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1 Data Analysis

The Fluidigm data set was analyzed using LEMming, a multivariable statistics ap-

proach [1]. Brie�y, a linear error model was used to estimate (1) the probe pipetting

error per assay (PPEpA), (2) the treatment e�ect per mouse (TEpM), (3) the sample

pipetting error (SPE) and (4) the treatment e�ect per gene (TEpG).

A single measurement Y is given by

Y = PPEpA+ TEpM + SPE + TEpG+ ε (1)

with the remaining error ε comprising non-systematic technical errors and biological

variance. The estimated technical errores Ỹ = PPEpA + SPE are discarded and the

estimated variable is given by

Ŷ = TEpM + TEpG+ ε (2)

Expression values of genes that are regulated by the respective treatment are expressed

as fold of untreated control cells

Ŷ ′ = −
(
Ŷ −Mean(Ŷuntreated)

)
(3)

The Fluidigm data set comprises four assays à 48 genes as well as 48, 38, 43, and

22 samples. Deducting the genes interleukin 17A (Il17a), interleukin 28B (Il28b), and

interferon γ (Ifng) that were close to our beyond the detection limit in most of the

measurements, this results in a total number of 6075 measurement points of 45 genes

including the two control genes beta-actin (Actb) and glyceraldehyde-3-phosphate de-

hydrogenase (Gapdh).
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1.1 Outlier Detection

Measurement points that lay outside the box plot with 1.5 IQR (Interquartile range)

whiskers are classi�ed as outliers (Fig. S5) and were discarded.
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Figure S5: Box-whisker plot. The box, indicated by a blue rectangle, contains 50 % of the data,

the median is indicated by a red line within the box. The lower and upper border of the box represents

the lower (�rst, 25 %) and upper (third, 75 %) quartile, respectively. The length of the box is termed

interquartile range (IQR). The whiskers display the data points outside the box but do not exceed

1.5 times the IQR. All data points that lay outside the whiskers are classi�ed as outliers.

Outlower < q25 − 1.5 · IQR (4)

Outupper > q75 + 1.5 · IQR (5)

From the complete Fluidigm data set, 249 outliers were deleted resulting in 5826 mea-

surement points.

1.2 Kernel Density Estimation

Kernel density estimation is conducted based on the Fluidigm data set to select genes

that are clearly up- or downregulated. Gaussian kernel is assumed and the probability

density function of each stimulation, gene, and time point is calculated if at least three

independent measurements per time point exist. Then, for each time point (0.5, 1, 2, 6,

10 h) the area of intersection with the probability density function of untreated cells (0 h)

is calculated and genes are ranked in ascending order by the smallest area of intersection
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for each stimulation. For genes that are classi�ed as clearly regulated and non-regulated

a representative example is shown in Fig. S6.

Figure S6: Kernel density estimates for two representative genes. Examples of kernel
density estimates of genes that were classi�ed as (A) clearly regulated upon LPS stimulation
such as Ccl-3 and (B) non-regulated like EgfR.

Since Gapdh is measured as control gene that is supposed to be constantly expressed

during the treatment, all genes that have a larger area of intersection than Gapdh are

discarded. The ranking of the other genes is shown in Fig. S7. All genes whose minimal

intersection area is smaller than those of Gapdh and which are at east 4-fold and 1.5-

fold regulated upon LPS and IL-4/13 stimulation, respectively, are selected for model

integration and marked red in Fig. S7. Genes marked blue are signature genes for M1

and M2 macrophages that are not inlcuded in the ODE model but are checked to ensure

accurate activation of macrophages. Upon LPS stimulation, the genes Cd14, Cd69 and

Cd86 are upregulated as expected (Fig. S7 A). The M2 marker genes Arg1 and Mrc1 are

not regulated and downregulated, respectively. After stimulation with IL-4 and IL-13,

Arg1 and Mrc1 are upregulated as awaited (Fig. S7 B). The M1 signature genes Cd14

and Cd69 are downregulated and Cd86 is almost not regulated with a maximal mean of

0.93 over all measuerd time points con�rming correct activation of macrophages.
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By this approach, 16 and 7 genes were selected for model integration for M1 and M2

macrophages, respectively.

Figure S7: Ranking of genes for model integration. Genes are ranked in ascending order
by the smalles area of intersection of the pdf (probability density function) of treated vs. pdf
of untreated cells for (A) LPS stimulation and (B) IL-4/13 stimulation. Genes marked red are
selected for model integration. Genes marked blue are marker genes, i.e. Cd14, Cd69, Cd86
for M1 macrophages and Arg1, Mrc1 for M2 macrophages. For each gene, the minimal area of
intersection with untreated controls is displayed in the second column. The corresponding time
point is shown in the third column. The maximal or minimal mean for up- and downregulated
genes, respectively, is displayed in the forth column.
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2 Dynamic Modeling

2.1 Model Setup

The model is based on ordinary di�erential equations (ODEs) and implemented using

the MATLABr Toolbox PottersWheel [2]. Model setup is explained in [3]. Brie�y, to

reduce complexity of the system, the signaling path upstream of transcription factor

(TF) activation is neglected and grouped together into an approximated rectangular

function u(t) representing the input of the model (illustrated in Fig. S8)

u(t) =
1

2

(
tanh

(
s · (t− t1)

)
− tanh

(
s · (t− t2)

))
, t1 > 0, t2 > t1 (6)

with slope coe�cient s that is set to 1000 to approximate a rectangular function and time

constants t1 and t2 determining the beginning and end of transcription factor activity

and are inferred from experimental data.
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Figure S8: Implementation of mRNA expression in dependence of the input function.
The input function u (blue) represents transcription factor activity and is implemented by
an approximated rectangular function having values between 0 and 1 for non-activated and
activated TF, respectively. The TF regulates mRNA expression (red), i.e. induced mRNA
synthesis is active only while the TF is activated (u = 1).
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The relative mRNA expression levels xmRNA are given by

ẋmRNA = kb + ks ∗ u(t)− kd ∗ xmRNA, xmRNA(0) = 1 (7)

with rate constant for basal synthesis kb, induced synthesis following transcription factor

activation ks and degradation kd. Initial values for mRNA levels equal one due to

normalization of experimental data on untreated control cells.

At t = 0 the system is at steady state and it is

ks,basal
kd

= xmRNA(0) = 1 (8)

reducing the number of parameters by one per gene.
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2.2 Model Equations

M1 macrophages

• Genes regulated by NF-κB

ẋCcl2 = kd,Ccl2 − kd,Ccl2 ∗ xCcl2 + ks,Ccl2_lps ∗ u1(t) (9)

ẋCcl3 = kd,Ccl3 − kd,Ccl3 ∗ xCcl3 + ks,Ccl3_lps ∗ u1(t) (10)

ẋCcl4 = kd,Ccl4 − kd,Ccl4 ∗ xCcl4 + ks,Ccl4_lps ∗ u1(t) (11)

ẋCcl7 = kd,Ccl7 − kd,Ccl7 ∗ xCcl7 + ks,Ccl7_lps ∗ u1(t) (12)

ẋCxcl1 = kd,Cxcl1 − kd,Cxcl1 ∗ xCxcl1 + ks,Cxcl1_lps ∗ u1(t) (13)

ẋCxcl2 = kd,Cxcl2 − kd,Cxcl2 ∗ xCxcl2 + ks,Cxcl2_lps ∗ u1(t) (14)

ẋCxcl3 = kd,Cxcl3 − kd,Cxcl3 ∗ xCxcl3 + ks,Cxcl3_lps ∗ u1(t) (15)

ẋIl1b = kd,Il1b − kd,Il1b ∗ xIl1b + ks,Il1b_lps ∗ u1(t) (16)

ẋIl6 = kd,Il6 − kd,Il6 ∗ xIl6 + ks,Il6_lps ∗ u1(t) (17)

ẋIfnb1 = kd,Ifnb1 − kd,Ifnb1 ∗ xIfnb1 + ks,Ifnb1_lps ∗ u1(t) (18)

ẋTnf = kd,Tnf − kd,Tnf ∗ xTnf + ks,Tnf_lps ∗ u1(t) (19)

• Genes regulated by NF-κB and Stat3

ẋCcl5 = kd,Ccl5 − kd,Ccl5 ∗ xCcl5 + ks,Ccl5_lps ∗ u2(t) (20)

ẋIl1rn = kd,Il1rn − kd,Il1rn ∗ xIl1rn + ks,Il1rn_lps ∗ u2(t) (21)

ẋIl10 = kd,Il10 − kd,Il10 ∗ xIl10 + ks,Il10_lps ∗ u2(t) (22)

ẋSocs3 = kd,Socs3 − kd,Socs3 ∗ xSocs3 + ks,Socs3_lps ∗ u2(t) (23)
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• Genes regulated by Stat3

ẋSocs1 = kd,Socs1 − kd,Socs1 ∗ xSocs1 + ks,Socs1_lps ∗ u3(t) (24)

M2 macrophages

• Genes upregulated in response to IL-4/13 stimulation by Stat6

ẋCcl2 = kd,Ccl2 − kd,Ccl2 ∗ xCcl2 + ks,Ccl2_il ∗ u4(t) (25)

ẋCcl7 = kd,Ccl7 − kd,Ccl7 ∗ xCcl7 + ks,Ccl7_il ∗ u4(t) (26)

ẋSocs1 = kd,Socs1 − kd,Socs1 ∗ xSocs1 + ks,Socs1_il ∗ u4(t) (27)

• Genes downregulated in response to IL-4/13 stimulation

ẋIl1b = kd,Il1b − kd,Il1b ∗ xIl1b + ks,Il1b_il ∗ u5(t) (28)

ẋTnf = kd,Tnf − kd,Tnf ∗ xTnf + ks,Tnf_il ∗ u5(t) (29)

ẋCcl3 = kd,Ccl3 − kd,Ccl3 ∗ xCcl3 + ks,Ccl3_il ∗ u5(t) (30)

ẋCxcl3 = kd,Cxcl3 − kd,Cxcl3 ∗ xCxcl3 + ks,Cxcl3_il ∗ u5(t) (31)
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Input Functions

u1(t) =
1

2

(
tanh

(
s · (t− t1,lps)

)
− tanh

(
s · (t− t2,lps)

))
(32)

u2(t) =
1

2

(
tanh

(
s · (t− t1,lps)

)
− tanh

(
s · (t− t2,lps)

)
+ tanh

(
s · (t− t3,lps)

)
− tanh

(
s · (t− t4,lps)

)) (33)

u3(t) =
1

2

(
tanh

(
s · (t− t3,lps)

)
− tanh

(
s · (t− t4,lps)

))
(34)

u4(t) =
1

2

(
tanh

(
s · (t− t1,il)

)
− tanh

(
s · (t− t2,il)

))
(35)

u5(t) = −1

2

(
tanh

(
s · (t− t3,il)

)
− tanh

(
s · (t− t4,il)

))
(36)

Time Constants for Beginning and End of Transcription Factor Activity

t1,lps = alps (37)

t2,lps = alps + blps (38)

t3,lps = alps + blps + clps (39)

t4,lps = alps + blps + clps + dlps (40)

t1,il = ail (41)

t2,il = ail + bil (42)

t3,il = cil (43)

t4,il = cil + dil (44)
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2.3 Parameter Values

• Synthesis rate constants

Parameter Value [h−1] Lower CI (PL) Upper CI (PL)

ks,Ccl2_lps 223.03 115.90 432.44

ks,Ccl3_lps 336.22 177.61 654.52

ks,Ccl4_lps 694.68 371.09 1375.1

ks,Ccl5_lps 44.48 22.76 87.10

ks,Ccl7_lps 111.72 58.46 216.64

ks,Cxcl1_lps 2280.56 1134.8 4597.6

ks,Cxcl2_lps 1350.01 632.23 3077.1

ks,Cxcl3_lps 200.66 99.47 424.63

ks,Il1b_lps 383.02 201.18 749.11

ks,Il1rn_lps 46.53 23.53 90.37

ks,Il6_lps 1023.04 532.13 1986.5

ks,Il10_lps 550.39 263.13 1170.1

ks,Ifnb1_lps 1944.70 969.31 3990.8

ks,Tnf_lps 937.75 486.80 1893.9

ks,Socs1_lps 32.86 10.33 98.79

ks,Socs3_lps 457.17 176.37 1126.6

ks,Ccl2_il 10.27 4.45 20.00

ks,Ccl3_il 0.81 0 1.23

ks,Ccl7_il 12.61 5.53 23.97

ks,Cxcl3_il 0.06 0 1.06

ks,Il1b_il 0.84 0.29 1.22

ks,Tnf_il 1.17 0.12 1.66

ks,Socs1_il 66.26 22.25 162.11
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• Degradation rate constants

Parameter Value [h−1] Lower CI (PL) Upper CI (PL)

kd,Ccl2 1.00E-04 0 0.09

kd,Ccl3 9.77E-02 0 0.25

kd,Ccl4 9.46E-02 0 0.26

kd,Ccl5 0.21 0 0.75

kd,Ccl7 9.68E-03 0 0.09

kd,Cxcl1 0.57 0.39 0.78

kd,Cxcl2 0.33 0.16 0.51

kd,Cxcl3 0.32 0.15 0.57

kd,Il1b 7.41E-04 0 0.15

kd,Il1rn 1.15E-04 0 0.39

kd,Il6 0.18 0.02 0.34

kd,Il10 11.67 5.4 21.26

kd,Ifnb1 0.47 0.26 0.74

kd,Tnf 0.35 0.18 0.50

kd,Socs1 0.21 0 0.49

kd,Socs3 5.42 1.89 14.99

• Time points for beginning and end of transcription factor activity

Parameter Value [h−1] Lower CI (PL) Upper CI (PL)

alps 0.3915 0.3421 0.4261

blps 0.3721 0.3059 0.4605

clps 0.0212 0 0.1968

dlps 9.0883 8.9319 Inf

ail 0.0760 0 0.3836

bil 0.7131 0.4173 1.2178

cil 0.5041 0 1.0391

dil 0.8108 0.4325 0.9934
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