 1 F2 - Acquisition Parameters Date_ 20121017 Time 10.21 INSTRUM gn500 PROBHD 5 mm broadband PULPROG 65536 TD 65536 SI-1 TD SOLVENT CDC13 CDC13 64 4 37037.035 Hz 0.565140 Hz 0.847860 sec 90.5 13.500 usec 298.0 K 1.0000000 sec 0.00000000 sec NS DS SWH FIDRES AQ RG DW DE TE D1 MCREST MCWRK
 PI
 8.65 usec

 p2
 17.30 usec

 PL1
 -3.00 dB

 SF01
 160.2273660 MHz

 P2 Processing parameters

 SI
 65536

 SF
 160.2273621

 MDW
 EM

 SSB
 0

 LB
 2.00

 GB
 0

 PC
 2.00

 ID NMR plot parameters

 CX
 22.80 cm

 CY
 15.00 cm

 FlP
 115.601 ppm

 Fl
 18522.36 Hz

 F2P
 -115.552 ppm

 F2
 -185.552 ppm

 F2
 -185.14.67 Hz

 FPMCM
 10.13829 ppm/cm

 HZCM
 1624.43140 Hz/cm

Ò

-50

-100

Index Name		Start	Time	End	RT Offset	Quantity	Height	Area	Area
1		[Min]	[Min]	[Min]	[Min]	[% Area]	[Vų]	[µV.Min]	[%]
1	UNKNOWN	11.10	11.48	12.14	0.00	51.28	177.2	70.1	51.263
2	UNKNOWN	13.87	14.33	15.12	0.00	48.74	138.2	66.6	48.737

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
	1	[Min]	[Min]	[Min]	[Min]	[% Area]	[V4]	[µV.Min]	[%]
1	UNKNOWN	11.33	11.54	12.08	0.00	1.19	4.6	1.8	1,190
2	UNKNOWN	13.79	14.32	15.23	0.00	98.81	281.6	146.1	98.810
Total				T T	1 - 14	100.00	286.2	147.9	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	7.97	8.24	8.90	0.00	50.40	1534.9	516.6	50,402
2	UNKNOWN	10.34	10.65	11.48	0.00	49.60	1156.1	508,4	49,598
Total			217			100.00	2691.0	1025.0	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
10-11	1	[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	8.18	8.47	9.01	0.00	96.84	548.7	166.2	96.840
2	UNKNOWN	10.80	11.04	11.40	0.00	3.16	17.4	5.4	3.160
Total			-			100.00	566.0	171.6	100.000

SI-175

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
-		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	9.19	9.47	9.91	0.00	50.06	464.5	132.2	50.064
2	UNKNOWN	9.92	10.20	10.77	0.00	49.94	434.4	131.8	49.936
Total					1	100.00	899.0	264.0	100.000

CCP2E51.tmp.DAT - HP1100 DAD Signal A

Index	Name	Name	Start	Time	End	RT Offset	Quantity Heig		Area	Area [%]
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]		
1	UNKNOWN	9.02	9.24	9.58	0.00	3.02	41.6	10.8	3.022	
2	UNKNOWN	9.63	9.92	10.54	0.00	96.98	1033.9	347.8	96.978	
Total						100.00	1075.5	358.7	100.000	

Index	Name	Name	Start	Time	End	RT Offset	t Quantity Height		Area	Area
12.21		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]	
1	UNKNOWN	11.23	11.61	12.07	0.00	50.60	325.9	88.7	50.596	
2	UNKNOWN	12.10	12.37	13.27	0.00	49.40	286.1	86.6	49.404	
Total			-			100.00	612.0	175.4	100.000	

Index	Name	Name	Start	Time	End	RT Offset	Quantity Height		Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]	
1	UNKNOWN	10.53	10.77	10.98	0.00	1.61	9.2	1.7	1.611	
2	UNKNOWN	11.01	11.33	12.20	0.00	98.39	344.7	105.1	98.389	
Total		5	1.1.			100.00	353.9	106.8	100.000	

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	15.52	16.06	17.23	0.00	50.58	552.1	377.4	50.582
2	UNKNOWN	20.71	21.39	22.87	0.00	49.42	409.4	368.7	49.418
Total		1		100	1 2 70	100.00	961.5	746.1	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[V4]	[µV.Min]	[%]
1	UNKNOWN	15.35	15.87	17.26	0.00	98.75	1202.6	870.4	98.747
2	UNKNOWN	21.19	21.68	22.44	0.00	1.25	17.8	11.0	1.253
Total	-					100.00	1220.4	881.4	100.000

Index	Name	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]	
1	UNKNOWN	6.83	7.09	7.46	0.00	51.48	510.0	104.0	51.480	
2	UNKNOWN	8.32	8.55	9.05	0.00	48.52	395.3	98.0	48.520	
Total						100.00	905.3	202.0	100.000	

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	10.12	10.58	11.09	0.00	50.44	328.0	83.7	50.437
2	UNKNOWN	14.92	15.45	16.18	0.00	49.56	211.6	82.3	49.563
Total	1			-		100.00	539.6	166.0	100.000

Index	Name	Start	Time	End [Min]	RT Offset [Min]	Quantity [% Area]	Height	Area	Area [%]
		[Min]	[Min]				[µV]	[µV.Min]	
1	UNKNOWN	10.57	11.03	11.94	0.00	95.62	1491.4	417.1	95.617
2	UNKNOWN	16.05	16.46	16.92	0.00	4.38	46.7	19.1	4.383
Total			1.7	1-1-1-		100.00	1538.0	436.3	100.000

SI-180

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	12.22	12.68	13.42	0.00	49.78	270.8	101.5	49.777
2	UNKNOWN	15.09	15.63	16.51	0.00	50.22	217.6	102.4	50.223
Total			-			100.00	488.4	203.9	100.000

CCP1F2A.tmp.DAT - HP1100 DAD Signal A

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
1.4. 4.1		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	12.21	12.52	13.03	0.00	3.10	9.8	3.3	3.102
2	UNKNOWN	15.03	15.65	16.79	0.00	96.90	207.5	103.4	96.898
Total						100.00	217.4	106.7	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	6.99	7.34	7.72	0.00	51.18	134.7	33.3	51.180
2	UNKNOWN	7.81	8.15	8.61	0.00	48.82	119.6	31.7	48.820
Total		1				100.00	254.3	65.0	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
	12.00	[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	7.06	7.45	8.03	0.00	98.96	563.5	172.9	98.965
2	UNKNOWN	8.09	8.26	8.47	0.00	1.04	9.5	1.8	1.035
Total						100.00	573.0	174.7	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
1	2 200 20 2	[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	5.54	5.72	5.90	0.00	49.03	724.8	118.8	49.029
2	UNKNOWN	5.90	6.03	6.45	0.00	50.97	652.4	123.5	50.971
Total					1	100.00	1377.2	242.4	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	5.63	5.81	6.00	0.00	0.78	4.6	0.7	0.781
2	UNKNOWN	6.05	6.30	6.72	0.00	99.22	453.1	91.3	99.219
Total		1.1				100.00	457.6	92.0	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
	1	[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	11.72	12.21	12.69	0.00	49.61	68.6	24.2	49.609
2	UNKNOWN	13.00	13.45	14.09	0.00	50.39	62.0	24.6	50.391
Total					12 - 21	100.00	130.5	48.9	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
100.00		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	11.69	12.41	13.18	0.00	98.62	176.3	72.6	98.615
2	UNKNOWN	13.47	13.78	14.11	0.00	1.38	3.5	1.0	1.385
Total						100.00	179.8	73.6	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	7.66	7.91	8.28	0.00	52.12	106.2	24.9	52.119
2	UNKNOWN	8.73	9.02	9.52	0.00	47.88	84.0	22.9	47.881
Total		_				100.00	190.2	47.8	100.000

muex	Name	Start	rane	End	RIUISEL	Quantity	neigni	Area	Alea
		[Min]	[Min]	[Min]	[Min]	[% Area]	[hA]	[µV.Min]	[%]
1	UNKNOWN	7.15	7.46	7.88	0.00	98.46	98.0	24.1	98.463
2	UNKNOWN	8.46	8.62	8.89	0.00	1.54	2.3	0.4	1.537
Total		-				100.00	100.2	24.5	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
10.0		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	5.17	5.40	5.66	0.00	50,50	390.2	65.4	50.500
2	UNKNOWN	5.81	6.01	6.29	0.00	49.50	351.5	64.1	49.500
Total			12.1			100.00	741.7	129.4	100.000

CCP2E61.tmp.DAT - HP1100 DAD Signal A

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
a		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	5.23	5.38	5.52	0.00	0.65	5.1	0.6	0.650
2	UNKNOWN	5.72	5.94	6.25	0.00	99.35	558.9	98.9	99.350
Total						100.00	564.0	99.6	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
1		[Min]	[Min]	[Min]	[Min]	[% Area]	[V4]	[µV.Min]	[96]
1	UNKNOWN	4.53	4.69	4.90	0.00	44.36	80.8	11.1	44.362
2	UNKNOWN	4.97	5.11	5.36	0.00	55.64	78.7	13.9	55.638
Total	1					100.00	159.5	25.1	100.000

Index	Name	Start	Time [Min]	End [Min]	RT Offset	Quantity [% Area]	Height	Area	Area [%]
		[Min]			[Min]			[µV.Min]	
1	UNKNOWN	4.54	4.68	4.82	0.00	0.96	7.7	0.8	0.956
2	UNKNOWN	4.87	5.06	5.36	0.00	99.04	586.0	87.2	99.044
Total		1000		-	1	100.00	593.8	88.1	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
	1	[Min]	[Min]	[Min]	[Min]	[% Area]	[V4]	[µV.Min]	[%]
1	UNKNOWN	5.58	5.81	6.04	0.00	50.72	41.7	7.2	50.722
2	UNKNOWN	6.07	6.25	6.60	0.00	49.28	37.8	7.0	49.278
Total						100.00	79.5	14.1	100.000

Index	Name Sta		Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	10.10	10.42	11.06	0.00	49.87	501.6	148.2	49.871
2	UNKNOWN	12.91	13.30	14.25	0.00	50.13	392.5	148.9	50.129
Total						100.00	894.1	297.1	100.000

-100 10 Min Ó 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 Index Name Start Time End RT Offset Quantity Height Area Area [Min] [Min] [Min] [Min] [% Area] [µV] [µV.Min] [%] UNKNOWN 9.54 9.89 10.29 0.00 2.69 58.5 16.5 2.686 1

97.31

1217.8

100.00 1276.3

97.314

614.6 100.000

598.1

0.00

UNKNOWN 12.07

2

Total

12.54

14.29

17 18 19 20

Index	Name	Time	End	RT Offset	Quantity	Height	Area	Area	
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	10.59	10.97	11.63	0.00	50.35	287.2	102.7	50.353
2	UNKNOWN	13.46	13.88	14.78	0.00	49.65	224.0	101.3	49.647
Total					-	100.00	511.2	204.0	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	10.39	10.81	11.29	0.00	1.46	4.4	1.2	1.464
2	UNKNOWN	13.20	13.63	14.41	0.00	98.54	173.5	77.9	98.536
Total		1	h			100.00	177.9	79.1	100.000

Index	Name	Start [Min]	Time [Min]	End [Min]	RT Offset [Min]	Quantity [% Area]	Height [µV]	Area [µV.Min]	Area [%]
2	UNKNOWN	13.87	14.33	15.12	0.00	48.74	138.2	66.6	48.737
Total						100.00	315.3	136.7	100.000

CCP2E65.tmp.DAT - HP1100 DAD Signal A

100.00 437.3

Total

199.2 100.000

Index	Name	Start [Min]	Time [Min]	End [Min]	RT Offset [Min]	Quantity [% Area]	Height	Area [µV.Min]	Area
2	UNKNOWN	13.87	14.33	15.12	0.00	48.74	138.2	66.6	48.737
Total						100.00	315.3	136.7	100.000

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
	2	[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	11.42	11.74	12.21	0.00	7,32	36.9	12.1	7.325
2	UNKNOWN	13.18	13.68	14.78	0.00	92.68	353.1	153.2	92.675
Total				1		100.00	390.0	165.3	100.000