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S1 Derivation and Consistency of the Mem-

brane Binding-Unbinding Model

We model a molecule which is diffusing in a cell, can bind to and unbind
from the cell membrane, and diffuse on the membrane when bound. Let
Gc be the concentration of this molecule in the cytosol, i.e. the inside of a
cell. We denote the domain of the cytosol by V ⊂ R3, which is a smooth
Riemannian manifold with the metric induced from the Euclidean metric in
R3. Likewise, Gm is the concentration of the same molecule when bound
to the membrane, which is defined as the boundary of V , S = ∂V , and is
an orientable Riemannian manifold. The membrane-bound molecules can
unbind, and the molecules in the cytosol can bind to the membrane, with
rates kon and koff , and where LI is a length scale associated with the binding
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range of a sequestered molecule to the membrane. Furthermore, DM and DC

denote the diffusion coefficients for diffusion on the membrane and in the
cytosol, respectively. Our equations are given by (1), which we repeat here
for convenience:

∂Gm(r̄m, t)

∂t
= DM∇2

SGm(r̄m, t) + konLIGc(r̄m, t)− koffGm(r̄m, t),

∂Gc(r̄c, t)

∂t
= DC∇2

V Gc(r̄c, t),

−DCen∇V Gc(r̄m, t) = konLIGc(r̄m, t)− koffGm(r̄m, t),

Gm(r̄m, 0) = G0
m(r̄m),

Gc(r̄c, 0) = G0
c(r̄c). (1)

Here, ∇2
S,∇2

V denote the Laplace operators (otherwise denoted as Laplacian,
or Laplace-Beltrami operator) on S and V , respectively, and are defined in
the usual way on Riemannian manifolds [1]. Furthermore, en denotes the
uniquely defined unit outwards normal vector on the surface, and r̄c ∈ V ,
r̄m ∈ S. Hence, en∇V Gc(r̄m, t) denotes the projection of the gradient of Gc

on the unit normal vector on the surface. We have imposed the outwards
normal flux in such a way that it matches the binding and unbinding reactions
and preserves total particle numbers. Furthermore, G0

m(r̄m),G0
c(r̄c) denote

functions defining the initial conditions, and naturally Gm does not need any
boundary conditions, as it is defined on a surface without boundary.

S1.1 Particle Number Conservation

We now show that the equations given in (1) conserve the number of particles.
The total amount of molecules is given by

N =

∫
V

Gc dV +

∫
S

Gm dS. (2)
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This total amount of molecules is conserved by choice of boundary condition:

∂N

∂t
=

∫
∂Gc

∂t
dV +

∫
∂Gm

∂t
dS

=

∫
DCdivV (gradV Gc)dV +

∫
(DMdivS(gradSGm) + konLIGc − koffGm)dS

=

∫
DCen(gradV Gc)dS +

∫
(DMdivS(gradSGm) + konLIGc − koffGm)dS

=

∫
DCen(gradV Gc)dS +

∫
(0 + konLIGc − koffGm)dS

=

∫
(−konLIGc + koffGm + konLIGc − koffGm)dS

= 0 (3)

In the first line of the derivation, we have simply plugged in the time deriva-
tives of Gc and Gm from equation (1). Here, we have used that (on Rie-
mannian manifold, independent of the coordinate system) we can write the
Laplace operator as divergence of a gradient, where the subindices indicate
the corresponding manifold in which divergence or gradient are calculated.
We do not need the precise definition of gradient, divergence or Laplacian on
those manifold, we only need the fact that the divergence theorem applies.
Indeed, we apply the divergence theorem in the second step, changing from
an integral of a divergence of the gradient of Gc over the whole cell to an inte-
gral of the normal flux over the boundary. Then, in the third step, we apply
the divergence theorem to the divergence of the gradient of Gm. However,
the surface does not have a boundary, so the divergence theorem immediately
gives zero for this term. In the final step, we plug in the boundary condition
from equation (1) for the normal flux of Gc at the boundary, and obtain our
final result, that the total amount of particles is conserved.

S1.2 Global Invariance of Boundary Condition

Global conservation of particles is still ensured by adding a Laplacian of Gm

to the flux boundary conditions:

−DCen∇V Gc(r̄m, t) = konLIGc(r̄m, t)− koffGm(r̄m, t) + λ∇2
SGm(r̄m, t) (4)

It is immediately clear that this preserves total particle numbers for any λ,
for if we integrate the boundary condition over the whole boundary, this
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term drops out by application of the divergence theorem over a manifold
with empty boundary. However, for local conservation, we should not keep
this term: If we choose kon = koff = 0, then m does not bind or unbind from
the membrane at all and is conserved on its own (and not just the sum of
bound and unbound molecules). However, keeping boundary condition (4)
with λ 6= 0 would result in a flux of c even in that case. On physical grounds,
we have to impose Neumann no-flux boundary conditions and the right-hand
side of (4) should be zero. Hence, only λ = 0 ensures local conservation of
particles.

S1.3 Derivation from a Model with Finite Binding Ra-
dius

We can consider a generalization of equations (1), (1) where the change of the
membrane density m(r̄m, t) is affected by all molecules in the cytosol within
a finite radius LI from the point r̄m. Then, the membrane binding-unbinding
model is described by the equations

∂Gm(r̄m, t)

∂t
= DM∇2

SGm(r̄m, t)

+ k̃on

∫
|r̄m−r̄c|≤LI

Gc(r̄c, t)− koffGm(r̄m, t)

∂Gc(r̄c, t)

∂t
= DC∇2

V Gc(r̄c, t),

−DCen∇V Gc(r̄m, t) = k̃on

∫
|r̄m−r̄c|≤LI

Gc(r̄c, t)− koffGm(r̄m, t). (5)

We have assumed that all molecules which are with a distance of LI to a
point on the membrane r̄m are equally likely to be bound with a rate of
k̃on, which could be generalized further by including a kernel in the inte-
gral such that molecules closer to the membrane are more likely to bind.
However, if we assume that LI is small (see the discussion on parame-
ters in the supplementary information S3.2) so that Gc does not signif-
icantly vary on this length scale, and that the membrane is not signifi-
cantly curved on this scale, we can reduce the integral terms in (5). The
integral will thus be over a half-sphere with radius LI , so we can sim-
plify k̃on

∫
|r̄m−r̄c|≤LI

Gc(r̄c, t) = k̃on
1
2

4
3
πL3

IGc(r̄m, t) = konLIGc(r̄m, t), where

we have identified kon = 2
3
πL2

I k̃on. Hence, (5) reduces to equations (1), (1).
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S1.4 Alternative Derivation from a Discrete Model

We now give an alternative derivation of equation (1) from a discrete model.
We consider a small section of a cell near the cell membrane, so small that
we can ignore the curvature of the membrane. Such section is shown in a
schematic drawing on the right panel of Fig. S1, where the cell membrane
is highlighted by the red surface. We are interested in the dynamics of the
binding and unbinding of molecules to the membrane. Let LI be the inter-
action length such that when a molecule in the cytosol is within a distance
less or equal to LI of the membrane, there is a probability of binding this
molecule to the membrane. The associated binding rate is denoted by kon.
Likewise, unbinding is denoted koff .

We define the domain of interest to be a cube of length L � LI , which
we discretize into equally spaced small cubes of size δ. Initially, we identify
δ = LI . Each cube is labeled by integer-valued indices (k, l, p), and the
membrane is located at the boundary p = 0. Then M(k, l) denotes the
number of membrane-bound molecules at the membrane segment adjacent
to cube (k, l, 0), and C(k, l, p) denotes the number of cytosolic molecules in
the cube (k, l, p). We consider the following processes: In the inner part of
the cytosol, unbound molecules can diffuse only. At the cube adjacent to
the membrane, they can diffuse in parallel to the membrane or away from
the membrane, or they can bind to the membrane. On the other hand,
membrane-bound molecules can unbind, or diffuse on the membrane. The
following equations describe the rate of changes of the average number of
molecules:

∂M(k, l)

∂t
=
DM

δ2
(M(k + 1, l) +M(k − 1, l) +M(k, l + 1) +M(k, l − 1)− 4M(k, l)) +

konC(k, l, 0)− koffM(k, l),

∂C(k, l, p)

∂t
=
DC

δ2
(C(k + 1, l, p) + C(k − 1, l, p) + C(k, l + 1, p) + C(k, l − 1, p)

+ C(k, l, p+ 1) + C(k, l, p− 1)− 6C(k, l)), p > 0,

∂C(k, l, 0)

∂t
=
DC

δ2
(C(k + 1, l, 0) + C(k − 1, l, 0) + C(k, l + 1, 0) + C(k, l − 1, 0)

+ C(k, l, 1)− 5C(k, l)) + koffM(k, l)− konC(k, l, 0) . (6)

We now want to study the continuum limit of those equations. First, we add
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(a) Diffusion in cytosol (b) Binding to the membrane

(c) Diffusion on membrane (d) Unbinding from the membrane

Figure S1: Molecules in the cytosol can move from their current cube to any
of the nearest-neighbor cubes (figure (a)), or, if they are within a distance of
the interaction range LI to the membrane, they can bind to the membrane
(figure (b)). Membrane-bound molecules can diffuse on the membrane only
(figure(c)), or unbind from the membrane (figure (d)).
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an artificial layer of cubes at p = −1, such that

C(k, l,−1) :=
δ2

Dc

(koffM(k, l)− konC(k, l, 0)) + C(k, l, 0) . (7)

The benefit of this layer is that we can now combine the last two equations
of (6) into

∂C(k, l, p)

∂t
=
DC

δ2
(C(k + 1, l, p) + C(k − 1, l, p) + C(k, l + 1, p) + C(k, l − 1, p)

+ C(k, l, p+ 1) + C(k, l, p− 1)− 6C(k, l)), p > −1 , (8)

which is supplemented by (7). From those equations, it is straight-forward

to take the continuum limit δ → 0. We define Gc(x, y, z) = C(k,l,p)
δ3

to be the
density of unbound molecules at a point (x, y, z), where we identify (x, y, z) =

(δk, δl, δp), and likewise Gm(x, y) = M(k,l)
δ2

is the surface density of molecules
bound to the membrane. Then, the continuum limit δ → 0 gives the following
equation:

∂Gm(x, y)

∂t
= DM∇2

SGm(x, y) + kon

∫ LI

0

Gc(x, y, z)dz − koffGm(x, y)

∂Gc(x, y, z)

∂t
= DC∇2

V Gc(x, y)

DC
∂Gc(x, y, 0)

∂z
= kon

∫ LI

0

Gc(x, y, z)dz − koffGm(x, y) . (9)

We have introduced the 2 and 3D surface or volume Laplace operators, ∇2
S

and ∇2
V , respectively. If we assume that the concentration in the cytosol

does not vary much on a length scale of LI , we can reduce these equations
to the local model given by equation (1).

S1.5 Binding-Unbinding Equilibrium

We now consider the equilibrium condition between the binding and un-
binding to and from the membrane, which is obtained from equation (3) by
equating LIkonGc = koffGm. The rates of binding and unbinding are set by
koff and 2konLI

R
, respectively, where R is the cylinder radius. If f denotes the

fraction of membrane-bound to total concentration,

f =

∫
S

GmdS∫
V

GcdV +
∫
S

GmdS
(10)
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then, in a homogeneous equilibrium, we get

f =
kon

kon + koff
V
LIS

, (11)

as argued in the main text in equation (2).

S2 Dimensional Reduction of the 3D Model

We are now deriving the dimensional reduction of the 3D membrane bind-
ing/unbinding model (1).

S2.1 1D Reduction

We consider a cylindrical cell where the height of the cell is L and the radius
is R, such that L� R. We choose cylindrical coordinates (r, φ, z) such that
r ∈ [0, R], z ∈ [0, L] and cylindrical symmetry, so our fields Gm and Gc do
not depend on φ ∈ [0, 2π]. As Gm is the concentration of membrane bound
molecules, it is only defined at the boundary of the cell located at r = R and
z = 0, L. Furthermore, the dependence of Gc on r is weak, relative to the
dependence on z, due to fast radial diffusion due to L� R. We completely
neglect the r dependence of Gm as this would only matter at x = 0, L, and
would be weak, similar to the weakness of the r dependence of Gc.

The PDEs in cylindrical coordinates then become

∂Gm(z, t)

∂t
= DM∂

2
zGm(z, t) + konLIGc(R, z, t)− koffGm(z, t)

∂Gc(r, z, t)

∂t
= DC

(
∂2
z +

1

r
∂rr∂r

)
Gc(r, z, t)

DC∂rGc(R, z, t) = −konLIGc(R, z, t) + koffGm(z, t),

DC∂zGc(r, 0, t) = konLIGc(r, 0, t)− koffGm(0, t),

DC∂zGc(r, L, t) = −konLIGc(r, L, t) + koffGm(L, t). (12)
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Then, let us define the following 1D densities

G̃c(z, t) =

∫ R

0

∫ 2π

0

Gc(r, z, t)rdφdr

= 2π

∫ R

0

Gc(r, z, t)rdr,

G̃m(z, t) =

∫ 2π

0

Gm(z, t)Rdφ = 2πRGm(z, t). (13)

As R is assumed to be small such that diffusion in the radial direction is faster
than other timescales in the problem, radial diffusion will quickly homogenize
Gc in the radial direction even in the case when the initial conditions have a
strong r dependence. Hence, ignoring potential fast transient changes of Gc,
we consider Gc to have a weak dependence on r and expand G̃c(z, t) to get

G̃c(z, t) = 2π

∫ R

0

(Gc(R, z, t) + ∂rGc(R, z, t)(r −R) + . . . ) rdr

≈ 2π

(
Gc(R, z, t)

R2

2
− R3

6

1

DC

(koffGm(z, t)− konLIGc(R, z, t))

)
= πR2

(
1 +

RLI
3DC

kon

)
Gc(R, z, t)−

koffR
2

6DC

G̃m(z, t). (14)

Here, we have expanded about r = R and used the boundary condition. If we
further assume that the radius R and the interaction range LI are small such
that the equation (6) holds, then we can approximate further (see section
S3.2 for a discussion of those parameters)

G̃c(z, t) ≈ πR2Gc(R, z, t). (15)
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The 1D densities follow the differential equations

∂G̃m(z, t)

∂t
= DM∂

2
z G̃m(z, t) + 2πRkonLIGc(R, z, t))− koff G̃m(z, t),

= DM∂
2
z G̃m(z, t) + 2kon

LI
R

G̃c(z, t)− koff G̃m(z, t),

∂G̃c(z, t)

∂t
= DC

(
∂2
z G̃c(z, t) +

∫ R

0

(
1

r
∂rr∂rGc(r, z, t)

)
2πrdr

)
,

= DC

(
∂2
z G̃c(z, t) + 2πR∂rGc(R, z, t)

)
,

= DC

(
∂2
z G̃c(z, t) + 2πR

1

DC

(koffm(z, t)− konLIGc(z, t))

)
,

= DC∂
2
z G̃c(z, t) +

(
koff G̃m(z, t)− 2kon

LI
R

G̃c(z, t)

)
,

(16)

which were given in the main text in equation (5). Mass conservation is
ensured by accompanying those equations by Neumann no-flux boundary
conditions. Note that while these equations are perfectly 1D PDEs, with
the spatial domain defined by the length of the cylinder, the cylinder radius
is still felt in the sense that the membrane-binding rate kon is effectively
renormalized by the inverse of the cylinder radius R.

S2.1.1 Equilibrium in One Spatial Dimensional

We consider the binding-unbinding equilibrium condition for the cylindrical
cell in the 1D limit, as done in section S1.5 for a general 3D cell. We obtain
for the fraction f of membrane-bound molecules

f =
kon

kon + koff
R

2LI

=
kon

kon + koff
√

V
4πL2

IL

, (17)

as argued in equation (7). Notice that the dependence of f on V and L is
different to the one found in [2], and we have checked that this difference
is not because of the use of rectangular, rather than cylindrical cells. The
binding/unbinding equilibrium and simultaneous 1D limit are valid if the
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parameters satisfy the constraints

DC

R2
� koff �

DC

L2
,

DC

R2
� 2konLI

R
� DC

L2
. (18)

These constraints ensure diffusion in the radial direction occurs on the fastest
timescale to ensure there is only a weak radial dependence, and a 1D limit
is justified. On the other hand, binding and unbinding are faster than diffu-
sion along L so the binding/unbinding equilibrium is justified. We can then
introduce an effective diffusion coefficient DMC = fDM + (1− f)DC , similar
as in [3, 2], so that the total concentration Gtot(z, t) = G̃c(z, t) + G̃m(z, t)
simply evolves by the standard 1D diffusion equation

∂Gtot(z, t)

∂t
= DMC

∂2Gtot(z, t)

∂z2
. (19)

We have thus reduced the original system of two coupled PDEs in three
spatial dimensions to a single PDE in one spatial dimension. Note that
other potential reactions in the system would need to be modified by f ac-
cordingly, and, if they are present, the timescales of associated with those
reactions need to be compared to the timescales of radial diffusion and bind-
ing/unbinding to justify the reduction of the complete model with reactions
to lower dimensions.

S2.2 2D Reduction

Let us consider a flat cell, which, for simplicity, we take to be a disk of radius
R and height h. Hence, it is natural to choose cylindrical coordinates, and
the full model is described by (12), with L replaced by h. We now consider
the limit h� R. Then, we can rewrite the z-dependence of the Laplacian as

DC
∂2Gc(r, φ, z, t)

∂2
z

≈ Dc
∂zGc(r, φ, h)− ∂zGc(r, φ, 0)

h
,

=
koff
h

(Gm(r, h, t) + Gm(r, 0, t))

− konLI
h

(Gc(r, φ, h, t) + Gc(r, φ, 0, t)) . (20)
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If the concentrations only depend very weakly on z, then we can simplify the
system by introducing

Ĝc(r, φ, t) =

∫ h

0

Gc(r, φ, z, t)dzdr = hGc(r, φ, t),

Ĝm(r, φ, t) = 2Gm(r, φ, t), (21)

and get

∂Ĝm(r, φ, t)

∂t
= DM∇2

P Ĝm(r, φ, t) + 2kon
LI
h

Ĝc(r, φ, t)− koff Ĝm(r, φ, t),

∂Ĝc(r, φ, t)

∂t
= DC∇2

P Ĝc(r, φ, t)− 2kon
LI
h

Ĝc(r, φ, t) + koff Ĝm(r, φ, t). (22)

Here, ∇2
P denotes the conventional 2D Laplace operator in polar coordinates.

Similarly to the 1D case, the scaling of the parameters is different. Similarly
to the 1D case, we find that the parameters of the reduced geometry, in
this case, the cylinder height h, renormalize the effective membrane-binding
coefficient. As before, we consider the steady-state solution where f denotes
the fraction of membrane-bound molecules. Hence, for the oblate cylinder
we get

f =
kon

kon + koff
h

2LI

. (23)

S3 3D Polarization Pathway

In this section, we discuss in detail how our 3D pathway model discussed in
section 2.2, is obtained and relates to the 1D model discussed in [2].

S3.1 Model Setup

The 1D model of [2] was motivated by experiments where cells were con-
strained in effective 1D geometries. It was assumed that the approximate 3D
geometry is rectangular with length scales L� w > d, with an initial length
of L = 20µm. The volume of a cell in the experimental paper [4], which
uses the model of [2], was given as approximately V = 800µm3. The sup-
plementary information of [4] mentions d = 0.2µm, which seems a bit small
for a real cell and would also imply that w = 200µm at the given volume.
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We hence compare to a cell with base measure L,w, d = 20, 8, 5µm. In [4],
the cells were about 80µm long (see e.g. figure S4 in [4]), which would, at
the same volume, be compatible with L,w, d = 80, 5, 2µm. Such cell seems
also compatible with the 1D limit as described in the section 2.3 of the main
text. In [2, 4] the change in cell length was taken into account by changing
the fraction of membrane bound to unbound inactive molecules via an equa-
tion similar, but slightly different, to our equation (7). The 3D model will
automatically take into account any geometry change. The basic equations
for the evolution of the three GTPases now takes into account that the each
GTPase can exist in an active, membrane bound form Gma, a membrane
bound, inactive form Gmi and a form Gc which diffuses inactively through
the cytosol. These follow the principal scheme

∂Gma

∂t
= DM∇2

SGma + IGGmi − δGGma,

∂Gmi

∂t
= DM∇2

SGmi − IGGmi + δGGma + konLIGc − koffGmi,

∂Gc

∂t
= DC∇2

V Gc,

−DCen∇V Gc = konLIGc − koffGmi. (24)

Here, IG represents the activation, and δG the deactivation rate, whereas
kon, koff denote the binding and unbinding rates as in the section 2. Note that
equations (24) are slightly different from the equations given in the appendix
of [2], which were used to motivate the 1D model from a 3D perspective.

We note that to account for the proper localization of the membrane
bound and unbound species Gma,Gmi and Gc, we measure Gc in Molar,
but Gma,Gmi in mol

m2 . Whereas this latter measure is not often chosen in
experiments, as usually total cell concentrations are measured, this is never-
theless the physically more meaningful measure, as Gma,Gmi denote number
molecules per two dimensional membrane area, and this choice ensures that
our equations and the dimensional reductions have the correct units. To
compare with [2], we will hence multiply the concentrations of active GT-

Pases with V0
S0

= 800µm3

600µm2 = 4/3µm, the fraction of volume to surface area for
the above mentioned rectangular cell of basic length L,w, d = 20, 8, 5µm.
With this setup, it is straight-forward to generalize the 1D model from [2],
summarized in figure 1, in our 3D context, and one obtains equations (3).
All coefficients apart from the membrane binding and unbinding rates are
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taken from [2, 4], but those which multiply a membrane density are multi-
plied by the factor V0

S0
. Furthermore, to compare the activation rates given

in [2, 4] with ours we need to divide them with the fraction of bound to
total inactive molecules f , as we separately consider bound and unbound
inactive GTPases. We now summarize the use of the spatially dependent
Rac stimulus SRac which appears in the activation rate for Rac, equation
(4) in most simulations shown in section 3. If the x-axis denotes the direc-
tion of the stimulus, then typically we assumed a linear stimulus of strength
SRac = 0.5IR1

x
20µm

, where IR1 is the baseline Rac activation rate as given
in Table S1. The baseline length of 20µm is chosen to match results from
earlier works, as described above. In figures 9, 10 and S3 such gradient was
used but then rotated towards the indicated axis at t = 100s.

S3.2 Parameter Estimation

We now investigate when the use of the 1D model is justified for the case
where the molecule is a small GTPase. We have DC = 100µm2/s [3, 4]. Fur-
thermore, we estimate that the interaction range of the binding reaction, LI ,
approximately corresponds to the size of the molecules. We have a molecular
weight of the small GTPases of about 21kDa. Exact size determination of
proteins is tricky [5], but here we only need a rough estimate, which gives that

we have a volume of V = 21∗1.6∗10−27kg
1kg/l

= 3∗10−26m3 = 30nm3. Hence, the in-
teraction length scale is on the order of a few nanometers. We put LI = 2nm,
and this estimate is similar to stimations made in similar contexts [6]. Fur-
thermore, we can safely assume that R � LI for realistic cell geometries.

Then, unless kon � koff , of the two requirements RLIkon
3DC

� 1,
koffR

2

6DC
� 1,

the first one automatically holds provided the second one does. From [7] we
can estimate that koff should be faster than koff = 0.06s−1, as the com-
bined deactivation/unbinding rate (this combined rate is denoted koff in [7])
is of this magnitude. However, the actual binding and unbinding rates are
influenced by the presence of other regulators such as GDI molecules [8] and
might be different for GTP and GDP bound GTPases, and is hence also
influenced by the presence of GEFs and GAPs. Here, we focus on rough
estimates and use the above numbers to derive a limit for the radial length
scale of

R�

√
6DC

koff
≤
√

600

0.06
µm = 100µm. (25)
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As long as koff is not too large this condition is satisfied for realistic cell
dimensions. However, if koff should be significantly larger than estimated
above then this limit might be hard to satisfy.

Now we look at the steady-state assumption between bound and unbound
GTPase. For this, we have

L�

√
DC

koff
. (26)

With koff = 0.06s−1, we get L� 30µm would safely satisfy this constraint.
However, most likely koff is significantly larger so the steady-state assump-
tion is most likely valid for shorter cells as well.

All other parameters used in equations (3) are summarized in Table S1.
Lacking accurate measurements of koff , it is commonly believed that koff
is much faster larger than the deactivation rate [7, 2]. As the deactivation
rates were estimated in [2] to be 1s−1, we take koff = 10s−1. While the
total unbinding/deactivation rate was estimated in [7] to be much smaller
than 1s−1, we stick to those values here as we first would like to compare
our 3D model to the 1D model of [2]. In the subsection 3.2 in the main text
we study the influence of varying koff on the polarization behavior of the
cell. We also need to determine the combination of parameters konLI . From
the estimates of DC , DM , combined with the estimate that at baseline length
of L = 20µm the diffusion coefficient for total inactive GTPases (bound
and unbound) is 50µm2/s, we get that about half of the inactive GTPases
molecules are typically membrane bound. This equilibrium value can then
be used to deduce konLI via equation (2).

S3.3 Implementation of the 3D Model

All simulations of the 3D model were performed in COMSOL Multiphysics
5.1 (COMSOL, Inc, Burlington, MA) using the General PDE model frame-
work. We remark that the default solver occasionally produced too large
time steps, requiring us to manually limit the maximal time step depending
on the model parameters. It is also necessary to choose a fine mesh for good
spatial resolution in several cases, for instance, when the cytosolic species
vary sharply at the membrane. In most cases, the predefined Mesh Element
settings ’Finer’ or ’Extra Fine’ were sufficient to ensure spatial convergence.
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Dimensional parameter Estimate

DC 100 µm2 s−1

DM 1µm2 s−1

DP 5µm2 s−1

Ractot,2 10nmol m−2

Rhotot,2 4nmol m−2

Cdctot,2 3.4nmol m−2

P3b 0.2nmol m−2

δR 1s−1

δρ 1s−1

δC 1s−1

δP1 0.21s−1

k21 0.021s−1

kmax 2.8s−1

kP2 2.1s−1

α 1.3s−1

µP 0.011s−1

G 0.03s−1

IR1 0.4µM s−1

IR2 0.4µM s−1

IRho 13.2µMs−1

ICdc 5.9µMs−1

IP1 14nmol m−2 s−1

a1 1.7nmol m−2

a2 1.3nmol m−2

kPI5K 0.084s−1

kPI3K 0.00072s−1

kPTEN 0.432s−1

f1 1
koff 10s−1

konLI 13.3µm s−1

Table S1: Parameters of the cell polarization model equation (3), inferred
for a cell with dimensions L,w, d = 20, 8, 5µm, so all values which multiply
membrane concentrations are rescaled by the factor V0

S0
= 4

3
µm. This means

1µM V0
S0

= 4
3
nmol
m2 . Furthermore, α, IR1, IR2 IRho and ICdc are multiplied by

the baseline fraction of bound inactive molecules f . We have also rounded
the parameters as appropriate.
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(a) L = 20µm

(b) L = 40µm

(c) L = 80µm

Figure S2: The time evolution of concentration of active Cdc42 in time at
the front and back of the rectangular cells as shown in figures 2 and 3.

18



(a) t=100s (b) t=140s (c) t=180s (d) t=300s

(e) t=100s (f) t=140s (g) t=180s (h) t=300s

(i) t=100s (j) t=140s (k) t=180s (l) t=300s

Figure S3: As in figures 9, 10, active Rac on the membrane is shown for
different times and cells of different shapes, but here, the Rac activation
rate in the first 100s increases linearly along a short axis of the ellipsoid
(from lower left corner to upper right corner), and from then on, it increases
linearly along the long axis of the ellipsoids (from the lower right corner to
the upper left corner). In all cases, the volume of the ellipsoid cells is fixed
as V = 800µm3, the main axis is 11.5µm (spherical, (a)-(d)), 15µm ((e)-(h))
and 20µm ((i)-(l)), and the other two axes are of the same length. Cells of all
shapes are able to adapt to their new stimulus direction, with the elongated
cells being slightly faster.
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