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1. HBC on Natural Graphite 

 

 

Supplementary Figure 1. Room temperature LEED image (incident electron energy 25.2 eV, sample tilted by 15°, 

logarithmic contrast) of 1 HBC monolayer on natural graphite (NG), corrected for imaging and tilt distortions. The 

magenta lines originating from the specular spot correspond to the directions of the first order substrate spots, 

hence, the sample is azimuthally rotated by roughly 30° with respect to the sample in Fig. 1a of the main paper. 

Turquoise circles mark spots due to the HBC lattice. Spots consistent with multiple scattering between the HBC 

and graphite lattices (blue circles) are necessary to explain all spots. Blue arrows mark the most intense multiple 

scattering spots – the same ones as marked in Fig. 1a of the main paper. Their identical positions relative to HBC 

spots confirm an equivalent incommensurate epitaxy of HBC on epitaxial graphene and NG. 
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2. Determining the Molecular Orientation 

 

Thanks to the high resolution of the STM images we can determine the molecular orientation angles 𝛽 with 

respect to the HBC lattice vector and α with respect to the substrate lattice vector (cf. Fig. 1c in the main paper). 

For this, the STM image in Fig. 1b in the main paper and an additional STM image of the equivalent mirror 

domain (not shown) were corrected for shear distortions. Then, circular line profiles cutting through the outmost 

benzene rings of all fully imaged molecules – 12 and 13, respectively – were extracted using ImageJ1 with the 

Oval Profile Plot plugin.   

Supplementary Fig. 2a shows the corresponding curves and their average. From the latter the angular positions 

of the 12 nodes (minima on the profile) were obtained. Due to the molecular symmetry the nodes must be 

separated by 30°, and thus their angular positions can be fitted linearly. Together with the shape of the 

calculated HOMO (cf. Fig. 1c in the main paper) this gives the best possible estimate of the orientation of the 

molecules. In relation to the orientation of the HBC lattice vector 𝒂1 this results in 𝛽 =  (5.1 ±  0.5)°. 

 

Supplementary Figure 2. a, Angular profiles (black) and their averages (red) around the 12 molecules in Fig. 1b of 

the main paper (top curve; domain A) and 13 molecules in an additional image of the mirror domain (bottom 

curve; domain B). b, STM image taken at 4.4 K with a sample bias of -3 V and a setpoint of 3 pA, displaying the 

boundary between the two possible mirror domains, one on the left half, one on the right half of the image. 

Further, Supplementary Fig. 2b shows an area where the two possible mirror domains meet (rotationally 

equivalent domains are identical to each other here). With the help of this image, even though of slightly reduced 

quality, the angle between the HBC molecules and the substrate can be unambiguously determined: Since the 

angle 𝜃 = −8.66° between the HBC lattice vector 𝒂1 and the substrate lattice vector 𝒔1 is known from LEED 

there is only one possible orientation of 𝒔1 that encloses the angle 𝜃 with 𝒂1 of both mirror domains, 

determining the molecular angle α = (-3.6 ± 0.5)° with respect to 𝒔1. 
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3. Moiré Pattern in Real and Reciprocal Space 

 

A Moiré pattern in STM images in form of a brightness modulation (Supplementary Fig. 3a) can have different 

origins. Owing to differing adsorption sites of the adsorbate it can either be a merely electronic effect or a real 

adsorption height modulation. In both cases, the modulation is driven by the structure of the substrate, and the 

apparent shape of the Moiré pattern is the result of “mixing” the substrate and adsorbate lattices. Specifically, it 

has been shown that modulated crystals produce the same geometric features in diffraction experiments as 

multiple scattering effects, i.e., a geometric convolution of the two reciprocal lattices.2,3 Note that this is not 

limited to a height modulation, but that a modulation of the lateral coordinates of the adsorbate will yield the 

same geometric convolution. 

Consequently, a Fast Fourier Transform (FFT) of an STM image can be treated much like a LEED pattern exhibiting 

multiple scattering spots. Each additional frequency due to the Moiré pattern can be thought of as originating 

from both a substrate and an adsorbate lattice point. Hence, the relation between the two lattices, i.e., the 

epitaxy matrix, can be determined from the pattern using LEEDLab (from Scienta Omicron) without directly 

observing the (in this case) relatively high frequencies of the substrate lattice. 

 

Supplementary Figure 3. a, 180 x 180 nm2 STM image taken at 1.2 K with a sample bias of +3 V and a setpoint of 

2 pA, displaying a single HBC domain which even extends far beyond this image in the µm range, and a Moiré 

contrast. Although disturbed by defects, the average long-range order is obvious and reflected in the Fast Fourier 

Transform in panel b, which shows sharp modulation frequencies (blue circles) around the HBC reciprocal lattice 

spots (turquoise circles). The direction of the substrate lattice vectors (magenta lines) is obtained via the inverse of 

the epitaxy matrix determined with LEED. 

One peculiarity in such an analysis of an STM FFT is that generally any STM image is distorted to some degree 

owing to drift effects, the non-linearity of the scanner in large scan ranges or simply an imperfect piezo 

calibration. At the low temperatures applied here the distortion is linear (i.e., shear and/or scaling) around the 

image center in good approximation. In our case, the HBC lattice is sheared from its exactly hexagonal shape in 

any STM image which, of course, translates into the FFT, too. However, linear distortions, i.e., distortions that can 
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be expressed with a single transformation matrix, do not affect the epitaxy matrix because substrate and 

adsorbate are identically distorted in a given STM image. Hence, if the epitaxy relation is determined in a sheared 

image it can directly be applied to the known (non-sheared) substrate lattice to give the true non-sheared 

adsorbate lattice. 

The FFT in Supplementary Fig. 3b can be analyzed accordingly. First, using LEEDLab, the (sheared) HBC lattice is 

determined directly via the HBC spots. Second, in a reverse fashion, applying the inverse of the epitaxy matrix 

from LEED measurements to the HBC structure gives an estimate for where the (sheared) substrate lattice would 

be expected in the FFT. In this case, the frequencies – if observable at all – would lie outside the accessible range. 

However, the substrate-induced satellite spots around the HBC spots contain the indirect information about the 

substrate lattice. Thus, with the multiple scattering function of LEEDLab the estimated position of the satellite 

spots can be calculated and the spots can be identified accordingly. In the discussed case this works very well 

since the difference between the room temperature structure measured with LEED and the low temperature 

structure in the STM is very small. Finally, a fit routine optimizes both the epitaxy matrix and the adsorbate 

lattice, effectively allowing both (sheared) lattices to vary freely. The resulting epitaxy matrix  

(
5.113(5) −0.986(1)
0.985(1) 6.092(6)

) can be applied to the theoretical non-sheared substrate to obtain the lattice 

parameters given Table 1 in the paper. A possible temperature-dependent change in the graphite lattice constant 

is not considered here since the HBC lattice constant is only presented for the sake of completeness. The epitaxy 

matrix contains all necessary information to account for a change in the substrate lattice constant. 
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4. Nearest-Neighbor Distance Distributions 

 

Molecular positions in the STM image of Fig. 2a of the main paper were measured by applying an algorithm that 

was originally developed to identify spot positions in LEED patterns. In this algorithm, the intensity maxima are 

determined with sub-pixel resolution by fitting them with Gaussian intensity distributions.4 Since in the image the 

molecules’ centers appear dark, we used contrast-reversed images for this procedure. 

In order to achieve the best result we took care to minimize the effect of the non-linearity of the piezo scanner by 

cropping 50% of the STM image height and width, as the center is least influenced by this effect. Since we know 

from LEED and the Fourier analysis of the Moiré pattern that the HBC layer is hexagonal we can correct the 

images for any left-over linear distortions. This is mandatory in order to correctly measure the magnitude of the 

displacements given in the main paper and the distribution of nearest-neighbor distances. 

 

Supplementary Figure 4. a, Experimental distribution of nearest-neighbor distances extracted from the STM 

image in Fig. 2a in the main paper. b, Corresponding calculated distribution from the relaxed HBC domain of Figs. 

2c and 2d of the main paper. 

Supplementary Fig. 4a displays the measured distribution of nearest-neighbor distances, while Supplementary 

Fig. 4b shows such a distribution numerically obtained from the relaxed low-temperature overlayer described in 

the main paper and illustrated there in Fig. 2. Both graphs have very similar shapes. The mean distance is the 

same because the experimental mean distance was the starting configuration for the numerical relaxation. 

However, the measured distribution is obviously broadened due to defects and statistical errors of the 

localization algorithm, while the theoretical distribution has a sharp cutoff towards distances smaller than 13.7 Å. 

Though this constitutes the “commensurate” value from the literature, no extended areas of a commensurate 

phase, as reported by others,5 were detectable in STM or in LEED. Due to the quasi-static relaxation algorithm the 

molecules will simply not get closer because there is no such force once they reach the “commensurate” 

distance. 
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5. Comparison of Force-Field and DFT Calculations 

 

Supplementary Fig. 5a shows the force-field map 𝐸mol−sub(𝒓, 𝛼 = 0°) over one graphite unit cell which contains 

both the highest and lowest possible values of 𝐸mol−sub for an HBC molecule on graphite. It has been offset and 

scaled to match DFT calculations of the AB (bernal) and AA stacking of an HBC molecule on graphite. Additional 

DFT values along the marked line show that the scaled map represents the DFT energy landscape very well (cf. 

Supplementary Fig. 5b). If the same scaling is applied to maps of different orientation angles 𝛼 the agreement is 

reasonable as well, including an almost disappearing maximum energy difference for 𝛼 ≈ 12°. 

 

Supplementary Figure 5. a, 𝐸𝑚𝑜𝑙−𝑠𝑢𝑏(𝑟, 𝛼 = 0°) map over one graphite unit cell, offset and scaled to match the 

lowest and highest DFT energy configurations (HBC in AB and AA stacking, respectively). Along the white line a 

profile is extracted and plotted in b, where it can be compared to additional DFT calculations along the same line, 

which show a reasonable agreement. 
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6. Parametrization of DFT Calculations 

 

The mechanism of the relaxation algorithm is to determine the local gradient of the total energy 𝐸mol−sub +

𝐸mol−mol with respect to a molecular displacement 𝜹𝑝 and then to adjust 𝜹𝑝 accordingly. The gradient of 

𝐸mol−sub is obtained in a straightforward way from the 𝐸mol−sub maps depending on the orientation of the 

molecule. Due to the high resolution the maps can be interpolated, if needed. The gradient of 𝐸mol−mol is more 

challenging. The extended shape of the HBC molecule with its attached hydrogens makes the intermolecular 

interaction strongly anisotropic. Hence, we split it into two contributions: a longitudinal deformation of a bond 

between two neighboring molecules parallel to the bond (𝐸mol−mol,||) and a shear deformation perpendicular to 

the bond direction (𝐸mol−mol,⊥). Both can be obtained via DFT. Since in a 2-dimensional hexagonal lattice there 

are three times as many nearest neighbor bonds as there are lattice points, all DFT energies are divided by a 

factor of 3, condensing all energetic change into one nearest-neighbor bond deformation. 

The calculated equilibrium configuration of a free-standing HBC layer is determined to be a hexagonal cell with a 

lattice constant of 𝑎0 = 14.15 Å and a molecular angle of 𝛽0 = 6°. The overestimation of both values compared 

to the experimental ones (13.95 Å and 5.1°, respectively) is in a reasonable range so that we can apply a rigid 

shift to the following DFT energy curves in order to match the experimental equilibrium configuration without 

large errors. 

We calculate the longitudinal contribution by simply stretching and compressing the HBC unit cell. 

Supplementary Fig. 6a shows the resulting energy curve as a function of the lattice constant 𝑎. It can be fitted by 

a Mie potential of the shape 𝐸mol−mol,|| = (
𝑐1

𝑎
)

𝑚
− (

𝑐2

𝑎
)

𝑛
 (for fit result see Table S1). To match the experimental 

equilibrium distance a shift of Δ𝑎 = 0.2 Å is applied: 𝐸mol−mol,|| = (
𝑐1

𝑎+Δ𝑎
)

𝑚
− (

𝑐2

𝑎+Δ𝑎
)

𝑛
. 

 

Supplementary Figure 6. a, DFT energy for a longitudinal deformation of an intermolecular nearest-neighbor 

bond and the fitted Mie potential. b, DFT energy for a shear deformation of an intermolecular nearest-neighbor 

bond and the fitted parabola. Both minima correspond to the DFT equilibrium configuration (𝑎0 =  14.15 Å and 

𝛽0 =  6°). 
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Now we consider a molecule 𝑝, displaced from its lattice point 𝒓𝑝 by 𝜹𝑝, and a nearest neighbor 𝑞, displaced by 

𝜹𝑞 from 𝒓𝑞. The projected longitudinal displacement 𝛿||,𝑝𝑞 = (𝜹𝑝 − 𝜹𝑞) ∙ (𝒓𝑝 − 𝒓𝑞)/|(𝒓𝑝 − 𝒓𝑞)| then changes 

the energy as follows: 𝐸mol−mol,||(𝜹𝑝, 𝜹𝑞) = (
𝑐1

𝑎+Δ𝑎+𝛿||,𝑝𝑞
)

𝑚

− (
𝑐2

𝑎+Δ𝑎+𝛿||,𝑝𝑞
)

𝑛

. Note that here the binding energy 

of the two binding molecules (minimum of 𝐸mol−mol,||) is already fully included. 

To obtain the shear contribution due to a perpendicular displacement 𝛿⊥,𝑝𝑞 = √(𝜹𝑝 − 𝜹𝑞)
2

− 𝛿||,𝑝𝑞
2  we vary the 

HBC cell size according to 𝑎 = √𝑎0
2 + 𝛿⊥

2 while changing the molecular angle within the unit cell 𝛽 = 𝛽0 +

arctan(𝛿⊥/𝑎0). The result is plotted in Supplementary Fig. 6b. It can be fitted satisfactorily by a parabola 

𝐸mol−mol,⊥ = 𝐸0 + 𝑐3𝛿⊥
2 (cf. Supplementary Table 1). However, since a shear of the bond should only provide an 

additional increase in 𝐸mol−mol while leaving the equilibrium energy unchanged only the curvature term is 

needed. 

Supplementary Table 1 | Fit parameters. The fit parameters given here describe 𝐸𝑚𝑜𝑙−𝑚𝑜𝑙 in meV. 
𝑐1 𝑐2 𝑚 𝑛 𝑐3 

16.01 ± 0.02 19.32 ± 0.05 35.8 ± 0.2 16.5 ± 0.2 16.4 ± 0.2 

With this, the interaction energy of one intermolecular bond is 

𝐸mol−mol = (
𝑐1

𝑎 + Δ𝑎 + 𝛿||,𝑝𝑞
)

𝑚

− (
𝑐2

𝑎 + Δ𝑎 + 𝛿||,𝑝𝑞
)

𝑛

+ 𝑐3𝛿⊥,𝑝𝑞
2. 

Finally, the total energy of a molecular domain of 𝑁 molecules can thus be calculated by summation based on the 

displacements of each molecule and the displacements of its nearest neighbors: 

𝐸total = ∑ [𝐸mol−sub(𝒓𝑝 + 𝜹𝑝, 𝛼) +
1

2
∑ 𝐸mol−mol(𝜹𝑝, 𝜹𝑞)

𝑞

]

𝑁

𝑝=1

. 

The factor ½ stems from the fact that we sum over all molecules, not all bonds (i.e., pairs of molecules). Hence, 

each bond appears twice which needs to be accounted for. 

The advantage of the above parametrization is the ability to analytically calculate the gradient of the total energy 

with respect to the displacement of the 𝑝th molecule 
𝜕

𝜕𝜹𝑝
𝐸total = 𝛁𝑝𝐸mol−sub + 𝛁𝑝𝐸mol−mol from the 

parametrized energy curves:  

𝛁𝑝𝐸total = 𝛁𝑝𝐸mol−sub + [−
𝑚 𝑐1

𝑚 

(𝑎 + 𝛥𝑎 + 𝛿𝑝𝑞,∥)
𝑚+1 +

𝑛 𝑐2
𝑛 

(𝑎 + 𝛥𝑎 + 𝛿𝑝𝑞,∥)
𝑛+1] �̂�𝑝𝑞 + 2𝑐3𝛿𝑝𝑞,⊥�̂�𝑝𝑞,⊥ 

with �̂�𝑝𝑞 being the unit vector in the direction 𝒓𝑝 − 𝒓𝑞 and �̂�𝑝𝑞,⊥ the respective unit vector perpendicular to �̂�𝑝𝑞. 

Note that the factor of ½ is canceled here again since each gradient 𝛁𝑝𝐸mol−mol(𝜹𝑝, 𝜹𝑞), along with each bond, 

appears twice in the total sum. 
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7. Non-Relaxed Versus Relaxed Moiré Patterns 

 

Supplementary Figure 7. a, Hexagonal unrelaxed HBC lattice with the experimental low-temperature lattice 

constant and unit cell orientation. The molecule-substrate interaction energy 𝐸𝑚𝑜𝑙−𝑠𝑢𝑏 at the respective 

molecular positions is color-coded. b, HBC positions after the relaxation of the domain in panel a) and the 

corresponding energies 𝐸𝑚𝑜𝑙−𝑠𝑢𝑏 (reproduced from Fig. 2c of the main paper for comparison). Only the relaxed 

structure matches the experimental Moiré pattern in Fig. 2a of the main paper. The decreased range of 𝐸𝑚𝑜𝑙−𝑠𝑢𝑏 

that covers only the lower part of the range in panel a illustrates the gain in molecule-substrate energy due to the 

relaxation. 
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8. Domain Size Dependence and Relaxation of Room Temperature Structure 

 

 

Supplementary Figure 8. a, Total adsorption energy per molecule after relaxation of HBC domains with different 

sizes, initially separated by the experimental LT lattice constant of 13.95 Å. For better comparison, small offsets 

(decreasing with increasing domain size) due to molecules with fewer than 6 nearest neighbors at domain edges 

have been corrected for the three smaller domains, using the values -14 meV, -6 meV, and -1 meV. Obviously, with 

increasing domain size the minima are merely better defined due to the decreasing edge effects that result from 

the finite domain size. The experimental LT angle  𝜃 = -8.66° is marked by a dotted line. b, Total adsorption energy 

per molecule of HBC domains with 10,981 molecules, before (blue line) and after (black line) relaxation, initially 

separated by a lattice constant of 14.0174 Å that produces an HOC coincidence at 𝜃 = -8.41° (marked by dotted 

vertical line), which is similar but not identical to the measured incommensurate room-temperature (RT) 

structure. For comparison, the corresponding curve of the relaxed incommensurate RT structure plotted in red. 
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