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1. Supplemental Experimental Procedures

1.1. Tutorial: How to unwrap cell trajectory data using Jupyter

In this section we provide a brief example how to unwrap trajectory data that lie on a curved surface. The
required code is provided in Suppl. Materials as an html file as well as a Jupyter notebook. You can follow step
by step the next sections in parallel with the Jupyter notebook.

Prerequisites.

The code is written in R. To run the Jupyter notebook you need: (i) an installation of the Jupyter notebook
(http://Jupyter.org/), (ii) an installation of the R statistical environment (http://www.r-project.org/) and (iii)
the R Kernel for the Jupyter notebook, which can be installed from https://github.com/IRkernel/IRkernel. For
the latter the instructions found at http://www.michaelpacer.com/maths/r-kernel-for-ipython-notebook are
good for installing this under OSX. Visualizing the output in R requires the rgl package, which can be installed
using your

R environment. Providing that these packages are in place the code in this notebook should run without any
further problems.

Installation.

The Jupyter notebook (previously IPython notebook) requires a working installation of Python in the first place;
most Python distributions aimed at scientific computing contain the relevant files and packages. The Anaconda
(https://www.continuum.io/downloads ) is, in our experience, particularly straightforward to install, use, and
maintain. Installation can be done via the provided installers (for Windows, OSX and Linux), or from the
command line (the website https://www.continuum.io/downloads contains instructions for the various
versions).

Maintaining and upgrading the distribution’s packages is done using the conda package-manager. To upgrade
the jupyter notebook, for example, at the command line write

> conda upgrade jupyter

This installs all the files required for using Jupyter in conjunction with Python. Other kernels can be installed as
described on the relevant webpages, which are linked to at https://github.com/ipython/ipython/wiki/IPython-
kernels-for-other-languages. For the R kernel the conda distribution offers a convenient way of installing the
relevant packages (assuming that a recent R installation is present),

> conda install —c r r-essentials

(see https://www.continuum.io/blog/developer/jupyter-and-conda-r for further details).




How to execute the Jupyter notebook.

The Jupyter notebooks are available in the folder Jupyter. A step-by-step guide is presented as a web page
called UnwRapping .html (Data S1). To execute the notebook, at the command line enter (in the Jupyter folder
Data S1)

> jupyter notebook

This will start the default browser with and the loads the contents of the directory,
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Clicking on the relevant Jupyer notebook (the files with an extension “.ipynb”) will then start the relevant

Jupyter notebook.

Running Mannifold_learning.ipynb will be straightforward with any recent Python installation; running the
UnwRapping.ipynb notebook will require the installation of the R kernel.

Routines for Unwrapping Data. We first define a set of necessary routines. getAngleBias() lets us define the
angle to the wound (target). getAnglePersistence() determines the angle between successive steps and hence
measures the persistence. transformData() and unwrapData3D() are the routines that transform the data and
unwrap them into a flat space. The code is provided in the Jupyter notebook.

Data preparation. We provide an example data set in Suppl. Materials (exampleDataBPRW.csv) in the folder
SimulatedData. This data set describes simulated cell trajectories based on a biased persistent random walk on
an ellipsoid surface. The data are saved as csv format, which can be opened in any text editor or Excel. The
data file has to be provided in a specific layout: It should contain 4 columns, where the first column is the cell
track ID (id), and the second, third and fourth columns are the x-, y- and z-coordinates of the cell tracks,
respectively. The rows are then the individual time points for all cell tracks. The user can replace this data file
with own data files. We use the same data format for all methods provided.

The target of the biased cells (wound) is at position (-7; 0; 0), which needs to be defined in the first step. Next
the data are imported and reformatted (point 6 in the notebook).

Plot Data in 3D. We begin by plotting the trajectory data in 3D (using rg/). This allows us to get an idea of the
geometry of the data (see notebook point 6). We can then clearly see that the trajectory data lie on a surface
of an ellipsoid with radii 6; 6 and 18.



Analysis of random walk statistics in the 2D projection. Before unwrapping the data we calculate the bias and
persistence of the random walk data in the conventional projection down to 2D, i.e. using the x- and y-
coordinates only. We call the routines getAngleBias() and getAnglePersistence() by passing the relevant
coordinates.

Unwrapping of the data onto a flat manifold. We next transform the data onto a flat space using the
unwrapping method by calling the routine unwrapData(). If a simple representation of the manifold is
available (such as a cylinder or ellipsoid) then we can unwrap the data by mapping the correct positions on the
manifold (akin to cartographic projections) in a way that maintains the angles correctly. The routine will create
a 3D graphical presentation of the progress of the unwrapping procedure. Firstly, the original data are plotted
in 3D and then shifted to be suitable for the unwrapping using the routine transformData(). The original data
are then clustered along the x-axis and plotted in 3D, where each cluster is shown in a different color. Next, an
ellipse is fitted to each cluster. The data are then unrolled onto a new space based on the characteristics of the
fitted ellipse (for exact details see section 4). This first step is an approximation to manifold learning
techniques. In the following the data obtained from the first step are further unrolled by fitting an ellipse onto
a flat space. The routine will plot the transformed data in grey.

Analysis of random walk statistics in the manifold projection. We can now calculate the bias and persistence
of the random walk data in the 2D manifold projection. Again, this is done via the routines getAngleBias() and
getAnglePersistence() by passing the relevant coordinates.

Comparison of inferred biased and persistence behavior in the 2D x-y and unwrapped (manifold) projection.
Finally we can compare the computed statistics for the xy-projection with the statistics computed from the
unwrapped data. This is for example done via plotting the histograms and densities for the bias and persistent
distributions. Doing so, we observe strong artifacts in the obtained distributions based on the xy-projection.
On the contrary, unwrapping manages to recover the expected bias and persistence distributions.

1.2. Tutorial: How to unwrap cell trajectory data using R

Additionally to the Jupyter notebook we also provide the plain R code for unwrapping data that lie on a curved
surface. The equivalent routine for the above-described example of a biased-persistent random walk can be
found in the folder exampleCode Unwrapping 1 _BPRW (part of Data S2). Furthermore we provide the same
routine for a purely persistent random walk (without bias) in the folder exampleCode_Unwrapping 2 _PRW
(part of Data S2) and for an in vivo data set extracted from a fly embryo in the folder
exampleCode_Unwrapping_3_inVivo (part of Data S2). In the latter data set the fly was wounded with a laser.
In this example we find that without unwrapping it is possible to detect a weak bias towards the wound.
However, after unwrapping the data it becomes apparent that the cells are strongly biased towards the wound
but also into the opposite direction, i.e. away from the wound.

Installation and Prerequisites.

You need to install the R statistical environment (http://www.r-project.org/). You can download the
precompiled binary file for installation for most computer platforms (http://cran.ma.imperial.ac.uk/). Simply
download the binary file suitable for your platform, double click it to start installation. More advanced user
might chose to install R from source code.

For visualization purpose you need the R library ‘rgl’. Again, you can download the binary file for installation

from https://cran.r-project.org/web/packages/rgl/index.html. Alternatively, open a terminal, start R by typing
R

followed by enter. Then type

install.packages('rgl')

which will also initiate the installation of the library.



How to use the R scripts.

First of all open a terminal. On most Macs you can find the terminal in the folder ‘Applications/Utilities’. When
the terminal is started, it usually links to your home directory. Type ‘pwd’ to know in which directory you
currently are. Change the directory to one of the 3 example code folders by typing in the terminal for example:

cd WorkFolder/exampleCode Unwrapping/ exampleCode Unwrapping 1 BPRW
If you are new to terminal and the related commands, please refer to http://ss64.com/osx/

Then start R by typing in the terminal
R

followed by enter.

To run the example script type
source(“runAnalysis.r”)

The script will first read in the data ‘exampleDataBPRW.csv’ located in the folder ‘simulatedData’. The data
are saved as csv format, which can be opened in any text editor or Excel. The data file has to be provided in a
specific layout: It should contain 4 columns, where the first column is the cell track ID (id), and the second,
third and fourth columns are the x-, y- and z-coordinates of the cell tracks, respectively. The rows are then the
individual time points for all cell tracks. The user can replace this data file with own data files.

After reading the data, a window pops-up, which shows the data plotted in 3D. The data are then transformed
via unwrapping. In the same pop-up window the procedure of the algorithm can be followed, i.e. the data are
shifted, grouped, unwrapped in the first dimension (rainbow colored, still curved surface), followed by
unwrapping in the second dimension resulting in transformed data points that lie in on a flat 2D surface (grey
plotted points).

After the data transformation took place, the R script analyses the initial data transformed via xy-projection as
well as the data transformed via unwrapping. For both data sets the bias and persistence angles are computed
and plotted as histograms, overlaid with the estimated density of the resulting distributions (red lines).

If you run the in vivo example in the folder ‘exampleCode_Unwrapping_3_inVivo’ an additional pop-up
window will open, where the trajectories are plotted in the xy-projection and after unwrapping for comparison.
In this example the analysis output of bias and persistence distribution differs slightly. Here, we plot
additionally to the bias and persistence distributions, the transformed bias distributions. As explained further
below, the bias angles can take values between —pi and pi. In principle, this distribution should be plotted on a
circle, because angles generate circular distributions. We refrain from doing so, since the circular
representation is harder to read. However, one should keep in mind that —pi is equivalent to +pi. We aim to
highlight this by shifting our obtained bias distribution by —pi. In this way it becomes clear that the bias
distribution obtained from the unwrapped data indicates two maxima (one at 0 and one at —pi), which shows
that cells are biased towards the wound (0), but also in the opposite direction, i.e. away from the wound (-pi).

Finally, we provide for comparison the Jupyter notebook for the presented manifold learning technique on the
example of the persistent random walk based on the same data set as the R routine for unwrapping
exampleCode_Unwrapping_2_PRW (see previous section).



1.3. Tutorial: How to do manifold learning with Jupyter

Installation and Prerequisites.

The method is implemented in Python and makes use of the following packages: NumPy, Pandas, scikit-learn,
Matplotlib and Seaborn

The Jupyter notebook can be installed following the instructions in the unwrapping examples above, except
there is no need for the R kernels here. Note that the code can be executed in both Python 2.7 and 3.x.

The Jupyter notebook document is titled Manifold_learning.ipnb (part of Data S1) and can be found in the
folder Jupyter (Data S1). A detailed step-by-step installation guide is included within. For reference, an HTML
version of the document Manifold learning.html, which can be accessed using any web browser, is also
provided in the same folder.

1.4. Timing

All provided methods are able to handle large data sets. The provided examples run in a couple of seconds.
The Unwrapping was tested on a dataset with 3000 data points. This takes depending on the computer used
(here: Mac 0OS 10.8, 2.7 Ghz Intel Core i7, 16 GB Memory) several seconds. The manifold learning methods are
slightly slower, again depending on data set size and computer used. The provided example in the Jupyter
notebook analyses a dataset with a broadly realistic size of 3000 data points. The example can be run under a
minute on a standard workstation. The manifold learning computation is dominated by the calculation of the
similarity matrix, which in turn scales as O(N°) where N is the number of data points. Therefore a dataset with
20-25K data points could be analyzed within approximately one hour. In practice, the limitations are defined
by the computer equipment (e.g. processor, memory, disk space).

1.5. Methods in Brief

1.5.1. Random walks in Biology

There are different types of random walks that are commonly described in Biology. We can classify them into
random walks that describe the step length distribution and random walks that describe the angular
distributions. The definition of random walks via step length distribution is somewhat more frequently used.
However, to investigate if a cell or a molecule is targeted in its movement, it is easier to look at angular
distributions.

The most prominent random walk is Brownian motion. The angular distribution is isotropic, meaning that at
each step a cell or molecule has equal probability to move in any direction. If we measure the angles between
a motion vector (cell step) and a reference direction, we will find that the resulting angular distribution is flat
(uniformly distributed). If, on the contrary, a cell has a specific target direction, then the cell has higher
probability to move towards that target direction compared to all remaining directions. In this case we speak
about a biased random walk. The expected angular distribution will have a peak at the angle which points
towards the target direction. The remaining characteristics of the angular distribution of such biased random
walk depend on the details of the exhibited walk, which are usually unknown. However, a commonly used
description of the angular distribution is a wrapped normal distribution (a normal distribution wrapped around
a circle to describe circular variables such as angles). The mean of the wrapped normal distribution indicates
the bias direction and the variance indicates the strength of the bias. The lower the variance, the narrower is
the distribution and the stronger is the exhibited bias. A further type of random walk frequently used to
describe animal movement and cell migration is a persistent random walk. A cell exhibiting this type of walk
has higher probability of moving in the same direction as in the previous step compared to changing its
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direction. If we measure the angles between consecutive motion vectors (consecutive cell steps) we will
observe a peak at 0, i.e. no change of direction. As for the biased random walk, the persistent random walk
can also be described using a wrapped normal distribution with 0 mean and a variance which indicates the
strength of the persistence (the lower the variance the stronger the persistence).

All three types of walks have been described for migration of immune and other cells, migration of animals,
and movement of molecules inside the cell. Often a mix of these three types is observed.

1.5.2. Analyzing cell migration data

Cell migration trajectories are often extracted from confocal time-lapse microscopy imaging data. Recent
advances allow researchers to collect such data even in vivo in living animals. Examples include imaging of
macrophage, neutrophils and cancer cell migration in zebrafish tail fin, flanks, gills or yolk; imaging of stem
cells and hematopoietic cells in mouse bone marrow; imaging of haemocytes in various stages and organs of
drosophila; imaging of migrating neutrophils on the surface of the heart and many more.

While these data contain potentially a huge amount of new information about the underlying biological
processes in vivo, their correct analysis buries a vast range of challenges and one of them we highlighted in this
study: the movement of cells on curved surfaces.

In order to extract information about bias and persistence from observed cell trajectories, we have to compute
two types of angles: (i) the angle a between a fixed reference direction and the cell motion vector and (ii) the
angle B between two consecutive motion vectors. While the first angle a helps us to detect potential bias
direction, the later angle  helps us to measure the strength of persistence (as described in the previous
section). If the movement of the cell is restricted to a curved surface, then directly measuring the angles a and
B based on the original (untransformed) data will provide us with artifacts, which in some cases could mimic a
target bias where in reality there is none. In order to still be able to extract bias and persistence information
from such data, we need to either transform the trajectory data in such way that they lie on a flat surface (and
then apply the standard analysis tools), or use some methods to learn the exact surface (manifold) and
compute the angles on such manifold. Either way, the aim is to remove any artifacts that appear through
curved surfaces from the analysis. The first solution can be obtained via unwrapping; the second brings us to
the field of manifold learning.

1.5.3. Unwrapping trajectory data

As mentioned in the previous section, unwrapping trajectory data aims to transform data from a curved
surface so that they lie on a flat surface.

More specifically, the Unwrapping method is fitting several ellipses to the observed data points. These ellipses
can then be unrolled onto a 2D surface. The basic idea behind this method is rather simple and intuitive:
Imagine our cells are migrating on the peel of an orange, which is clearly a curved surface describing a sphere
or an ellipsoid. The aim is now to peel the orange in such way that we can lay the peel on the flat table and still
conserve the characteristics of the cell trajectories. We are here interested to conserve directional
characteristics, more than distances. The resulting transformed cell trajectories can now be analyzed with the
commonly used tools.

Unwrapping is best suited for 3D objects that have a rather small intrinsic and convex curvature. This means
before this method is applied, we already have an idea of the true geometry.



1.5.4. Manifold learning

Manifold learning refers to a diverse suite of methods that aim to generalize well-known linear dimensionality
reduction methods — Principal Component Analysis (PCA), Independent Component Analysis (ICA), Linear
Discriminant Analysis (LDA) — to account for non-linear features in the data.

The key assumption underlying dimensional reduction methods — linear and non-linear — is that the ‘true’
number of degrees of freedom is lower than the apparent dimensionality of the data. The problem addressed
in this paper gives the simplest and perhaps the most explicit illustration: we have point-cloud data in three
dimensions constrained to lie on two-dimensional surfaces, which may or may not be flat.

The study of smooth curved spaces belongs to the mathematical field of differential geometry. There is an
intuitive idea underlying this field: at small enough scales, every local patch of a surface can be approximated
by a flat surface; a curved manifold is then simply an overlapping patchwork of (small) flat spaces. This is the
approach adopted by most manifold learning algorithms — that is, to identify local neighborhoods of data
points, treat these as linear spaces, and then find some ‘optimal’ method of joining these together into a flat
global representation. A necessary requirement for these methods to work well, therefore, is that the density
of the data points is high enough to allow one to consider small linear patches.

If one starts to consider distances between points and angles between vectors, then we augment this
description of the manifold with a metric, which is a mathematical object that, loosely speaking, provides a
local specification of lengths and angles. A manifold with a metric is known as a Riemannian manifold and is
the object of study in Riemannian geometry.

Manifold learning algorithms do not explicitly preserve the metric information. However one can augment

these methods by extracting the metric at each of the data points. This turns outs to be essential for obtaining
accurate directional statistics, as we show in this paper.

1.6. Image processing and cell tracking.

Imaging resulted in image stacks with dark background and fluorescent cells. The image processing was done
in R using the package EBImage [1]. The information of the cells was extracted automatically from the images
using an edge detection method. A manually set threshold of the light intensity was used per image stack.
Each detected cell was described as an object with the coordinates of its geometrical center indicating the cell
location and the time the cell was observed. The cells were tracked and reconstructed over the z-stack using a
surface algorithm. The surface algorithm was then applied to track reconstructed cells over time, which is
based on the shortest distance between cells from two consecutive images. We excluded all cell trajectories
that included time points in which the cell was located at the edge of the image. Extracted cell tracks were
reoriented, so that the center of the imaged object (embryo or yolk syncytium) was positioned in the center of
the coordinate system (x = y = z = 0) for further processing.

1.7. Dimensional reduction: from linear methods to Riemannian manifold learning.

In this section we provide the theoretical background to the methods employed in the paper, including the
unwrapping method outlined in Section 1. The challenge of describing and visualizing the geometry of
embedded curved surfaces is commonly encountered in physics [2], computer vision, and machine learning [3]
tasks. The techniques used are those from differential geometry or, more specifically, Riemannian geometry.
For the sake of completeness and consistency, we adopt this more formal mathematical description. We
provide a brief introduction to the essential topics; for more details, we refer the reader to [2]. Let M be a
smooth m-dimensional manifold and g the Riemannian metric defined for every pointp € M. For a smooth
manifold V" with dim (V) =n > m, let f: M = N be an isometric embedding, i.e. for all p € M and tangent
vectors u, v € T, M



(wv)g, = (dfp (W), dfy(W)nse,y

here (')gp is the inner product on the tangent space T, M, g, = g(p), and h the metric defined for every
pointq € N.df,: T,M — Tr)N is the Jacobian of f at p.

For a dataset D = {q4, ..., qy} of points in ', dimensional reduction is the task of inferring the inverse map
f~1: v > M . For many purposes it is often sufficient to infer the corresponding images {x(p;), ..., x(py)} for
q; = f(p;) and in some coordinate chart x: M > R™. Throughout this paper, we restrict ourselves to ' C
R3 (i.e. 3D imaging data). If M ¢ RY? then we can use linear dimensional reduction methods. Here we
consider two linear and three non-linear methods.

Projection into the XY —plane. A trivial and linear dimensional reduction method is the simple projection onto
some pre-defined set of coordinate axes. We assume, without loss of generality, that these are the first m
coordinates; in two dimensions, these are the X- and Y-axes, hence the name. Then fori = 1, ..., N, we simply
have

[x(pi)]a = [qi]al a=1, -,m,

where the a subscript is the coordinate index.

Principal component analysis. Instead of pre-specifying the axes, we can perform linear dimensional reduction

via principal component analysis (PCA). Let C = ﬁZﬁ\;l(qi —7)(q; — q)T be the sample covariance matrix,

. _ 1 . . .
with the mean g = NZ’Q’:l q;- Then for the rotation matrix R = (e;|e;|es) € O(N), e, e,, e5 the eigenvectors
of C in decreasing order of their respective eigenvalues, we have

[x(p)]la = [Rqile, a=1,..,m.

Unwrapping. We introduce a method to map data points on a 2D convex surface onto a subspace of E?, the
2D Euclidean space, which we call the Unwrapping method. This method is a particularly effective
approximation for surfaces of small intrinsic curvature (e.g. a thin cigar-shaped surface, a small patch on a
large curved surface, etc). The unwrapping happens in two steps, both of which involves fitting a series of 1D
ellipses to the data. The first step is a transformation, which removes the intrinsic curvature of the surface
while seeking to maintain the geometrical relationships between the points (i.e. distances, angles, etc). The
second step simply unwraps the transformed surface onto a flat 2D surface.

Let (x;, i, z;) represent the 3D coordinates of the data point g;. If we approximate the dataset as points on a
subspace of an ellipsoid, we choose to align our coordinate system such that the largest radius of the ellipsoid
is described by the x-axis and the second largest radius is the y-axis. Next the data points are clustered into n
equal-sized bins along the x-axis. For each cluster c we fit an ellipse E. as the locus of the equation

2 _ 2
y_z_l_(z f;lz) =1,

T'y Tz

for radii 7,7, and the z-coordinate m, of the midpoint (x;, 0,m;), with X; the mean x-coordinate of the
cluster c. The ellipse is then unrolled onto a straight line parallel to the y-axis with x = X, and z = z[*** the
maximum z-coordinate value of the points in cluster c. This then guides the first transformation of the points
(xi,¥i,z1) = (x{,v;,2]) as follows. We keep the x-coordinate fixed, i.e. x; = x;. As for the z-coordinate,
because, in general, the data points do not lie on the ellipse (i.e. € E.), we let z; be equal to the difference in
distances to the center of E. from q; and the point on E, along the line joining q; and the centre. It can be
shown that



zi =|q; —qf| = d;,

where qf is a point with components

[qlE]l = X
[qE] _ yirz2 _ inTZ4. yirz2
7, =
' 2(z; — mry 4(z; —my)%r  z;—m,
E1 _ ’l"yZTZ‘l' - rzz([qiE]Z)z
[qi ]3 - T’Z
y

To determine y;, we define a point-specific ellipse E; with the same centre (X;, 0, m,) as E. but with radii

Ty =T, +diandn,; =1, :—: Then if q; , is the intersection of the E; with the

xy-plane, y; is then the arc length of E; between q; , and q;. Repeating this transformation for all n clusters
results in the first unwrapping of the data points.

For the second unwrapping the same procedure is repeated on the transformed data set giving q; — q;’, but
with the variable swap x < y. Note, if all data points {qi}’i\’:l lie strictly on an ellipsoidal surface then z;" = 0
foralli =1, ...,N. An example tutorial is provided in suppl. material.

Manifold learning. Manifold learning refers to a class of non-linear dimensional reduction methods that seek
to recover the geom etry of the low-dimensional manifold. These include ISOMAP [4], Locally Linear
Embedding (LLE) [5], and Laplacian Eigenmaps [6], amongst several others. In every case, the metric on M is a
global Euclidean metric, i.e. gg, = 845, Where & the kronecker delta or identity matrix and a, b the coordinate
indices. We refer to these approaches as Euclidean manifold learning.

In this paper we have employed LLE in our simulation and analysis of real data. LLE is based on the expectation
that given a sufficiently large data set, each data point and its closest neighbors lie on a locally linear patch of
the surface. The algorithm has two steps: 1. Expressing each higher dimensional data point as a linear
combination of its neighbors, and 2. Obtaining a set of lower dimensional coordinates given relations above. In
both steps, we proceed by minimizing the mean square errors of the data points from their linear
reconstructions.

Our motivation for adopting LLE comes from both its intuitive approach to dimensionality reduction (locally
linear patches) and also its effectiveness in providing an isometric reduction for surfaces with no intrinsic
curvature, e.g. the surface of a cylinder or data points on a cylindrical ‘swiss-roll’. Furthermore it is also widely
used in the machine learning community. In this paper we have used the implementation of LLE in the Scikit-
learn Python machine learning package.

Riemannian manifold learning. Riemannian manifold learning aims to augment the set of coordinates
{x(pl-)}?’=1 with the corresponding set of local metric values, i.e.

{(x(1), 8ap)}ier = {x (@), [9(P)]ap)} 1,

where a,b = 1, ..., m label the metric components. By definition, g is symmetric and positive semidefinite. In
this setup, one can recover the precise geometrical information of the embedded manifold. In this paper, we
have adapted the LEARNMETRICS [3] algorithm to recover the 2D coordinates and the corresponding metric
components from 3D data points.

For certain applications, such as computing the geodesics (see below), there is a need to derive metric values
for out-of-sample points on M. The metric g(x) for x & {x(pl-)}?’=1 are approximated in two steps. First we
perform a regression for each of the m(m + 1)/2 unique components of g. In this paper we used the
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implementation of Gaussian Processes in the Scikitlearn Python machine learning package. Second we satisfy
the positive semidefinite constraint by replacing the matrix g(x) with the nearest positive semidefinite matrix
as measured by the Frobenius Norm. We implement this using the approximation method of Higham (2002)
[7].

1.8. Extraction of geometrical information

All the relevant geometrical information of interest can be extracted from the metric. The angle between the
two vectors u, v is given by

_ (u,v)
— 1 gp
6 = cos —(u,u>gp W )g
The geodesic y: R = M, is the path of extremal length and is the solution to the set of Hamiltonian equations.
With slight abuse of notation writing x(y(t)) = x(t), these equations are

= —= r
0Ty 9" b,
1 agbc
a
r T2 ox, PTer

where 1, is the conjugate momenta to x%, g*” the components of the inverse metric, X = dx/dt,
and the Hamiltonian

1
H = Egabrb

The bias direction from cell at a given time to a point source of attraction is given by the tangent vector u’ to
the geodesic connecting the two points. Therefore we solve the geodesic equations (9) for x(t) under the
constraints

x(t =0) =x(p1), x(t=1)=x(py).

One approach is to simulate these geodesics from p; via, say, the simple Euler method [8] and find the initial
vector that generates the points on the geodesic that intersects p,. However this seemingly straightforward
process is highly sensitive to errors in the out-of-sample metric approximations — the errors compound and
one often ends up with unstable trajectories. In this paper, we implement a more stable and efficient discrete
approximation as follows.

We first overlay a grid over the learned manifold. Here we fix the grid dimensions to 200 x 200. Next, using the
Gaussian Process regression method described above, we obtain the metric values at every grid vertex and
consequently the lengths of the sides of the cells across the grid. Then we approximate our geodesics between
the point of interest and the bias point by the grid path that minimizes the total length. We usd Dijkstra’s
algorithm to accomplish this step. Finally, we approximate the initial vector by performing a simple linear
regression on the first few vertices in our discretized geodesic path.

1.9. Directional Statistics.

The straightness index, D, is commonly used to investigate cell migration strategies and it is defined as D =
M, where x is the position of the cell at time 0, xr is the position of the cell at time T, |xq, x| indicates

the shortest distance between xy and xr and [ is the actual length of the path the cell took from x, to x1 . For
most applications the shortest path between start and end point is simply the Euclidean distance, however, for
curved surfaces the metric needs to be learned.

Another way of describing cell migration tracks is by determining their bias towards a specific target (source of
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attractant, like wounds or other cell types) and their persistence. We define the persistence of a cell as the
probability of the cell moving at time t in the same direction as at time t — 1. Therefore, we need to compute
the angles (f;) between two motion vectors, which will result in a characteristic distribution. The wrapped
normal distribution has been successfully used to describe persistent movement of cells. The probability
density function is defined as

2

Ny (Beli, 0) = =T o, exp (— L),

where p is the mean and ¢ is the standard deviation. In the case of persistence we have u = ;_;. We can
then define the strength of the persistence p as ¢ = —2log (p). A cell that is highly persistent has a p close to
1, while a cell that is not persistent at all has a p of 0, in which case the wrapped normal distribution becomes
a wrapped uniform distribution. The bias of a cell is also described by an angular distribution. Here, we
compute the angle (a) between a motion vector of a cell and the vector that points from the cell towards the
target. Again, we apply the wrapped normal distribution with the bias parameter b (instead of p) describing
the strength of the bias and u = 0.

1.10. Simulation of random walks on ellipsoids

The ellipsoid is defined as the set of points satisfying

with x, y, z the 3D cartesian coordinates, and a, b, ¢ the three shape parameters. We consider several different
ellipsoid shapes with a/c ratios from the set {1, 0.66, 0.5, 0.4, 0.33, 0.1} where a = b throughout. We use the
2D parameterization

X = a cosu sinv,
y = b siny sinv,
Z = C cosv,

with metric components

uu = (Sinzv)(aZSinz,U + bZCOSZ[,l),
9uv = Gyyu = Sinp cosp sinv cosv,
gvy = (cos?v)(a®cos?y + b?sin?p) + c?sin®v.

We simulate 400 random walks on each of the ellipsoids as follows: starting from the initial point (i, vo) =
(n, %), we randomly select an initial angle of motion 8,~B (6, 6,), where B is the bias angle distribution with

6, the direction to the bias source at time-step index t; 8| is determined following the minimization procedure
described above and, in turn, defines an initial tangent vector. The particle moves along the geodesic
generated by this vector with random step length taken from a y2-distribution with meank = 2; the absolute
lengths are scaled with a constant factor in the range 0.015 — 0.25 to ensure that the trajectories cover the
ellipsoid. At each subsequent time step t > 1, the particle changes direction and takes an angle according to a
weighted distribution

6, = wB(0,0,_1) + (1 —w)P(6 — 62'9),

where P is the persistence angle distribution and Hf’ldis angle of motion prior to changing directions at time
step t. Both P and B are either uniform distributions in the range (0,27] or wrapped normal distributions with
parameter 0 = 1.2, depending on the type of random walk being simulated. For the bias persistent random
walk, we fix the weight parameter to be w = 0.5. We repeat each path for 20 time steps, giving 21 trajectory
points per path.
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2. Supplemental figure, movie and data legends

Figure S1. Related to Figure 2. Performance comparison of xy-projection, the unwrapping method and
manifold learning methods. Shown are the exact distributions (black) that describe bias and persistence for 3
types of random walks: (A) Brownian motion, (B) biased random walk and (C) persistent random walk. Cell
trajectories were simulated on the surface of ellipsoids with different ratios of its radii (a/c ratio = 0.1, 0.25,
0.33, 0.5, 0.66 and 1.0). For each scenario we compute the distributions based on the xy-projection, the
unwrapping method and the two manifold learning methods. The two manifold learning methods are not able
to deal with the two lowest a/c ratios and where left out. The reason is that these ellipsoids were too
elongated, so that the manifold learning methods treated the data as if they were located in a slim plane. (E)
Shown are the exact persistence angle distribution (black), the persistence angle distribution computed from
the 3D vectors (green) and the persistence angle distribution resulting from unwrapping the data into a non-
curved surface (red). The underlying data are persistent random walk trajectories simulated on an ellipsoid
with radii ratio a/c = 0.33. (F-G) Application of the unwrapping method (orange) to neutrophil cell tracks
extracted from the epidermis overlying the yolk syncytium of a zebrafish and its comparison to the xy-
projection (blue) and principle component analysis (green). The epidermis was wounded with a laser before
image acquisition. (Corresponds to Figure 2F)

Figure S2. Related to Figure 2. Performance measurements of the different methods. We computed the
Kolmogorov-Smirnov distance (ks-distance) between the true angular distributions and the extracted angular
distributions using xy-projection, unwrapping, Euclidian manifold learning and metric manifold learning. We
considered the same data generated for the random walk models described in Supplemental Figure 1A-C. The
smaller the ks-distance is, the better is the performance of the methods.

Figure S3. Related to Figure 2. Shown are the 2D projections of cell tracks extracted from Drosophila embryos
(colored tracks) after applying (A) xy-projection, (B) unwrapping and (C) manifold learning. The green, orange,
dark blue and red tracks are highlighted for easy comparison between the methods. The grey lines in (B) and
(C) are for comparison with the xy-projection as they are the same tracks using the xy-projection.

Figure S4. Related to Figure 2. Manifold learning with more complex data. (A) We simulated random walk cell
trajectory data on a complex surface. Shown is the 3D representation of these data (blue) with the xy-, xz- and
yz-projections (grey). This example is too complex to be successfully transformed via unwrapping, but can be
dealt with manifold learning techniques. The trajectories display a Brownian motion type random walk, where
the bias and persistence distributions are expected to be flat. (B) We analyze the data in the xy-projection and
compare this to the Euclidian manifold learning algorithm and the metric manifold learning algorithm. As can
be seen in supplemental figure 4B, the xy-projection induces extreme artifacts. The bias distribution is well
extracted from both manifold learning methods, while the persistence distribution is only correctly extracted
using the metric manifold learning algorithm, highlighting the need to accurately learn the metric of the data

Movie S1. Related to Figures 1 and 2. Shown are example raw data for the unwounded Drosophila embryo
data set analyzed in figures 1A, 2E and Supplemental Figure 1. Time-lapse movie of the dynamic behavior of
Drosophila immune cells (heamocytes) in unwounded tissue. Epithelial cells are labeled using E-cadherin-GFP
(green cell outlines), immune cell nuclei are labeled using nuclear Red-Stinger (red) and immune cell cytoplasm
using cytoplasmic GFP (green) both driven by srp-Gal4.

Movie S2. Related to Figures 1 and 2. Shown are example raw data for the wounded zebrafish data set
analyzed in figures 1B and 2F. Time-lapse movie of the dynamic behavior of zebrafish immune cells
(neutrophils) in laser-induced wounded tissue. Immune cells are labeled using cytoplasmic dsRed (red) driven
by the lysozyme C (lyz) promoter.

Movie S3. Related to Figures 1 and 2. Shown are the haemocyte cell tracks extracted from Drosophila
embryos in 3D. The different rotation angles show the curvature of the space the haemocytes are migrating in.

Movie S4. Related to Figures 1 and 2. Shown are the neutrophil cell tracks extracted from zebrafish embryo.
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The epidermis overlying the yolk syncytium was wounded. The location of the wound is indicated by a light
blue dot.

Data S1. Related to Experimental Procedures. This folder contains the two Jupyter notebooks for Unwrapping
and Manifold learning. Furthermore it includes the two websites for both methods. Example data are stored in

the folder ‘SimulationData’.

Data S2. Related to Experimental Procedures. This folder contains all described R scripts and the provided
example data in order to perform Unwrapping on simulated and in vivo data.

3. Supplemental figures.
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Figure S1. Related to Figure 2.
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Figure S2. Related to Figure 2.
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