## Distinguishing the associations between daily mortality and hospital admissions and nitrogen dioxide from those of particulate matter: a systematic review and meta-analysis.

IC Mills, RW Atkinson, HR Anderson, RL Maynard, DP Strachan

### **Online Supplementary Material**

#### **Contents list**

- 1. Literature search criteria
- 2. List of countries by WHO region and mortality strata
- 3. Metrics of particulate matter (PM) used in the two-pollutant model analyses

#### 4. List of tables

- Table S1: Meta-analysis results for all-cause mortality in all-ages associated with a 10  $\mu g/m^3$  increase in 24 hour  $NO_2$
- Table S2: Meta-analysis results for all-cause mortality in all-ages associated with a 10  $\mu g/m^3$  increase in 1 hour  $NO_2$
- Table S3: Meta-analysis results for all cardiovascular mortality in all-ages associated with a 10  $\mu g/m^3$  increase in 24 hour  $NO_2$
- Table S4: Meta-analysis results for all respiratory mortality in all-ages associated with a 10  $\mu g/m^3$  increase in 24 hour  $NO_2$
- Table S5: Meta-analysis results for stroke mortality in all-ages associated with a 10  $\mu g/m^3$  increase in 24 hour  $NO_2$
- Table S6: Meta-analysis results for all-cause mortality in all-ages associated with a 10  $\mu$ g/m<sup>3</sup> increase in metrics of Particulate Matter (PM) estimates adjusted for 24 hour NO<sub>2</sub>
- Table S7: Meta-analysis results for all cardiovascular mortality in all-ages associated with a 10  $\mu$ g/m<sup>3</sup> increase in metrics of Particulate Matter (PM) estimates adjusted for 24 hour NO<sub>2</sub>
- Table S8: Meta-analysis results for all respiratory mortality in all-ages associated with a 10  $\mu$ g/m<sup>3</sup> increase in metrics of Particulate Matter (PM) estimates adjusted for 24 hour NO<sub>2</sub>

#### 5. List of figures

- Figure S1: Studies and two-pollutant model estimates selected for meta-analysis for all-cause mortality, all ages, 24 hour NO<sub>2</sub>
- Figure S2: All available studies providing two-pollutant model estimates for meta-analysis for all-cause mortality, all ages, 1 hour NO<sub>2</sub>
- Figure S3: All available studies providing two-pollutant model estimates for meta-analysis for all cardiovascular mortality, all ages, 24 hour NO<sub>2</sub>
- Figure S4: All available studies providing two-pollutant model estimates for meta-analysis for all cardiovascular mortality, all ages, 1 hour NO<sub>2</sub>
- Figure S5: All available studies providing two-pollutant model estimates for meta-analysis for all respiratory mortality, all ages, 24 hour NO<sub>2</sub>
- Figure S6: All available studies providing two-pollutant model estimates for meta-analysis for stroke mortality, all ages, 24 hour NO<sub>2</sub>
- Figure S7: All available studies providing two-pollutant model estimates for meta-analysis for cardiac mortality, all ages, 24 hour NO<sub>2</sub>
- Figure S8: All available studies providing two-pollutant model estimates for meta-analysis for COPD (including asthma), Lower Respiratory Infections (LRI), ischaemic heart disease (IHD), dysrhythmia (DYS) mortality, all ages, 24 hour NO<sub>2</sub>
- Figure S9: Studies and two-pollutant model estimates selected for meta-analysis for all cardiovascular mortality, all ages, 24 hour NO<sub>2</sub>
- Figure S10: Studies and two-pollutant model estimates selected for meta-analysis for all respiratory mortality, all ages, 24 hour NO<sub>2</sub>
- Figure S11: All studies providing two-pollutant model estimates for all-cause mortality, all-ages, ultrafine particles (UFP) adjusted for 24 hour NO<sub>2</sub>
- Figure S12: All studies providing two-pollutant model estimates for all cardiovascular mortality, all-ages, PM adjusted for 24 hour  $NO_2$
- Figure S13: All studies providing two-pollutant model estimates for all respiratory mortality, all-ages, PM adjusted for 24 hour  $NO_2$
- Figure S14: Studies providing two-pollutant model estimates for meta-analysis for all respiratory hospital admissions, various age groups, 24 hour NO<sub>2</sub>
- Figure S15: Studies providing two-pollutant model estimates for meta-analysis for all respiratory hospital admissions, various age groups, 1 hour NO<sub>2</sub>
- Figure S16: Studies providing two-pollutant model estimates for meta-analysis for hospital admissions for asthma, children, 24 hour NO<sub>2</sub>
- Figure S17: Studies providing two-pollutant model estimates for meta-analysis for hospital admissions for asthma, various age groups, 24 hour NO<sub>2</sub>

- Figure S18: Studies providing two-pollutant model estimates for meta-analysis for hospital admissions for cardiac disease, all-ages, 24 hour NO<sub>2</sub>
- Figure S19: Studies providing two-pollutant model estimates for meta-analysis for hospital admissions for cardiac disease, elderly, 24 hour NO<sub>2</sub>
- Figure S20: All available studies providing estimates from both single-pollutant and season-specific models for 24 hour  $NO_2$  and all-cause mortality in all-ages
- Figure S21: All available studies providing estimates from both single and season-specific models for 24 hour NO<sub>2</sub> and all cardiovascular mortality in all ages
- Figure S22: All available studies providing estimates from both single-pollutant and seasonspecific models for 24 hour NO<sub>2</sub> and all respiratory mortality in all-ages
- Figure S23: All available studies providing estimates from both single-pollutant and seasonspecific models for 24 hour  $NO_2$  and all respiratory and all cardiovascular hospital admissions in all-ages
- Figure S24: Ranking of NO<sub>2</sub> estimates for all-cause mortality in all-ages by mean levels of 24 hour NO<sub>2</sub> (multi-city studies shown using black bars)
- Figure S25: Ranking of NO<sub>2</sub> estimates for all-cause mortality in all-ages by mean levels of PM<sub>10</sub> (multi-city studies shown using black bars)
- Figure S26: Ranking of NO<sub>2</sub> estimates for all-cause mortality in all-ages by the NO<sub>2</sub>/PM<sub>10</sub> concentration ratio (multi-city studies shown using black bars)
- Figure S27: Ranking of NO<sub>2</sub> estimates for all-cause mortality in all-ages by daily mean temperature (multi-city studies shown using black bars)
- 6. List of references included in the review
- 7. Appendix 1 Update literature search and commentary

### Literature search criteria

Bibliographic databases were searched to identify peer-reviewed time-series (and case crossover) studies of the relationship between daily concentrations of NO<sub>2</sub> and daily mortality or hospital admissions.

<u>Bibliographic databases searched</u>: PubMed, EMBASE or Web of Science (which includes the Science Citation Index).

The <u>search terms</u> used are shown below and minor refinements were made for use in each bibliographic database.

(air pollution OR pollution OR nitric oxide\* OR nitrogen dioxide?) AND (timeseries OR time series OR time-series OR daily OR case-crossover) AND (mortality OR death\* OR dying OR hospital admission\* OR admission\* OR emergency room OR visit\* OR attendance\* OR 'a&e' OR 'a and e' OR accident and emergency OR general pract\* OR physician\* OR consultation\* OR emergency department\*)

No restriction on language was applied. The bibliographic databases were searched for peerreviewed papers published up to May 2011.

#### List of countries by WHO Region and mortality strata

Reproduced from The World Health Report 2002 (<u>http://www.who.int/whr/2002/en/</u>, accessed 7<sup>th</sup> February 2015)

African Region Algeria — AFR-D Angola – AFR-D Benin - AFR-D Botswana - AFR-E Burkina Faso - AFR-D Burundi – AFR-E Cameroon - AFR-D Cape Verde – AFR-D Central African Republic – AFR-E Chad – AFR-D Comoros - AFR-D Congo - AFR-E Côte d'Ivoire - AFR-E Democratic Republic of the Congo – AFR-E Equatorial Guinea - AFR-D Eritrea - AFR-E Ethiopia – AFR-E Gabon - AFR-D Gambia - AFR-D Ghana – AFR-D Guinea - AFR-D Guinea-Bissau - AFR-D Kenya – AFR-E Lesotho – AFR-E Liberia – AFR-D Madagascar – AFR-D Malawi – AFR-E Mali – AFR-D Mauritania – AFR-D Mauritius - AFR-D Mozambique – AFR-E Namibia – AFR-E Niger - AFR-D Nigeria – AFR-D Rwanda - AFR-E Sao Tome and Principe - AFR-D Senegal - AFR-D Seychelles – AFR-D Sierra Leone – AFR-D South Africa - AFR-E Swaziland – AFR-E Togo – AFR-D Uganda – AFR-E United Republic of Tanzania - AFR-E Zambia – AFR-E Zimbabwe – AFR-E

Region of the Americas Antigua and Barbuda – AMR-B Argentina – AMR-B Bahamas – AMR-B Barbados - AMR-B Belize - AMR-B Bolivia - AMR-D Brazil - AMR-B Canada – AMR-A Chile – AMR-B Colombia – AMR-B Costa Rica – AMR-B Cuba – AMR-A Dominica – AMR-B Dominican Republic – AMR-B Ecuador - AMR-D El Salvador – AMR-B Grenada – AMR-B Guatemala – AMR-D Guyana – AMR-B Haiti – AMR-D Honduras - AMR-B Jamaica – AMR-B Mexico – AMR-B Nicaragua - AMR-D Panama – AMR-B Paraguay - AMR-B Peru – AMR-D Saint Kitts and Nevis – AMR-B Saint Lucia – AMR-B Saint Vincent and the Grenadines - AMR-B Suriname – AMR-B Trinidad and Tobago – AMR-B United States of America – AMR-A Uruguay – AMR-B Venezuela, Bolivarian Republic of - AMR-B

Eastern Mediterranean Region Afghanistan – EMR-D Bahrain – EMR-B Cyprus – EMR-B Djibouti – EMR-D Egypt – EMR-D Iran, Islamic Republic of – EMR-B Irag – EMR-D Jordan – EMR-B Kuwait – EMR-B Lebanon – EMR-B Libyan Arab Jamahiriya – EMR-B Morocco – EMR-D Oman – EMR-B Pakistan - EMR-D Qatar - EMR-B Saudi Arabia – EMR-B Somalia – EMR-D Sudan – EMR-D Syrian Arab Republic – EMR-B Tunisia – EMR-B United Arab Emirates – EMR-B Yemen – EMR-D

Mortality strata

A. Very low child, very low adult B. Low child, low adult C. Low child, high adult D. High child, high adult E. High child, very high adult

European Region Albania – EUR-B Andorra – EUR-A Armenia – EUR-B Austria – EUR-A Azerbaijan – EUR-B Belarus – EUR-C Belgium – EUR-A Bosnia and Herzegovina – EUR-B Bulgaria - EUR-B Croatia – EUR-A Czech Republic – EUR-A Denmark – EUR-A Estonia – EUR-C Finland - EUR-A France - EUR-A Georgia - EUR-B Germany – EUR-A Greece - EUR-A Hungary - EUR-C Iceland -- EUR-A Ireland -- EUR-A Israel – EUR-A Italy - EUR-A Kazakhstan – EUR-C Kyrgyzstan – EUR-B Latvia – EUR-C Lithuania – EUR-C Luxembourg - EUR-A Malta – EUR-A Monaco – EUR-A Netherlands - EUR-A Norway - EUR-A Poland -- EUR-B Portugal - EUR-A Republic of Moldova - EUR-C Romania - EUR-B Russian Federation - EUR-C San Marino – EUR-A Slovakia – EUR-B Slovenia – EUR-A Spain - EUR-A Sweden – EUR-A Switzerland – EUR-A Tajikistan – EUR-B The former Yugoslav Republic of Macedonia – EUR-B Turkey – EUR-B Turkmenistan – EUR-B Ukraine – EUR-C United Kingdom – EUR-A Uzbekistan – EUR-B Yugoslavia – EUR-B

#### South-East Asia Region

Bangladesh – SEAR-D Bhutan – SEAR-D Democratic People's Republic of Korea – SEAR-D India – SEAR-D Indonesia – SEAR-B Maldives – SEAR-D Myanmar – SEAR-D Nepal – SEAR-D Sri Lanka – SEAR-B Thailand – SEAR-B

#### Western Pacific Region

Australia – WPR-A Brunei Darussalam – WPR-A Cambodia – WPR-B China – WPR-B Cook Islands - WPR-B Fiji – WPR-B Japan – WPR-A Kiribati – WPR-B Lao People's Democratic Republic – WPR-B Malaysia – WPR-B Marshall Islands – WPR-B Micronesia, Federated States of - WPR-B Mongolia – WPR-B Nauru - WPR-B New Zealand - WPR-A Niue – WPR-B Palau - WPR-B Papua New Guinea - WPR-B Philippines - WPR-B Republic of Korea - WPR-B Samoa – WPR-B Singapore – WPR-A Solomon Islands - WPR-B Tonga – WPR-B Tuvalu – WPR-B Vanuatu - WPR-B Viet Nam - WPR-B

| Category of PM<br>metric               | Particulate pollutants which map to category                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PM <sub>10</sub>                       | $PM_7$ ; $PM_{10}$ ; $PM_{13}$ ; $ln(PM_7)$ ; $ln(PM_{13})$ ; $\sqrt{(PM_{10})}$ ; $ln(PM_{14})$ ;                                                                                                                                                                                                                                                                                                                                                                                     |
| PM <sub>2.5</sub>                      | PM <sub>2.5</sub> ; PM<1; PM <sub>0.5</sub> ; Re-suspended Particulate Matter<br>(RSPM); PM <sub>2.5-1</sub>                                                                                                                                                                                                                                                                                                                                                                           |
| PM <sub>10-2.5</sub>                   | PM <sub>10-2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Black Smoke                            | Black Smoke; ln(BS); sqrt(BS)                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Particle Number<br>Concentration (PNC) | 10-100nm; PNC; <100nm; Nucleation <30nm; Aitken 30-<br>100nm; Accumulation 100-290nm; NC 0.03-0.05; NC 0.05-<br>0.1; NC 0.01-0.03; NC 0.01-0.1; $PM_{2.5}$ NC; $PM_{2.5-10}$ NC; $PM_{10}$<br>NC; PNC size mode 12nm; PNC size mode 23nm; PNC size<br>mode 57nm; PNC size mode 212nm; PNC size mode to<br>100nm; NC128; NC346; NC total; NC31; 10-100nm surface<br>area                                                                                                                |
| Carbon                                 | Black Carbon (BC); Elemental Carbon (EC); Organic Carbon (OC); PM <sub>2.5</sub> OC; PM <sub>2.5</sub> EC; PM <sub>2.5</sub> OM; Total Carbon;                                                                                                                                                                                                                                                                                                                                         |
| Total Suspended<br>Particles (TSP)     | TSP; ln(TSP); TSP-PM <sub>10</sub> ; PM <sub>20</sub> ; SPM; sqrt(TSP); blackness of TSP filters                                                                                                                                                                                                                                                                                                                                                                                       |
| Visibility                             | Coefficient of haze (COH); light scattering (PM <sub>2.5</sub> indicator =<br>nephelometry measure instead of gravimetric); dry light<br>scattering (PM<1 indicator); bsp (PM <sub>2.5</sub> indicator = an<br>indicator for particles 01-2 um (nephelometry measure<br>instead of gravimetric)); visibility (PM <sub>2.5</sub> indicator = digital<br>photography visibility); PM <sub>2.5</sub> nephelpmetry (PM <sub>2.5</sub><br>indicator=(nephelometry measure*100,00001)/0.28.) |

# Metrics of particulate matter (PM) used in two-pollutant model analyses

|                                                           | A11                | Selected                       | NO2, single-polluta                     | nt         | NO <sub>2</sub> adjusted for PM |                                                          |  |
|-----------------------------------------------------------|--------------------|--------------------------------|-----------------------------------------|------------|---------------------------------|----------------------------------------------------------|--|
|                                                           | SC/MC <sup>a</sup> | SC/MC<br>(cities) <sup>b</sup> | Random Effects<br>(95% CI) <sup>c</sup> | I²<br>(%)₫ | Random Effects<br>(95% CI) °    | M<br>[ <sup>2</sup><br>(%) d<br>0<br>72<br>6.9<br>-<br>- |  |
| Overall, NO2 + PM<br>(any PM metric) <sup>e</sup>         | 22/10              | 5/1 (26)                       | 0.78 (0.47, 1.09)                       |            | 0.60 (0.33, 0.87)               |                                                          |  |
| AMR A                                                     | 5/10               | 4/1 (16)                       | 0.48 (0.24, 0.72)                       |            | 0.55 (0.12, 0.99)               |                                                          |  |
| AMR B                                                     | 1/0                | 1/0 (1)                        | 0.59 (-0.26, 1.45)                      | 66.9       | 0.01 (-1.10, 1.12)              | 0                                                        |  |
| EUR A                                                     | 6/0                | 3/0 (3)                        | 0.71 (0.20, 1.22)                       |            | 0.43 (-0.86, 1.73)              |                                                          |  |
| SEAR B                                                    | 1/0                | 1/0 (1)                        | 1.41 (0.89, 1.93)                       |            | 0.42 (-0.55, 1.40)              |                                                          |  |
| WPR B                                                     | 9/0                | 5/0 (5)                        | 1.00 (0.54, 1.46)                       |            | 0.85 (0.37, 1.33)               |                                                          |  |
| NO <sub>2</sub> + PM<br>(specific PM metric) <sup>f</sup> |                    |                                |                                         |            |                                 |                                                          |  |
| $NO_2 + PM_{10}$                                          | 13/3               | 4/1 (21)                       | 0.92 (0.58, 1.72)                       | 88.7       | 0.85 (0.52, 1.18)               | 72                                                       |  |
| NO <sub>2</sub> + PM <sub>2.5</sub>                       | 2/3                | 2/1 (14)                       | 0.53 (0.42, 0.64)                       | 0          | 0.57 (0.24, 0.89)               | 6.9                                                      |  |
| NO <sub>2</sub> + PM <sub>10-2.5</sub>                    | 0/3                | 0/1 (12)                       | 0.62 (0.19, 1.06)                       | -          | 0.73 (0.28, 1.18)               | -                                                        |  |
| NO <sub>2</sub> + Visibility                              | 0/1                | 0/1 (12)                       | 0.60 (0.34, 0.87)                       | -          | 0.66 (0.33, 1.00)               | -                                                        |  |
| NO <sub>2</sub> + BS                                      | 1/0                | -                              |                                         |            |                                 |                                                          |  |
| NO <sub>2</sub> + TSP                                     | 3/0                | -                              | Insufficient estimat                    | tes for me | ta-analysis                     |                                                          |  |
| NO <sub>2</sub> + PNC                                     | 3/0                | -                              |                                         | 11         |                                 |                                                          |  |

Table S1: Meta-analysis results for all-cause mortality in all-ages associated with a 10  $\mu g/m^3$  increase in 24 hour NO<sub>2</sub>

a -Numbers of pairs of single-city (SC) / multi-city (MC) estimates available from all studies b -Numbers of pairs of single-city (SC) / multicity (MC) estimates selected for meta-analysis. The number of cities represented by the estimates is given in brackets.

c - Random-effects summary estimates presented as a percentage change (95% confidence interval) in the risk of death per 10  $\mu g/m^3 NO_2$ .

d -I<sup>2</sup> statistic for heterogeneity between WHO region specific estimates

e -Overall (global) summary estimate of NO2 adjusted for PM and by WHO regions. Protocol for selection of PM metrics defined in the methods section. Estimate numbers for Overall refer to: (i) the number of single-city (SC) / multi-city (MC) estimates available from all studies; (ii) for selected estimates, it is the number of pooled (from single-city estimates) and multi-city estimates used to calculate the overall summary estimate across WHO regions.

f - Overall summary estimate of NO2 adjusted for specific metrics of PM.

|                                                        |               | Selected                       | NO2 single-pollutan          | t                                       | NO2 adjusted for PM  | 4    |
|--------------------------------------------------------|---------------|--------------------------------|------------------------------|-----------------------------------------|----------------------|------|
|                                                        | All<br>SC/MCª | SC/MC<br>(cities) <sup>b</sup> | Random Effects<br>(95% CI) º | Random Effects<br>(95% CI) <sup>c</sup> | I²<br>(%)₫           |      |
| Overall, NO2 + PM<br>(any PM metric) <sup>e</sup>      | 2/4           | 2/2 (36)                       | 0.32 (-0.02, 0.66)           |                                         | 0.20 (-0.24, 0.65)   |      |
| AMR A                                                  | 1/0           | 1/0 (1)                        | 1.19 (0.20, 2.19)            |                                         | 0.78 (-0.35, 1.92)   |      |
| AMR B                                                  | 1/0           | 1/0 (1)                        | -0.09 (-0.19, 0.00)          | 93.8                                    | -0.28 (-0.38, -0.19) | 95.2 |
| EUR A                                                  | 0/3           | 0/1 (30)                       | 0.30 (0.22, 0.38)            |                                         | 0.27 (0.16, 0.38)    |      |
| WPR A                                                  | 0/1           | 0/1 (4)                        | 0.63 (0.21, 1.05)            |                                         | 0.52 (0.05, 1.00)    |      |
| Overall, NO2 + PM<br>(specific PM metric) <sup>f</sup> |               |                                |                              |                                         |                      |      |
| $NO_2 + PM_{10}$                                       | 2/1           | 2/1 (32)                       | 0.22 (-0.15, 0.60)           | 95.4                                    | 0.10 (-0.40, 0.61)   | 96.5 |
| NO <sub>2</sub> + BS                                   | 0/2           | 0/1 (30)                       | 0.30 (0.22, 0.38)            | -                                       | 0.33 (0.23, 0.43)    | -    |
| NO <sub>2</sub> + Visibility                           | 0/1           | 0/1 (4)                        | 0.63 (0.21, 1.05)            | -                                       | 0.52 (0.05, 1.00)    | -    |

Table S2: Meta-analysis results for all-cause mortality in all-ages associated with a 10  $\mu$ g/m<sup>3</sup> increase in 1 hour NO<sub>2</sub>

b -Numbers of pairs of single-city (SC) / multicity (MC) estimates selected for meta-analysis. The number of cities represented by the estimates is given in brackets.

c – Random-effects summary estimates presented as a percentage change (95% confidence interval) in the risk of death per 10  $\mu$ g/m<sup>3</sup>NO<sub>2</sub>.

d -I<sup>2</sup> statistic for heterogeneity between WHO region specific estimates

e -Overall (global) summary estimate of NO<sub>2</sub> adjusted for PM and by WHO regions. Protocol for selection of PM metrics defined in the methods section. Estimate numbers for Overall refer to: (i) the number of single-city (SC) / multi-city (MC) estimates available from all studies; (ii) for selected estimates, it is the number of pooled (from single-city estimates) and multi-city estimates used to calculate the overall summary estimate across WHO regions.

f - Overall summary estimate of NO<sub>2</sub> adjusted for specific metrics of PM.

|                                                                    | A11                | Selected                       | NO2, single-pollutar         | ıt         | NO <sub>2</sub> adjusted for PM |                        |  |
|--------------------------------------------------------------------|--------------------|--------------------------------|------------------------------|------------|---------------------------------|------------------------|--|
|                                                                    | SC/MC <sup>a</sup> | SC/MC<br>(cities) <sup>b</sup> | Random Effects<br>(95% CI) ° | I²<br>(%)₫ | Random Effects<br>(95% CI)¢     | I²<br>(%) <sup>d</sup> |  |
| Overall, NO2 + PM<br>(any PM metric)º                              | 14/0               | 5/0 (10)                       | 1.07 (0.43, 1.72)            |            | 0.82 (0.22, 1.42)               |                        |  |
| AMR A                                                              | 3/0                | 2/0 (2)                        | 0.52 (0.37, 0.68)            |            | 0.47 (0.06, 0.88)               |                        |  |
| AMR B                                                              | 1/0                | 1/0(1)                         | 0.73 (-0.87, 2.36)           | 72         | -0.36 (-2.47, 1.81)             | 58.8                   |  |
| EUR A                                                              | 3/0                | 2/0 (2)                        | 1.97 (-0.66, 4.66)           |            | 1.81 (0.67, 2.97)               |                        |  |
| SEAR B                                                             | 1/0                | 1/0(1)                         | 1.78 (0.47, 3.11)            |            | -0.51 (-2.88, 1.92)             |                        |  |
| WPR B                                                              | 6/0                | 4/0 (4)                        | 1.37 (0.87, 1.87)            |            | 1.13 (0.67, 1.58)               |                        |  |
| Overall, NO <sub>2</sub> + PM<br>(specific PM metric) <sup>f</sup> |                    |                                |                              |            |                                 |                        |  |
| NO <sub>2</sub> + PM <sub>10</sub>                                 | 10/0               | 4/0 (8)                        | 0.99 (0.49, 1.49)            | 80.1       | 0.87 (0.28, 1.46)               | 61                     |  |
| NO <sub>2</sub> + PM <sub>2.5</sub>                                | 2/0                | 2/0 (2)                        | Insufficient estimate        | es for met | a-analysis                      |                        |  |
| NO <sub>2</sub> + BS                                               | 2/0                | 2/0 (2)                        | Insufficient estimate        | es for met | a-analysis                      |                        |  |

Table S3: Meta-analysis results for all cardiovascular mortality in all-ages associated with a 10  $\mu$ g/m<sup>3</sup> increase in 24 hour NO<sub>2</sub>

b -Numbers of pairs of single-city (SC) / multicity (MC) estimates selected for meta-analysis. The number of cities represented by the estimates is given in brackets.

c – Random-effects summary estimates presented as a percentage change (95% confidence interval) in the risk of death per 10  $\mu$ g/m<sup>3</sup>NO<sub>2</sub>.

d -I<sup>2</sup> statistic for heterogeneity between WHO region specific estimates

e -Overall (global) summary estimate of NO<sub>2</sub> adjusted for PM and by WHO regions. Protocol for selection of PM metrics defined in the methods section. Estimate numbers for Overall refer to: (i) the number of single-city (SC) / multi-city (MC) estimates available from all studies; (ii) for selected estimates, it is the number of pooled (from single-city estimates) and multi-city estimates used to calculate the overall summary estimate across WHO regions.

f - Overall summary estimate of NO2 adjusted for specific metrics of PM.

|                                                               |               | Solostod                       | NO <sub>2</sub> , single-polluta         | int        | NO <sub>2</sub> adjusted for P          | М                                  |  |
|---------------------------------------------------------------|---------------|--------------------------------|------------------------------------------|------------|-----------------------------------------|------------------------------------|--|
|                                                               | All<br>SC/MCª | Sc/MC<br>(cities) <sup>b</sup> | Random Effects<br>(95% CI) <sup>c</sup>  | I²<br>(%)ª | Random Effects<br>(95% CI) <sup>c</sup> | I <sup>2</sup><br>(%) <sup>d</sup> |  |
| Overall, NO <sub>2</sub> + PM<br>(any PM metric) <sup>e</sup> | 8/0           | 3/0 (6)                        | 1.42 (0.64, 2.21)                        |            | 1.13 (0.46, 1.81)                       |                                    |  |
| AMR B                                                         | 1/0           | 1/0 (1)                        | 1.21 (-1.43, 3.91)                       | 0          | 0.61 (-2.83, 4.17)                      | 0                                  |  |
| SEAR B                                                        | 1/0           | 1/0 (1)                        | 1.05 (-0.60, 2.73)                       |            | 0.32 (-2.66, 3.39)                      |                                    |  |
| WPR B                                                         | 6/0           | 4/0 (4)                        | 1.57 (0.63, 2.51)                        |            | 1.20 (0.50, 1.90)                       |                                    |  |
| Overall, NO2 + PM<br>(specific PM metric) <sup>f</sup>        |               |                                |                                          |            |                                         |                                    |  |
| $NO_2 + PM_{10}$                                              | 7/0           | 2/0 (5)                        | 1.44 (0.63, 2.27)                        | 0          | 1.15 (0.47, 1.84)                       | 0                                  |  |
| NO <sub>2</sub> + PM <sub>2.5</sub>                           | 1/0           | 1/0 (1)                        | Insufficient estimates for meta-analysis |            |                                         |                                    |  |

Table S4: Meta-analysis results for all respiratory mortality in all-ages associated with a  $10 \mu g/m^3$  increase in 24 hour NO<sub>2</sub>

b -Numbers of pairs of single-city (SC) / multicity (MC) estimates selected for meta-analysis. The number of cities represented by the estimates is given in brackets.

c - Random-effects summary estimates presented as a percentage change (95% confidence interval) in the risk of death per 10  $\mu$ g/m<sup>3</sup> NO<sub>2</sub>.

d -I<sup>2</sup> statistic for heterogeneity between WHO region specific estimates

e -Overall (global) summary estimate of NO<sub>2</sub> adjusted for PM and by WHO regions. Protocol for selection of PM metrics defined in the methods section. Estimate numbers for Overall refer to: (i) the number of single-city (SC) / multi-city (MC) estimates available from all studies; (ii) for selected estimates, it is the number of pooled (from single-city estimates) and multi-city estimates used to calculate the overall summary estimate across WHO regions.

f - Overall summary estimate of NO<sub>2</sub> adjusted for specific metrics of PM.

|                                                                    | All<br>SC/MC <sup>a</sup> | NO <sub>2</sub> , single-pollutant |                                         |                        | NO <sub>2</sub> adjusted for PM                         |   |  |  |
|--------------------------------------------------------------------|---------------------------|------------------------------------|-----------------------------------------|------------------------|---------------------------------------------------------|---|--|--|
|                                                                    | All<br>SC/MC <sup>a</sup> | Sc/MC<br>(cities) <sup>b</sup>     | Random Effects<br>(95% CI) <sup>c</sup> | I²<br>(%) <sup>d</sup> | Random Effects<br>6) <sup>d</sup> (95% Cl) <sup>c</sup> |   |  |  |
| Overall, NO2 + PM<br>(any PM metric) <sup>e</sup>                  | 8/0                       | 2/0 (5) 1.76 (0.68, 2.85)          |                                         |                        | 1.12 (0.50, 1.74)                                       |   |  |  |
| SEAR B                                                             | 1/0                       | 1/0 (1)                            | 2.80 (0.70, 4.94)                       | 25.6                   | 1.60 (-2.20, 5.55)                                      | 0 |  |  |
| WPR B                                                              | 7/0                       | 4/0 (4)                            | 1.47 (0.67, 2.27)                       |                        | 1.11 (0.48, 1.74)                                       |   |  |  |
| Overall, NO <sub>2</sub> + PM<br>(specific PM metric) <sup>f</sup> |                           |                                    |                                         |                        |                                                         |   |  |  |
| NO <sub>2</sub> + PM <sub>10</sub>                                 | 7/0                       | 2/0 (4)                            | 1.83 (0.76, 2.92)                       | 9.3                    | 1.04 (0.36, 1.73)                                       | 0 |  |  |
| NO <sub>2</sub> + TSP                                              | 1/0                       | 1/0(1)                             | Insufficient estimat                    | es for met             | a-analysis                                              |   |  |  |

Table S5: Meta-analysis results for stroke mortality in all-ages associated with a 10  $\mu$ g/m<sup>3</sup> increase in 24 hour NO<sub>2</sub>

b -Numbers of pairs of single-city (SC) / multicity (MC) estimates selected for meta-analysis. The number of cities represented by the estimates is given in brackets.

c – Random-effects summary estimates presented as a percentage change (95% confidence interval) in the risk of death per 10  $\mu$ g/m<sup>3</sup>NO<sub>2</sub>.

d -I2 statistic for heterogeneity between WHO region specific estimates

e -Overall (global) summary estimate of NO<sub>2</sub> adjusted for PM and by WHO regions. Protocol for selection of PM metrics defined in the methods section. Estimate numbers for Overall refer to: (i) the number of single-city (SC) / multi-city (MC) estimates available from all studies; (ii) for selected estimates, it is the number of pooled (from single-city estimates) and multi-city estimates used to calculate the overall summary estimate across WHO regions.

f - Overall summary estimate of NO<sub>2</sub> adjusted for specific metrics of PM.

|                             | All  | Selected                       | PM, single-pollutant                    |                        | PM adjusted for 24 h<br>NO <sub>2</sub> | PM adjusted for 24 hour NO <sub>2</sub> |  |  |  |
|-----------------------------|------|--------------------------------|-----------------------------------------|------------------------|-----------------------------------------|-----------------------------------------|--|--|--|
| SC/MC <sup>a</sup>          |      | SC/MC<br>(cities) <sup>b</sup> | Random Effects<br>(95% CI) <sup>c</sup> | I²<br>(%) <sup>d</sup> | Random Effects<br>(95% CI) <sup>c</sup> | I²<br>(%)₫                              |  |  |  |
| PM10                        |      |                                |                                         |                        |                                         |                                         |  |  |  |
| <b>Overall</b> <sup>e</sup> | 12/3 | 4/1 (21)                       | 0.51 (0.29, 0.74)                       | 82.9                   | 0.18 (-0.11, 0.47)                      | 71.9                                    |  |  |  |
| AMR A                       | 3/3  | 3/1 (15)                       | 0.49 (0.31, 0.66)                       |                        | 0.33 (-0.04, 0.71)                      |                                         |  |  |  |
| EUR A                       | 1/0  | 1/0(1)                         | 0.28 (0.05, 0.52)                       |                        | -0.24 (-0.55, 0.07)                     |                                         |  |  |  |
| SEAR B                      | 1/0  | 1/0(1)                         | 1.25 (0.82, 1.68)                       |                        | 0.96 (0.17, 1.76)                       |                                         |  |  |  |
| WPR B                       | 7/0  | 4/0 (4)                        | 0.35 (0.22, 0.47)                       |                        | 0.05 (-0.06, 0.17)                      |                                         |  |  |  |
|                             |      |                                |                                         |                        |                                         |                                         |  |  |  |
| PM <sub>2.5</sub>           |      |                                |                                         |                        |                                         |                                         |  |  |  |
| <b>Overall</b> <sup>e</sup> | 2/3  | 2/1 (14)                       | 0.74 (0.34, 1.14)                       | 19.6                   | 0.54 (-0.25, 1.34)                      | 23.9                                    |  |  |  |
| AMR A                       | 1/3  | 1/1 (13)                       | 0.66 (0.23, 1.08)                       |                        | 0.33 (-0.54, 1.22)                      |                                         |  |  |  |
| AMR B                       | 1/0  | 1/0(1)                         | 1.36 (0.20, 2.53)                       |                        | 1.33 (-0.12, 2.80)                      |                                         |  |  |  |
|                             |      |                                |                                         |                        |                                         |                                         |  |  |  |
| PM10-2.5                    | 0/3  | 0/1 (12)                       | 0.65 (-0.10, 1.42)                      | -                      | 0.31 (-0.49, 1.11)                      | -                                       |  |  |  |
|                             |      |                                |                                         |                        |                                         |                                         |  |  |  |
| Visibility                  | 0/1  | 0/1 (12)                       | 40.93 (23.39, 60.97)                    | -                      | 12.42 (-4.47, 32.29)                    | -                                       |  |  |  |
|                             |      |                                |                                         |                        |                                         |                                         |  |  |  |
| Black Smoke                 | 1/0  | -                              |                                         |                        |                                         |                                         |  |  |  |
| PNC                         | 3/0  | -                              | Insufficient estimates                  | for meta               | ı-analysis                              |                                         |  |  |  |
| TSP                         | 3/0  | -                              | _                                       |                        |                                         |                                         |  |  |  |

Table S6: Meta-analysis results for all-cause mortality in all-ages associated with a 10  $\mu$ g/m<sup>3</sup> increase in metrics of Particulate Matter (PM) - estimates adjusted for 24 hour NO<sub>2</sub>

a -Numbers of pairs of single-city (SC) / multi-city (MC) estimates available from all studies

b -Numbers of pairs single-city (SC) / multicity (MC) estimates selected for meta-analysis. The number of cities represented by the selected estimates is given in brackets.

c - Random-effects summary estimates presented as a percentage change (95% confidence interval) in the risk of death per 10 µg/m<sup>3</sup> increase in 24 hour measures of PM. Estimates presented for 'Overall' and by WHO Region.

d -I<sup>2</sup> statistic for heterogeneity between WHO region-specific effect estimates

e -Estimate numbers for 'Overall' refer to: (i) the number of single-city (SC) / multi-city (MC) estimates available from all studies; (ii) for selected estimates, it is the number of pooled (from single-city estimates) and multi-city estimates used to calculate the overall summary estimate across WHO regions.

# Table S7: Meta-analysis results for all cardiovascular mortality in all-ages associated with a 10 $\mu$ g/m<sup>3</sup> increase in metrics of Particulate Matter (PM) - estimates adjusted for 24 hour NO<sub>2</sub>

|                             | All                | Selected | Selected PM, single-pollutant           |            | PM adjusted for 24 hour NO <sub>2</sub> |            |  |
|-----------------------------|--------------------|----------|-----------------------------------------|------------|-----------------------------------------|------------|--|
| SC/MC                       | SC/MC <sup>a</sup> | (cities) | Random Effects<br>(95% CI) <sup>c</sup> | I²<br>(%)₫ | Random Effects<br>(95% CI) °            | I²<br>(%)₫ |  |
| PM10                        |                    |          |                                         |            |                                         |            |  |
| <b>Overall</b> <sup>e</sup> | 9/0                | 4/0 (8)  | 0.48 (0.18, 0.78)                       | 66.5       | 0.19 (-0.21, 0.59)                      | 67.1       |  |
| AMR A                       | 2/0                | 2/0(2)   | 0.43 (0.17, 0.70)                       |            | 0.33 (0.03, 0.62)                       |            |  |
| EUR A                       | 1/0                | 1/0(1)   | 0.19 (-0.16, 0.54)                      |            | -0.32 (-0.80, 0.17)                     |            |  |
| SEAR B                      | 1/0                | 1/0(1)   | 1.90 (0.80, 3.01)                       |            | 2.27 (0.24, 4.34)                       |            |  |
| WPR B                       | 5/0                | 4/0 (4)  | 0.48 (0.26, 0.70)                       |            | 0.22 (-0.09, 0.54)                      |            |  |
| PM <sub>2.5</sub>           | 2/0                | -        | Insufficient estima                     | ates for n | neta-analysis                           |            |  |
| Black Smoke                 | 1/0                | -        | -                                       |            |                                         |            |  |

a -Numbers of pairs of single-city (SC) / multi-city (MC) estimates available from all studies

b -Numbers of pairs single-city (SC) / multicity (MC) estimates selected for meta-analysis. The number of cities represented by the

selected estimates is given in brackets.

c – Random-effects summary estimates presented as a percentage increase (95% confidence interval) in the risk of death per 10  $\mu$ g/m<sup>3</sup> increase in 24 hour measures of PM. Estimates presented for 'Overall' and by WHO Region.

d -l<sup>2</sup> statistic for heterogeneity between WHO region-specific effect estimates

e -Estimate numbers for 'Overall' refer to: (i) the number of single-city (SC) / multi-city (MC) estimates available from all studies; (ii) for selected estimates, it is the number of pooled (from single-city estimates) and multi-city estimates used to calculate the overall summary estimate across WHO Regions.

Table S8: Meta-analysis results for all respiratory mortality in all-ages associated with a 10  $\mu$ g/m<sup>3</sup> increase in metrics of Particulate Matter (PM) - estimates adjusted for 24 hour NO<sub>2</sub>

|                             | A11                | Selected                       | PM, single-polluta                       | nt         | PM adjusted for 24 hour NO <sub>2</sub> |            |  |  |
|-----------------------------|--------------------|--------------------------------|------------------------------------------|------------|-----------------------------------------|------------|--|--|
|                             | SC/MC <sup>a</sup> | SC/MC<br>(cities) <sup>b</sup> | Random Effects<br>(95% CI) °             | [²<br>(%)₫ | Random Effects<br>(95% CI) º            | ]²<br>(%)₫ |  |  |
| PM <sub>10</sub>            |                    |                                |                                          |            |                                         |            |  |  |
| <b>Overall</b> <sup>e</sup> | 6/0                | 2/0 (6)                        | 0.58 (0.22, 0.93)                        | 0          | 0.13 (-0.18, 0.44)                      | 0          |  |  |
| SEAR B                      | 1/0                | 1/0(1)                         | 1.01 (-0.36, 2.40)                       |            | 0.79 (-1.70, 3.34)                      |            |  |  |
| WPR B                       | 5/0                | 4/0 (4)                        | 0.54 (0.17, 0.92)                        |            | 0.12 (-0.19, 0.43)                      |            |  |  |
| PM <sub>2.5</sub>           | 1/0                | -                              | Insufficient estimates for meta-analysis |            |                                         |            |  |  |

a -Numbers of pairs of single-city (SC) / multi-city (MC) estimates available from all studies

b -Numbers of pairs single-city (SC) / multicity (MC) estimates selected for meta-analysis. The number of cities represented by the selected estimates is given in brackets.

c – Random-effects summary estimates presented as a percentage increase (95% confidence interval) in the risk of death per 10  $\mu$ g/m<sup>3</sup> increase in 24 hour measures of PM. Estimates presented for 'Overall' and by WHO Region.

d -I<sup>2</sup> statistic for heterogeneity between WHO region-specific effect estimates

e -Estimate numbers for 'Overall' refer to: (i) the number of single-city (SC) / multi-city (MC) estimates available from all studies; (ii) for selected estimates, it is the number of pooled (from single-city estimates) and multi-city estimates used to calculate the overall summary estimate across WHO Regions.

WPR, Western Pacific region; SEAR, South East Asian region.

### Figure S1: Studies and two-pollutant model estimates selected for meta-analysis for all-cause mortality, all ages, 24 hour NO<sub>2</sub>

| Author,Year<br>[RMID]     | City,<br>Country           | Study<br>Period | Access<br>ID | Particle<br>Co-pollutant | Correlation,<br>NO <sub>2</sub> + PM  | ES (95% CI)          |
|---------------------------|----------------------------|-----------------|--------------|--------------------------|---------------------------------------|----------------------|
| Amr A,Multi-city          |                            |                 |              |                          |                                       |                      |
| Burnett,2004 [3000]       | 12 Canadian cities, Canada | 1981-1999       | 22161        | None                     |                                       | 0.62 (0.19, 1.05)    |
|                           |                            |                 | 22164        | PM <sub>10</sub>         | None reported                         | 0.74 (0.24, 1.23)    |
| Amr A,Single city         |                            |                 |              |                          |                                       |                      |
| Ostro,1999 [3]            | Coachella Valley,USA       | 1989-1992       | 4055         | None                     | <b>_</b>                              | 1.46 (-0.36, 3.29)   |
|                           |                            |                 | 4061         | PM <sub>10</sub>         | -0.13                                 | - 0.39 (-1.75, 2.53) |
| Moolgavkar,2003 [162]     | Cook County,USA            | 1987-1995       | 12723        | None                     | +                                     | 0.57 (0.33, 0.81)    |
|                           |                            |                 | 22023        | PM <sub>10</sub>         | 0.49 🔶                                | 0.47 (0.17, 0.77)    |
|                           | Los Angeles County,USA     | 1987-1995       | 12744        | None                     | •                                     | 0.52 (0.40, 0.64)    |
|                           |                            |                 | 12753        | PM <sub>10</sub>         | 0.70                                  | 0.73 (0.40, 1.05)    |
| Kelsall,1997 [236]        | Philadelphia,USA           | 1974-1988       | 574          | None                     | +                                     | 0.07 (-0.15, 0.29)   |
|                           |                            |                 | 3740         | TSP                      | 0.67 🔶                                | -0.31 (-0.58, -0.05) |
| Amr B.Single city         |                            |                 |              |                          |                                       |                      |
| Boria-Aburto,1998 [214]   | Mexico Citv.Mexico         | 1993-1995       | 567          | None                     |                                       | 0.59 (-0.26, 1.44)   |
| Bolja / Walto, 1999 [211] |                            |                 | 20142        | PM <sub>2.5</sub>        | 0.57                                  | 0.01 (-1.10, 1.11)   |
|                           |                            |                 |              | 2.0                      |                                       |                      |
| Eur A,Single city         |                            |                 |              |                          |                                       |                      |
| Peters,2009 [621]         | Erfurt,Germany             | 1995-2001       | 22212        | None                     |                                       | 0.41 (-1.17, 1.99)   |
|                           |                            |                 | 21697        | PNC                      | 0.62                                  | -1.47 (-3.41, 0.47)  |
| Michelozzi,1998 [219]     | Rome,Italy                 | 1992-1995       | 1196         | None                     | <b>→</b>                              | 0.43 (0.10, 0.76)    |
|                           |                            |                 | 22265        | TSP                      | 0.507                                 | 0.29 (-0.07, 0.65)   |
| Hoek,2000 [175]           | Netherlands,Netherlands    | 1986-1994       | 5504         | None                     | · · · · · · · · · · · · · · · · · · · | 1.02 (0.76, 1.28)    |
|                           |                            |                 | 5552         | PM <sub>10</sub>         | 0.62                                  | 1.69 (0.92, 2.46)    |
| Sear B,Single city        |                            |                 |              |                          |                                       |                      |
| Wong,2008 [313]           | Bangkok,Thailand           | 1999-2003       | 16196        | None                     | _ <b>→</b> _                          | 1.40 (0.89, 1.91)    |
|                           |                            |                 | 16270        | PM <sub>10</sub>         | 0.71                                  | 0.42 (-0.55, 1.39)   |
| Wpr B,Single city         |                            |                 |              |                          |                                       |                      |
| Chen,2010 [2052]          | Anshan,China               | 2004-2006       | 21120        | None                     | • • • • • • • • • • • • • • • • • • • | 1.29 (-0.06, 2.64)   |
|                           |                            |                 | 21121        | PM₁₀                     | 0.55                                  | 0.89 (-0.91, 2.69)   |
| Wona.2008 [313]           | Hong Kong,China            | 1996-2002       | 16208        | None                     |                                       | 0.90 (0.58, 1.21)    |
| 0.                        | 0 0,                       |                 | 16294        | PM <sub>10</sub>         | 0.80                                  | 0.86 (0.42, 1.29)    |
|                           | Shanghai,China             | 2001-2004       | 16220        | None                     |                                       | 0.97 (0.66, 1.27)    |
|                           | <b>.</b> .                 |                 | 16318        | PM <sub>10</sub>         | 0.75                                  | 0.94 (0.50, 1.37)    |
|                           | Wuhan,China                | 2001-2004       | 16232        | None                     | <b>↓</b>                              | - 1.95 (1.30, 2.60)  |
|                           |                            |                 | 16342        | PM <sub>10</sub>         | 0.75                                  | 1.68 (0.87, 2.49)    |
| Kwon,1999 [1643]          | Seoul,South Korea          | 1991-1995       | 14389        | None                     | _ <b>←</b>                            | 0.35 (0.05, 0.66)    |
|                           |                            |                 | 22296        | TSP                      | 0.774                                 | 0.26 (-0.05, 0.56)   |
|                           |                            |                 |              |                          |                                       |                      |
|                           |                            |                 |              |                          |                                       |                      |
|                           |                            |                 |              |                          | -5 -2 -1 0 1 2                        |                      |
|                           |                            |                 |              |                          | 000xln(RR)                            |                      |

| Figure S2: All availabl | e studies provid | ling two-pollutant mod | lel estima | tes for r | neta-analysis for all-cause mortality, all ages, 1 hour NO <sub>2</sub> |
|-------------------------|------------------|------------------------|------------|-----------|-------------------------------------------------------------------------|
| Author, Year            | City,            | Study                  | Access     | Particle  | Correlation,                                                            |

| [RMID]             | Country                           | Period    | ID    | Co-pollutant            | NO <sub>2</sub> + PM | <u> </u> |    | _ |   |               | ES (95% CI)          |
|--------------------|-----------------------------------|-----------|-------|-------------------------|----------------------|----------|----|---|---|---------------|----------------------|
| Amr A,Single city  |                                   |           |       |                         |                      |          |    |   |   |               |                      |
| Ostro,1999 [3]     | Coachella Valley,USA              | 1989-1992 | 4056  | None                    |                      |          |    | - | • | $\rightarrow$ | 1.19 (0.20, 2.17)    |
|                    |                                   |           | 4063  | PM <sub>10</sub>        | -0.13                |          |    |   | • | _             | 0.78 (-0.35, 1.91)   |
| mr B,Single city   |                                   |           |       |                         |                      |          |    |   |   |               |                      |
| stro,1996 [256]    | Santiago,Chile                    | 1989-1991 | 439   | None                    |                      |          |    | • |   |               | -0.09 (-0.19, 0.00)  |
|                    |                                   |           | 3377  | <b>PM</b> <sub>10</sub> | 0.73                 |          | •  |   |   |               | -0.28 (-0.38, -0.19) |
| Eur A,Multi-city   |                                   |           |       |                         |                      |          |    |   |   |               |                      |
| Samoli,2006 [1671] | 30 European Cities,EU             | 1990-1997 | 16845 | None                    |                      |          |    | • |   |               | 0.30 (0.22, 0.38)    |
|                    |                                   |           | 16847 | PM <sub>10</sub>        | 0.11-0.69            |          |    | • |   |               | 0.27 (0.16, 0.38)    |
|                    |                                   |           | 16846 | BS                      | 0.11-0.78            |          |    | • |   |               | 0.33 (0.23, 0.43)    |
| ouloumi,1997 [240] | 6 European Cities (inc Athens),EU | n/a-n/a   | 1211  | None                    |                      |          |    | • |   |               | 0.26 (0.18, 0.34)    |
|                    |                                   |           | 1216  | BS                      |                      |          |    | • |   |               | 0.12 (0.00, 0.24)    |
| Vpr A,Multi-city   |                                   |           |       |                         |                      |          |    |   |   |               |                      |
| impson,2005 [133]  | 4 Australian Cities, Australia    | 1996-1999 | 22274 | None                    |                      |          |    |   | - |               | 0.63 (0.21, 1.04)    |
|                    |                                   |           | 13884 | Visibility              | 0.29-0.62            |          |    | - |   |               | 0.52 (0.05, 0.99)    |
|                    |                                   |           |       |                         |                      |          |    |   |   |               |                      |
|                    |                                   |           |       |                         |                      |          |    |   |   |               |                      |
|                    |                                   |           | 1000  | )xln(RR)                |                      | -2       | -1 | 0 | 1 | 2             |                      |

Figure S3: All available studies providing two-pollutant model estimates for meta-analysis for all cardiovascular mortality, all ages, 24 hour NO<sub>2</sub>

| Author,Year<br>[RMID]                   | City,<br>Country         | Study<br>Period | Access<br>ID | Particle<br>Co-pollutant | Correlation,<br>NO <sub>2</sub> + PM |              | ES (95% CI)                            |
|-----------------------------------------|--------------------------|-----------------|--------------|--------------------------|--------------------------------------|--------------|----------------------------------------|
| Amr A,Single city                       |                          |                 |              |                          |                                      |              |                                        |
| loolgavkar,2003 [162]                   | Cook County,USA          | 1987-1995       | 12877        | None                     |                                      | ◆            | 0.52 (0.15, 0.89)                      |
|                                         | -                        |                 | 22072        | PM <sub>10</sub>         | 0.49                                 | +            | 0.26 (-0.20, 0.73)                     |
| loolgavkar,2003 [162]                   | Los Angeles County, USA  |                 | 12900        | None                     |                                      | •            | 0.52 (0.35, 0.69)                      |
|                                         |                          |                 | 22090        | PM <sub>10</sub>         | 0.70                                 | +            | 0.68 (0.22, 1.13)                      |
|                                         |                          |                 | 22100        | PM <sub>2.5</sub>        | 0.73                                 | +            | 0.26 (-0.31, 0.83)                     |
| Amr B,Single city                       |                          |                 |              |                          |                                      |              |                                        |
| Borja-Aburto, 1998 [214]                | Mexico City, Mexico      | 1993-1995       | 570          | None                     |                                      | <b>→</b>     | 0.73 (-0.87, 2.33)                     |
| , , , , , , , , , , , , , , , , , , , , |                          |                 | 20145        | PM <sub>2.5</sub>        | 0.57                                 |              | -0.36 (-2.51, 1.79)                    |
| ur A,Single city                        |                          |                 |              |                          |                                      |              |                                        |
| loek,2000 [175]                         | Netherlands, Netherlands | 1986-1994       | 5513         | None                     |                                      | ◆            | 0.92 (0.50, 1.34)                      |
| • •                                     |                          |                 | 5584         | BS                       | 0.87                                 | <b>↓</b>     | 0.43 (-0.20, 1.06)                     |
|                                         |                          |                 | 5576         | PM <sub>10</sub>         | 0.62                                 | <b>→</b>     | 1.66 (0.50, 2.82)                      |
| eahnoun.2001 [1374]                     | Rouen.France             | 1990-1995       | 22295        | None                     |                                      | <b>→</b>     | 3.67 (0.92, 6.42)                      |
|                                         |                          |                 | 7861         | BS                       | 0.77                                 | +            | 3.97 (-0.67, 8.60)                     |
| Sear B.Single city                      |                          |                 |              |                          |                                      |              |                                        |
| Vong.2008 [313]                         | Bangkok, Thailand        | 1999-2003       | 16200        | None                     |                                      | <b>  →</b>   | 1.76 (0.47, 3.06)                      |
|                                         | 0                        | 1999-2003       | 16273        | PM <sub>10</sub>         | 0.71                                 |              | -0.51 (-2.92, 1.90)                    |
| Vpr B,Single city                       |                          |                 |              |                          |                                      |              |                                        |
| chen,2010 [2052]                        | Anshan,China             | 2004-2006       | 21125        | None                     |                                      | <b>─</b> ◆── | 2.09 (0.22, 3.96)                      |
|                                         |                          |                 | 21126        | PM <sub>10</sub>         | 0.55                                 |              | -0.15 (-2.70, 2.40)                    |
| /ong.2008 [313]                         | Hong Kong,China          | 1996-2002       | 16212        | None                     |                                      |              | 1.22 (0.64, 1.81)                      |
|                                         |                          |                 | 16297        | PM <sub>10</sub>         | 0.80                                 |              | 1.32 (0.54, 2.10)                      |
|                                         | Shanghai.China           | 2001-2004       | 16224        | None                     |                                      |              | 1.00 (0.55, 1.46)                      |
|                                         | <u> </u>                 |                 | 16321        | PM                       | 0.75                                 |              | 0.98 (0.33, 1.62)                      |
| hen 2008 [1956]                         | Shanghai China           | 2001-2004       | 15756        | None                     |                                      | <b>→</b>     | 1.00 (0.55, 1.46)                      |
|                                         | e                        | 200, 2004       | 15757        | PM                       | 0.71                                 | -            | 0.98 (0.33, 1.62)                      |
| Vong 2008 [313]                         | Wuhan China              | 2001-2004       | 16236        | None                     |                                      |              | 2 10 (1 17 3 02)                       |
| 0.19,2000 [010]                         | trunan, onna             | 2001-2004       | 16345        | PM.                      | 0.75                                 | <u>`</u>     | 1 40 (0 24 2 56)                       |
| ian 2007 [1945]                         | Wuan China               | 2000-2004       | 15257        | None                     | 0.10                                 |              | 1.40 (0.24, 2.30)<br>1.64 (0.87, 2.41) |
| an,2007 [1940]                          | waan,onina               | 2000-2004       | 15210        | DM                       | 0.58                                 |              |                                        |
|                                         |                          |                 | 15510        | r 1 <b>VI</b> 10         | 0.00                                 | •            | 0.96 (0.00, 1.95)                      |
|                                         |                          |                 |              |                          |                                      |              |                                        |
|                                         |                          |                 |              |                          |                                      |              |                                        |
|                                         |                          |                 |              | 1000xlr                  | n(RR)                                | -5 -101 5    | 10                                     |

Figure S4: All available studies providing two-pollutant model estimates for meta-analysis for all cardiovascular mortality, all ages, 1 hour NO<sub>2</sub>



19

Figure S5: All available studies providing two-pollutant model estimates for meta-analysis for all respiratory mortality, all ages, 24 hour NO<sub>2</sub>

| Author,Year<br>[RMID]   | City,<br>Country   | Study<br>Period | Access<br>ID | Particle<br>Co-pollutant | Correlation,<br>NO <sub>2</sub> + PM |            | ES (95% CI)         |
|-------------------------|--------------------|-----------------|--------------|--------------------------|--------------------------------------|------------|---------------------|
| Amr B,Single city       |                    |                 |              |                          |                                      |            |                     |
| Borja-Aburto,1998 [214] | Mexico City,Mexico | 1993-1995       | 569          | None                     |                                      | <b></b>    | 1.20 (-1.44, 3.83)  |
|                         |                    |                 | 20144        | PM <sub>2.5</sub>        | 0.57                                 |            | 0.61 (-2.87, 4.08)  |
| Sear B,Single city      |                    |                 |              |                          |                                      |            |                     |
| Wong,2008 [313]         | Bangkok, Thailand  | 1999-2003       | 16204        | None                     |                                      | <b>↓</b> • | 1.04 (-0.60, 2.69)  |
|                         |                    |                 | 16276        | PM <sub>10</sub>         | 0.71                                 | <b>•</b>   | 0.32 (-2.70, 3.33)  |
| Wpr B,Single city       |                    |                 |              |                          |                                      |            |                     |
| Chen,2010 [2052]        | Anshan, China      | 2004-2006       | 21130        | None                     |                                      |            | -0.18 (-5.54, 5.18) |
|                         |                    |                 | 21131        | PM <sub>10</sub>         | 0.55                                 |            | -1.73 (-9.27, 5.80) |
| Wong,2008 [313]         | Hong Kong,China    | 1996-2002       | 16216        | None                     |                                      | -          | 1.14 (0.42, 1.87)   |
|                         |                    |                 | 16300        | PM <sub>10</sub>         | 0.80                                 | <b>↓</b>   | 0.87 (-0.11, 1.84)  |
|                         | Shanghai,China     | 2001-2004       | 16228        | None                     |                                      | +          | 1.21 (0.42, 2.01)   |
|                         |                    |                 | 16324        | PM <sub>10</sub>         | 0.75                                 | <b>-</b>   | 1.31 (0.21, 2.41)   |
| Chen,2008 [1956]        | Shanghai,China     | 2001-2004       | 15748        | None                     |                                      | -          | 1.21 (0.42, 2.01)   |
|                         |                    |                 | 15749        | PM <sub>10</sub>         | 0.71                                 | -          | 1.31 (0.21, 2.41)   |
| Wong,2008 [313]         | Wuhan,China        | 2001-2004       | 16240        | None                     |                                      | <b>→</b>   | 3.61 (1.75, 5.47)   |
|                         |                    |                 | 16348        | PM <sub>10</sub>         | 0.75                                 |            | 2.80 (0.46, 5.14)   |
| Qian,2007 [1945]        | Wuhan,China        | 2000-2004       | 15266        | None                     |                                      | <b></b>    | 2.21 (0.52, 3.89)   |
|                         |                    |                 | 15313        | PM <sub>10</sub>         | 0.58                                 | +          | 1.28 (-0.83, 3.40)  |
|                         |                    |                 |              |                          |                                      |            |                     |
|                         |                    |                 |              |                          |                                      |            | 10                  |
|                         |                    |                 |              | 1000                     | xln(RR)                              | -5 -101 5  | 10                  |

| Author,Year<br>[RMID] | City,<br>Country  | Study<br>Period | Access<br>ID | Particle<br>Co-pollutant | Correlation,<br>NO <sub>2</sub> + PM |            | ES (95% CI)        |
|-----------------------|-------------------|-----------------|--------------|--------------------------|--------------------------------------|------------|--------------------|
| Sear B,Single city    |                   |                 |              |                          |                                      |            |                    |
| HEI,2010 [3003]       | Bangkok,Thailand  | 1999-2003       | 22198        | None                     |                                      |            | 2.76 (0.70, 4.83)  |
|                       |                   |                 | 22247        | PM <sub>10</sub>         | 0.71                                 |            | 1.59 (-2.22, 5.40) |
| Wpr B,Single city     |                   |                 |              |                          |                                      |            |                    |
| Ren,2008 [2001]       | Hangzhou,China    | 2002-2004       | 17521        | None                     |                                      | <b>_</b>   | 2.05 (0.54, 3.56)  |
|                       |                   |                 | 17522        | <b>PM</b> <sub>10</sub>  | 0.692                                | +•         | 1.27 (-0.86, 3.41) |
| Hong,2002 [1448]      | Seoul,South Korea | 1991-1997       | 8760         | None                     |                                      |            | 1.47 (0.37, 2.57)  |
|                       |                   |                 | 8767         | TSP                      | 0.50                                 | <b></b>    | 1.47 (0.00, 2.94)  |
| HEI,2010 [3003]       | Shanghai,China    | 2001-2004       | 22190        | None                     |                                      | <b></b>    | 0.69 (0.08, 1.30)  |
|                       |                   |                 | 22224        | PM <sub>10</sub>         | 0.71                                 | <b>•</b> - | 0.79 (-0.07, 1.64) |
| Haidong,2004 [349]    | Shanghai,China    | 2001-2001       | 14215        | None                     |                                      | · · · · ·  | 2.86 (0.10, 5.62)  |
|                       |                   |                 | 14216        | <b>PM</b> <sub>10</sub>  | 0.65                                 |            | 1.98 (-1.61, 5.57) |
| Kan,2003 [130]        | Shanghai,China    | 2001-2002       | 12338        | None                     |                                      |            | 2.86 (0.10, 5.62)  |
|                       |                   |                 | 12339        | PM <sub>10</sub>         | 0.65                                 |            | 1.98 (-1.61, 5.57) |
| HEI,2010 [3003]       | Wuhan,China       | 2001-2004       | 22195        | None                     |                                      |            | 2.15 (1.06, 3.23)  |
|                       |                   |                 | 22214        | PM <sub>10</sub>         | 0.75                                 | <b>_</b>   | 1.50 (0.14, 2.86)  |
| Qian,2007 [1945]      | Wuhan,China       | 2000-2004       | 15260        | None                     |                                      | -          | 1.48 (0.56, 2.40)  |
|                       |                   |                 | 15311        | PM <sub>10</sub>         | 0.58                                 | <b>↓</b>   | 0.93 (-0.23, 2.08) |
|                       |                   |                 |              |                          |                                      |            |                    |
|                       |                   |                 |              |                          |                                      |            |                    |
|                       |                   |                 |              | 1000                     | xln(RR)                              | -5 -101 5  | 10                 |

Figure S6: All available studies providing two-pollutant model estimates for meta-analysis for stroke mortality, all ages, 24 hour NO<sub>2</sub>

| Author,Year<br>[RMID] | City,<br>Country | Study<br>Period | Access<br>ID | Particle<br>Co-pollutant | Correlation,<br>NO <sub>2</sub> + PM |       | 1           | ES (95% CI)        |
|-----------------------|------------------|-----------------|--------------|--------------------------|--------------------------------------|-------|-------------|--------------------|
| Amr A,Single city     |                  |                 |              |                          |                                      |       |             |                    |
| Moolgavkar,2000 [163] | Maricopa,USA     | 1987-1995       | 6981         | None                     |                                      |       | +           | 1.20 (0.51, 1.89)  |
|                       |                  |                 | 22294        | PM <sub>10</sub>         | 0.22                                 |       | <b>—</b>    | 2.33 (-0.15, 4.81) |
|                       |                  |                 |              |                          |                                      |       |             |                    |
| Wpr B,Single city     |                  |                 |              |                          |                                      |       |             |                    |
| HEI,2010 [3003]       | Shanghai,China   | 2001-2004       | 22191        | None                     |                                      |       | +           | 1.53 (0.82, 2.24)  |
|                       |                  |                 | 22225        | PM <sub>10</sub>         | 0.71                                 |       | -           | 1.55 (0.52, 2.58)  |
| HEI,2010 [3003]       | Wuhan,China      | 2001-2004       | 22196        | None                     |                                      |       |             | 2.00 (0.44, 3.56)  |
|                       |                  |                 | 22215        | PM <sub>10</sub>         | 0.71                                 |       | <b>├</b> ●─ | 1.55 (-0.42, 3.52) |
| Qian,2007 [1945]      | Wuhan,China      | 2000-2004       | 15263        | None                     |                                      |       |             | 1.75 (0.44, 3.07)  |
|                       |                  |                 | 15312        | PM <sub>10</sub>         | 0.58                                 |       | <b>↓</b> •  | 1.27 (-0.38, 2.92) |
|                       |                  |                 |              |                          |                                      |       |             |                    |
|                       |                  |                 |              |                          |                                      |       |             |                    |
|                       |                  |                 |              | 1005 - /                 | 22                                   | -5 -1 | 0 1 5       | I<br>10            |

Figure S7: All available studies providing two-pollutant model estimates for meta-analysis for cardiac mortality, all ages, 24 hour NO<sub>2</sub>

Figure S8: All available studies providing two-pollutant model estimates for meta-analysis for COPD (including asthma), Lower Respiratory Infections (LRI), ischaemic heart disease (IHD), dysrhythmia (DYS) mortality, all ages, 24 hour NO2

| Author,Year<br>[RMID] | City,<br>Country | Study<br>Period | Diagnosis | Access<br>ID | Particle<br>Co-pollutant | Correlation,<br>NO <sub>2</sub> + PM |                     | ES (95% CI)          |
|-----------------------|------------------|-----------------|-----------|--------------|--------------------------|--------------------------------------|---------------------|----------------------|
| Sear B,Single cit     | ty               |                 |           |              |                          |                                      |                     |                      |
| HEI,2010 [3003]       | Bangkok,Thailand | 1999-2003       | COPDp     | 22199        | None                     |                                      | _ <b>•</b> _        | -1.41 (-5.13, 2.31)  |
|                       |                  |                 |           | 22248        | PM <sub>10</sub>         | 0.71                                 |                     | -8.23 (-15.08, -1.38 |
|                       |                  |                 | DYS       | 22245        | None                     |                                      |                     | 1.29 (-5.55, 8.13)   |
|                       |                  |                 |           | 22244        | PM <sub>10</sub>         | 0.71                                 | $ \longrightarrow $ | 6.11 (-6.29, 18.51)  |
|                       |                  |                 | IHD       | 22202        | None                     |                                      | <b>-</b>            | 1.49 (-0.70, 3.68)   |
|                       |                  |                 |           | 22251        | PM <sub>10</sub>         | 0.71                                 | <b>_</b> _          | -0.40 (-4.60, 3.80)  |
|                       |                  |                 | LRI       | 22200        | None                     |                                      | <b>-</b>            | 1.29 (-0.90, 3.49)   |
|                       |                  |                 |           | 22249        | PM <sub>10</sub>         | 0.71                                 | <b></b>             | 1.88 (-1.71, 5.48)   |
|                       |                  |                 |           |              |                          |                                      |                     |                      |
| Npr B,Single cit      | у                |                 |           |              |                          |                                      |                     |                      |
| HEI,2010 [3003]       | Shanghai,China   | 2001-2004       | COPDp     | 22192        | None                     |                                      | *                   | 1.17 (0.34, 2.01)    |
|                       |                  |                 |           | 22226        | PM <sub>10</sub>         | 0.71                                 | +                   | 1.48 (0.30, 2.66)    |
|                       |                  |                 | LRI       | 22193        | None                     |                                      | <b>_</b>            | 1.72 (-1.15, 4.58)   |
|                       |                  |                 |           | 22227        | PM <sub>10</sub>         | 0.71                                 | _ <b>_</b>          | -0.29 (-4.30, 3.72)  |
|                       |                  |                 |           |              |                          |                                      |                     |                      |
|                       |                  |                 |           |              |                          |                                      |                     |                      |
|                       |                  |                 |           |              |                          |                                      |                     |                      |
|                       |                  |                 |           |              | 1000xln()                | R)                                   | -5 -101 5 10        |                      |

### Figure S9: Studies and two-pollutant model estimates selected for meta-analysis for all cardiovascular mortality, all ages, 24 hour NO<sub>2</sub>

| Author,Year<br>[RMID]   | City,<br>Country        | Study<br>Period | Access<br>ID | Particle<br>Co-pollutant | Correlation,<br>NO <sub>2</sub> + PM |                                       | ES (95% CI)         |
|-------------------------|-------------------------|-----------------|--------------|--------------------------|--------------------------------------|---------------------------------------|---------------------|
| Amr A,Single city       |                         |                 |              |                          |                                      |                                       |                     |
| Moolgavkar,2003 [162]   | Cook County, USA        | 1987-1995       | 12877        | None                     |                                      | •                                     | 0.52 (0.15, 0.89)   |
|                         |                         |                 | 22072        | PM <sub>10</sub>         | 0.49                                 | •                                     | 0.26 (-0.20, 0.73)  |
|                         | Los Angeles County, USA |                 | 12900        | None                     |                                      | •                                     | 0.52 (0.35, 0.69)   |
|                         |                         |                 | 22090        | PM <sub>10</sub>         | 0.70                                 | +                                     | 0.68 (0.22, 1.13)   |
| Amr B,Single city       |                         |                 |              |                          |                                      |                                       |                     |
| Borja-Aburto,1998 [214] | Mexico City, Mexico     | 1993-1995       | 570          | None                     |                                      | _ <b>+</b> •                          | 0.73 (-0.87, 2.33)  |
|                         |                         |                 | 20145        | PM <sub>2.5</sub>        | 0.57                                 |                                       | -0.36 (-2.51, 1.79) |
| Eur A,Single city       |                         |                 |              |                          |                                      |                                       |                     |
| Zeghnoun,2001 [1374]    | Rouen,France            | 1990-1995       | 22295        | None                     |                                      | <b>─</b> ◆──                          | 3.67 (0.92, 6.42)   |
|                         |                         |                 | 7861         | BS                       | 0.77                                 | + +                                   | 3.97 (-0.67, 8.60)  |
| Hoek,2000 [175]         | Netherlands,Netherlands | 1986-1994       | 5513         | None                     |                                      | <b>◆</b>                              | 0.92 (0.50, 1.34)   |
|                         |                         |                 | 5576         | PM <sub>10</sub>         | 0.62                                 | -                                     | 1.66 (0.50, 2.82)   |
| Sear B,Single city      |                         |                 |              |                          |                                      |                                       |                     |
| Wong,2008 [313]         | Bangkok,Thailand        | 1999-2003       | 16200        | None                     |                                      | <b> </b> −•−                          | 1.76 (0.47, 3.06)   |
|                         |                         |                 | 16273        | PM <sub>10</sub>         | 0.71                                 |                                       | -0.51 (-2.92, 1.90) |
| Wpr B,Single city       |                         |                 |              |                          |                                      |                                       |                     |
| Chen,2010 [2052]        | Anshan,China            | 2004-2006       | 21125        | None                     |                                      | <b> </b> →→                           | 2.09 (0.22, 3.96)   |
|                         |                         |                 | 21126        | PM <sub>10</sub>         | 0.55                                 | <b>_</b>                              | -0.15 (-2.70, 2.40) |
| Wong,2008 [313]         | Hong Kong,China         | 1996-2002       | 16212        | None                     |                                      | +                                     | 1.22 (0.64, 1.81)   |
|                         |                         |                 | 16297        | PM <sub>10</sub>         | 0.80                                 |                                       | 1.32 (0.54, 2.10)   |
|                         | Shanghai, China         | 2001-2004       | 16224        | None                     |                                      | <b>◆</b>                              | 1.00 (0.55, 1.46)   |
|                         |                         |                 | 16321        | PM <sub>10</sub>         | 0.75                                 | · · · · · · · · · · · · · · · · · · · | 0.98 (0.33, 1.62)   |
|                         | Wuhan,China             | 2001-2004       | 16236        | None                     |                                      | -+-                                   | 2.10 (1.17, 3.02)   |
|                         |                         |                 | 16345        | PM <sub>10</sub>         | 0.75                                 |                                       | 1.40 (0.24, 2.56)   |
|                         |                         |                 |              |                          |                                      |                                       |                     |
|                         |                         |                 |              |                          |                                      |                                       |                     |
|                         |                         |                 |              | 1000xln(RR               | )                                    | -5 -101 5                             | 10                  |

Figure S10: Studies and two-pollutant model estimates selected for meta-analysis for all respiratory mortality, all ages, 24 hour NO<sub>2</sub>

| Author,Year<br>[RMID]   | City,<br>Country   | Study<br>Period | Access<br>ID | Particle<br>Co-pollutant | Correlation,<br>NO <sub>2</sub> + PM |                                       | ES (95% CI)         |
|-------------------------|--------------------|-----------------|--------------|--------------------------|--------------------------------------|---------------------------------------|---------------------|
| Amr B,Single city       |                    |                 |              |                          |                                      |                                       |                     |
| Borja-Aburto,1998 [214] | Mexico City,Mexico | 1993-1995       | 569          | None                     |                                      | <b></b>                               | 1.20 (-1.44, 3.83)  |
|                         |                    |                 | 20144        | PM <sub>2.5</sub>        | 0.57                                 |                                       | 0.61 (-2.87, 4.08)  |
| Sear B,Single city      |                    |                 |              |                          |                                      |                                       |                     |
| Wong,2008 [313]         | Bangkok, Thailand  | 1999-2003       | 16204        | None                     |                                      | <b>+•</b>                             | 1.04 (-0.60, 2.69)  |
|                         |                    |                 | 16276        | PM <sub>10</sub>         | 0.71                                 | <b>_</b>                              | 0.32 (-2.70, 3.33)  |
| Wpr B,Single city       |                    |                 |              |                          |                                      |                                       |                     |
| Chen,2010 [2052]        | Anshan,China       | 2004-2006       | 21130        | None                     |                                      |                                       | -0.18 (-5.54, 5.18) |
|                         |                    |                 | 21131        | PM <sub>10</sub>         | 0.55                                 | • • • • • • • • • • • • • • • • • • • | -1.73 (-9.27, 5.80) |
| Wong,2008 [313]         | Hong Kong,China    | 1996-2002       | 16216        | None                     |                                      | +                                     | 1.14 (0.42, 1.87)   |
|                         |                    |                 | 16300        | PM <sub>10</sub>         | 0.80                                 | <b>→</b>                              | 0.87 (-0.11, 1.84)  |
|                         | Shanghai,China     | 2001-2004       | 16228        | None                     |                                      | <b>~</b>                              | 1.21 (0.42, 2.01)   |
|                         |                    |                 | 16324        | PM <sub>10</sub>         | 0.75                                 | <b>—</b>                              | 1.31 (0.21, 2.41)   |
|                         | Wuhan,China        | 2001-2004       | 16240        | None                     |                                      | _ <b></b>                             | 3.61 (1.75, 5.47)   |
|                         |                    |                 | 16348        | PM <sub>10</sub>         | 0.75                                 | <b></b>                               | 2.80 (0.46, 5.14)   |
|                         |                    |                 |              |                          |                                      |                                       |                     |
|                         |                    |                 |              |                          |                                      |                                       |                     |
|                         |                    |                 |              | 1000xln(F                | RR)                                  | -5 -101 5                             | 10                  |

25

Figure S11: All studies providing two-pollutant model estimates for all-cause mortality, all-ages, ultrafine particles (UFP) adjusted for 24 hour NO<sub>2</sub>

| Author,Year<br>[RMID] | City,<br>Country | Study<br>Period | Access<br>ID | Correlation,<br>UFP + NO <sub>2</sub> |                       | ES (95% CI)           |
|-----------------------|------------------|-----------------|--------------|---------------------------------------|-----------------------|-----------------------|
| Eur A,Single city     |                  |                 |              |                                       |                       |                       |
| Wichmann,2000 [1205]  | Erfurt,Germany   | 1995-1998       | 22277        |                                       | <b></b>               | 35.44 (-2.37, 73.25)  |
|                       |                  |                 | 22278        | 0.61                                  |                       | 30.91 (-12.71, 74.52) |
| Breitner,2009 [1954]  | Erfurt,Germany   | 1995-2002       | 16186        |                                       |                       | 70.00 (14.30, 125.69) |
|                       |                  |                 | 16189        | 0.62                                  |                       | 79.87 (15.60, 144.15) |
| Peters,2009 [621]     | Erfurt,Germany   | 1995-2001       | 22210        |                                       | <b></b>               | 29.34 (3.08, 55.61)   |
|                       |                  |                 | 22211        | 0.62                                  | <b>_</b>              | 40.26 (9.20, 71.31)   |
|                       |                  |                 |              |                                       |                       |                       |
|                       |                  |                 |              |                                       |                       |                       |
|                       |                  |                 |              |                                       |                       |                       |
|                       |                  |                 |              |                                       |                       |                       |
|                       |                  |                 |              |                                       | -20 0 20 40 60 80 100 |                       |

| [RMID]                  | Country                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PM + NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ES (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eur A,Single city       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Hoek,2000 [175]         | Netherlands,Netherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1986-1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.79 (0.40, 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>→</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.62 (0.02, 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Amr A,Single city       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Moolgavkar,2003 [162]   | Cook County, USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1987-1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>◆</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.40 (0.07, 0.73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.30 (-0.05, 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         | Los Angeles County, USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1987-1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ◆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.50 (0.05, 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>↓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.40 (-0.16, 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Eur A,Single city       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Hoek,2000 [175]         | Netherlands, Netherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1986-1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.19 (-0.16, 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>•</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.32 (-0.80, 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sear B,Single city      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Wong,2008 [313]         | Bangkok, Thailand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1999-2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.88 (0.80, 2.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.24 (0.24, 4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Wpr B,Single city       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Chen,2010 [2052]        | Anshan,China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2004-2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>→</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.67 (0.29, 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.69 (0.19, 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Wong,2008 [313]         | Hong Kong, China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1996-2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>→</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.61 (0.11, 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.13 (-0.78, 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Wong,2008 [313]         | Shanghai,China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2001-2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.27 (0.10, 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01 (-0.22, 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chen,2008 [1956]        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.27 (0.10, 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01 (-0.22, 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Wong,2008 [313]         | Wuhan,China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2001-2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.57 (0.31, 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.33 (0.00, 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -<br>Amr A,Single city  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Moolgavkar,2003 [162]   | Los Angeles County, USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1987-1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>→</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.90 (0.16, 1.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.20 (-1.10, 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Amr B,Single city       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Borja-Aburto,1998 [214] | Mexico City, Mexico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1993-1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>→</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.17 (-0.01, 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.67 (-2.92, 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         | [RMID]<br>Eur A,Single city<br>Hoek,2000 [175]<br>Amr A,Single city<br>Moolgavkar,2003 [162]<br>Eur A,Single city<br>Hoek,2000 [175]<br>Sear B,Single city<br>Wong,2008 [313]<br>Wpr B,Single city<br>Wong,2008 [313]<br>Wong,2008 [313]<br>Wong,2008 [313]<br>Chen,2008 [1956]<br>Wong,2008 [313]<br>Chen,2008 [1956]<br>Wong,2008 [313]<br>Chen,2008 [1956]<br>Wong,2008 [313]<br>Chen,2008 [1956]<br>Wong,2008 [313]<br>Amr A,Single city<br>Moolgavkar,2003 [162]<br>Amr B,Single city<br>Borja-Aburto,1998 [214] | [RMID]CountryEur A,Single city<br>Hoek,2000 [175]Netherlands,NetherlandsAmr A,Single city<br>Moolgavkar,2003 [162]Cook County,USA<br>Los Angeles County,USAEur A,Single city<br>Hoek,2000 [175]Netherlands,NetherlandsSear B,Single city<br>Wong,2008 [313]Bangkok,ThailandWpr B,Single city<br>Chen,2010 [2052]Anshan,ChinaWong,2008 [313]Hong Kong,ChinaWong,2008 [313]Shanghai,ChinaChen,2008 [1956]Wuhan,ChinaMoolgavkar,2003 [162]Los Angeles County,USAAmr A,Single city<br>Moolgavkar,2003 [162]Los Angeles County,USAAmr B,Single city<br>Borja-Aburto,1998 [214]Mexico City,Mexico | [RMID]CountryPeriodEur A,Single city<br>Hoek,2000 [175]Netherlands,Netherlands1986-1994Amr A,Single city<br>Moolgavkar,2003 [162]Cook County,USA1987-1995Eur A,Single city<br>Hoek,2000 [175]Netherlands,Netherlands1986-1994Sear B,Single city<br>Wong,2008 [313]Bangkok,Thailand1999-2003Wpr B,Single city<br>Chen,2010 [2052]Anshan,China2004-2006Wong,2008 [313]Hong Kong,China1996-2002Wong,2008 [313]Shanghai,China2001-2004Chen,2008 [1956]Wuhan,China2001-2004Amr A,Single city<br>Moolgavkar,2003 [162]Los Angeles County,USA1987-1995Amr B,Single city<br>Borja-Aburto,1998 [214]Mexico City,Mexico1993-1995 | [FMID]      Country      Period      ID        Eur A,Single city<br>Hoek,2000 [175]      Netherlands,Netherlands      1986-1994      5508<br>5583        Amr A,Single city<br>Moolgavkar,2003 [162]      Cook County,USA      1987-1995      12872<br>22071        Los Angeles County,USA      1987-1995      12892<br>22095        Eur A,Single city<br>Moolgavkar,2000 [175]      Netherlands,Netherlands      1986-1994      5507<br>5575        Sear B,Single city<br>Wong,2008 [313]      Netherlands,Netherlands      1986-1994      5507<br>5575        Sear B,Single city<br>Wong,2008 [313]      Hong Kong,China      1999-2003      16202<br>16284        Wpr B,Single city<br>Chen,2010 [2052]      Anshan,China      2004-2006      21796<br>21798        Wong,2008 [313]      Hong Kong,China      1996-2002      16214<br>163308        Wong,2008 [313]      Shanghai,China      2001-2004      16228<br>16332        Chen,2008 [1956]      Uhan,China      2001-2004      16238<br>16356        Tarr A,Single city<br>Moolgavkar,2003 [162]      Los Angeles County,USA      1987-1995      12895<br>22101        Amr B,Single city<br>Borja-Aburto, 1998 [214]      Mexico City,Mexico      1993-1995      560<br>20125 | [RMID]      Country      Period      ID      PM + NO2        Eur A, Single city<br>Hoek, 2000 [175]      Netherlands, Netherlands      1986-1994      5508      5583      0.87        Amr A, Single city<br>Moolgavkar, 2003 [162]      Cook County, USA      1987-1995      12872      22071      0.49        Los Angeles County, USA      1987-1995      12892      2095      0.70        Eur A, Single city<br>Hoek, 2000 [175]      Netherlands, Netherlands      1986-1994      5507      5575      0.62        Sear B, Single city<br>Wong, 2008 [313]      Netherlands, Netherlands      1999-2003      16202      16284      0.71        Wpr B, Single city<br>Wong, 2008 [313]      Bangkok, Thailand      1999-2003      16202      16284      0.71        Wpr B, Single city<br>Wong, 2008 [313]      Hong Kong, China      1996-2002      21796      21798      0.55        Wong, 2008 [313]      Shanghai, China      2001-2004      16226      16332      0.71        Wong, 2008 [313]      Shanghai, China      2001-2004      16238      16356      0.75        Amr A, Single city<br>Moolgavkar, 2003 [162]      Los Angeles County, USA      1987-1995      12895 <td>[RMID]      Country      Period      ID      PM + NO2        Eur A, Single city<br/>Hoek, 2000 [175]      Netherlands, Netherlands      1986-1994      5508      5583      0.87        Amr A, Single city<br/>Moolgavkar, 2003 [162]      Cook County, USA      1987-1995      12872      22071      0.49        Los Angeles County, USA      1987-1995      12892      0.70      22095      0.70        Eur A, Single city<br/>Hoek, 2000 [175]      Netherlands, Netherlands      1986-1994      5507      5575      0.62        Sear B, Single city<br/>Wong, 2008 [313]      Bangkok, Thailand      1999-2003      16202      16204      0.71        Wpr B, Single city<br/>Wong, 2008 [313]      Anshan, China      2004-2006      21796      0.55        Wong, 2008 [313]      Hong Kong, China      1996-2002      16214      0.75        Wong, 2008 [313]      Shanghai, China      2001-2004      16228      0.75        Moolgavkar, 2003 [162]      Los Angeles County, USA      1987-1995      12836      0.75        Moolgavkar, 2003 [162]      Los Angeles County, USA      1987-1995      12895      0.75        Moolgavkar, 2003 [162]      Los Ange</td> <td>[FMID]      Country      Period      ID      PMI + NO2        Eur A.Single city<br/>Hoek.2000 [175]      Netherlands, Netherlands      1986-1994      5508      0.87        Am A.Single city<br/>Modgavkar.2003 [162]      Cook County,USA      1987-1995      12872      -        Los Angeles County,USA      1987-1995      12872      -      -        Ame, Single city<br/>Modgavkar.2003 [162]      Cook County,USA      1987-1995      12872      -        Eur A.Single city<br/>Modgavkar.2003 [175]      Netherlands, Netherlands      1986-1994      5507      0.62        Sear B.Single city<br/>Wong.2008 [313]      Retherlands, Netherlands      1999-2003      16202      0.71        Worg B.Single city<br/>Wong.2008 [313]      Anshan, China      2004-2006      21796      0.55        Wong.2008 [313]      Hong Kong, China      1996-2002      16224      0.71        Wong.2008 [313]      Shanghai, China      2001-2004      16226      0.75        Modgavkar.2003 [162]      Kuhan, China      2001-2004      16226      0.75        Mong.2008 [313]      Wuhan, China      2001-2004      16226      0.75        Mongavkar.2003 [162]</td> | [RMID]      Country      Period      ID      PM + NO2        Eur A, Single city<br>Hoek, 2000 [175]      Netherlands, Netherlands      1986-1994      5508      5583      0.87        Amr A, Single city<br>Moolgavkar, 2003 [162]      Cook County, USA      1987-1995      12872      22071      0.49        Los Angeles County, USA      1987-1995      12892      0.70      22095      0.70        Eur A, Single city<br>Hoek, 2000 [175]      Netherlands, Netherlands      1986-1994      5507      5575      0.62        Sear B, Single city<br>Wong, 2008 [313]      Bangkok, Thailand      1999-2003      16202      16204      0.71        Wpr B, Single city<br>Wong, 2008 [313]      Anshan, China      2004-2006      21796      0.55        Wong, 2008 [313]      Hong Kong, China      1996-2002      16214      0.75        Wong, 2008 [313]      Shanghai, China      2001-2004      16228      0.75        Moolgavkar, 2003 [162]      Los Angeles County, USA      1987-1995      12836      0.75        Moolgavkar, 2003 [162]      Los Angeles County, USA      1987-1995      12895      0.75        Moolgavkar, 2003 [162]      Los Ange | [FMID]      Country      Period      ID      PMI + NO2        Eur A.Single city<br>Hoek.2000 [175]      Netherlands, Netherlands      1986-1994      5508      0.87        Am A.Single city<br>Modgavkar.2003 [162]      Cook County,USA      1987-1995      12872      -        Los Angeles County,USA      1987-1995      12872      -      -        Ame, Single city<br>Modgavkar.2003 [162]      Cook County,USA      1987-1995      12872      -        Eur A.Single city<br>Modgavkar.2003 [175]      Netherlands, Netherlands      1986-1994      5507      0.62        Sear B.Single city<br>Wong.2008 [313]      Retherlands, Netherlands      1999-2003      16202      0.71        Worg B.Single city<br>Wong.2008 [313]      Anshan, China      2004-2006      21796      0.55        Wong.2008 [313]      Hong Kong, China      1996-2002      16224      0.71        Wong.2008 [313]      Shanghai, China      2001-2004      16226      0.75        Modgavkar.2003 [162]      Kuhan, China      2001-2004      16226      0.75        Mong.2008 [313]      Wuhan, China      2001-2004      16226      0.75        Mongavkar.2003 [162] |

Figure S12: All studies providing two-pollutant model estimates for all cardiovascular mortality, all-ages, PM adjusted for 24 hour NO<sub>2</sub>



#### Figure S13: All studies providing two-pollutant model estimates for all respiratory mortality, all-ages, PM adjusted for 24 hour NO<sub>2</sub>

Figure S14: Studies providing two-pollutant model estimates for meta-analysis for all respiratory hospital admissions, various age groups, 24 hour NO<sub>2</sub>

| Author,Year<br>[RMID] | City,<br>Country                    | Study<br>Period | Age* | Access<br>ID | Particle<br>Co-pollutant |            |      |     |     | ES (95% CI)         |
|-----------------------|-------------------------------------|-----------------|------|--------------|--------------------------|------------|------|-----|-----|---------------------|
| Eur A,Single city     |                                     |                 |      |              |                          |            |      |     |     |                     |
| Hagen,2000 [1071]     | Drammen,Norway                      | 1994-1997       | AA   | 4371         | None                     |            |      |     |     | 2.70 (-0.29, 5.68)  |
|                       |                                     |                 |      | 3681         | PM <sub>10</sub>         | 0.61       | -    | +   |     | 2.06 (-1.66, 5.78)  |
| Oftedal,2003 [1556]   | Drammen, Norway                     | 1994-2000       | AA   | 12620        | None                     |            |      |     | _   | 2.80 (0.81, 4.79)   |
|                       |                                     |                 |      | 12632        | PM <sub>10</sub>         | -0.47-0.78 |      |     |     | 2.94 (0.38, 5.49)   |
| Wong,2002 [1429]      | London,UK                           | 1992-1994       | Е    | 22188        | None                     |            |      | +   |     | -0.10 (-0.60, 0.40) |
|                       |                                     |                 |      | 22189        | PM <sub>10</sub>         | 0.68       |      | •   |     | -0.40 (-1.21, 0.41) |
|                       |                                     |                 |      |              |                          |            |      |     |     |                     |
| Wpr A,Multi-city      |                                     |                 |      |              |                          |            |      |     |     |                     |
| Barnett,2005 [2039]   | 7 Australia &<br>New Zealand cities | 1998-2001       | С    | 18986        | None                     |            |      |     | •   | 5.78 (1.73, 9.83)   |
|                       |                                     |                 |      | 19024        | PM <sub>10</sub>         | 0.21-0.57  |      | -   | •   | 6.36 (3.03, 9.69)   |
|                       |                                     |                 |      |              |                          |            |      |     |     |                     |
| Wpr B,Single city     |                                     |                 |      |              |                          |            |      |     |     |                     |
| Wong,2002 [1429]      | Hong Kong,China                     | 1995-1997       | Е    | 8202         | None                     |            |      | +   |     | 1.78 (1.19, 2.38)   |
|                       |                                     |                 |      | 8319         | PM <sub>10</sub>         | 0.82       |      | -   |     | 1.69 (0.80, 2.57)   |
|                       |                                     |                 |      |              |                          |            |      |     |     |                     |
|                       |                                     |                 |      |              |                          |            |      |     |     |                     |
|                       |                                     |                 |      |              |                          |            | F    |     |     |                     |
|                       |                                     |                 |      |              | 1000xln(RR)              |            | -0 - | 101 | 5 1 | 0                   |

\* Age: AA = all ages; E = Elderly; C = Children

Figure S15: Studies providing two-pollutant model estimates for meta-analysis for all respiratory hospital admissions, various age groups, 1 hour NO<sub>2</sub>

| Author,Year<br>[RMID] | City,<br>Country                 | Study<br>Period | Age* | Access<br>ID | Particle<br>Co-pollutan | t           |              |                      | ES (95% CI)        |
|-----------------------|----------------------------------|-----------------|------|--------------|-------------------------|-------------|--------------|----------------------|--------------------|
| Amr B,Single city     |                                  |                 |      |              |                         |             |              |                      |                    |
| Gouveia,2000 [207]    | Sao Paulo,Brazil                 | 1992-1994       | С    | 5454         | None                    |             |              | •                    | 0.19 (-0.00, 0.39) |
|                       |                                  |                 | С    | 22004        | PM <sub>10</sub>        | 0.40        |              | •                    | 0.13 (-0.09, 0.35) |
|                       |                                  |                 |      |              |                         |             |              |                      |                    |
| Wpr A,Multi-city      |                                  |                 |      |              |                         |             |              |                      |                    |
| Simpson,2005 [134]    | 4 Australian Cities, Australia   | 1996-1999       | E    | 13922        | None                    |             |              | +                    | 1.41 (0.78, 2.04)  |
|                       |                                  |                 | E    | 13945        | Visibility              | 0.29 - 0.62 |              | +                    | 1.20 (0.47, 1.93)  |
| Barnett,2005 [2039]   | 7 Australia & New Zealand cities | 1998-2001       | С    | 18977        | None                    |             |              | -                    | 1.60 (0.41, 2.80)  |
|                       |                                  |                 | С    | 19020        | PM <sub>2.5</sub>       | 0.34 - 0.68 |              |                      | 4.74 (0.41, 9.07)  |
|                       |                                  |                 | С    | 19021        | PM <sub>10</sub>        | 0.21 - 0.57 |              | •                    | 0.41 (-6.18, 6.99) |
|                       |                                  |                 |      |              |                         |             |              |                      |                    |
|                       |                                  |                 |      |              |                         |             |              |                      |                    |
|                       |                                  |                 |      |              |                         |             | I I<br>-5 -1 | <br>       <br>0 1 5 | l<br>10            |
|                       |                                  |                 |      | 100          | 0xln(RR)                |             |              |                      |                    |

\* Age: C = Children; E = Elderly

| Author,Year<br>[RMID] | City,<br>Country     | Study<br>Period | Access<br>ID | Particle<br>Co-pollutant | Correlation,<br>NO <sub>2</sub> + PM |             | ES (95% CI)           |
|-----------------------|----------------------|-----------------|--------------|--------------------------|--------------------------------------|-------------|-----------------------|
| Eur A, Multi-city     |                      |                 |              |                          |                                      |             |                       |
| Sunyer,1997 [398]     | 3 European Cities,EU | 1986-1992       | 1658         | None                     |                                      | •           | 0.51 (0.12, 0.91)     |
|                       | 2 European Cities,EU |                 | 1688         | BS                       | 0.29 – 0.49                          | -           | 0.71 (-0.90, 2.31)    |
| Eur A,Single city     |                      |                 |              |                          |                                      |             |                       |
| Andersen,2007 [519]   | Copenhagen, Denmark  | 1999-2004       | 18396        | None                     |                                      |             | 8.99 (2.13, 15.85)    |
|                       |                      |                 | 18397        | PM <sub>10</sub>         | 0.42 —                               | •           | 2.35 (-6.47, 11.17)   |
| Andersen,2008 [1950]  | Copenhagen,Denmark   | 2001-2004       | 16168        | None                     | _                                    |             | 3.42 (-7.26, 14.10)   |
|                       |                      |                 | 16169        | PNC                      | 0.68                                 | •           | -2.65 (-16.23, 10.93) |
| Anderson,1998 [380]   | London,UK            | 1987-1992       | 2128         | None                     |                                      | •           | 0.65 (0.16, 1.14)     |
|                       |                      |                 | 1888         | BS                       |                                      | •           | 1.17 (0.43, 1.90)     |
| Wpr B,Single city     |                      |                 |              |                          |                                      |             |                       |
| Lee,2002 [1466]       | Seoul,South Korea    | 1997-1999       | 8586         | None                     |                                      | -           | 5.00 (3.41, 6.60)     |
|                       |                      |                 | 8587         | PM <sub>10</sub>         | 0.738                                |             | 4.38 (2.42, 6.33)     |
|                       |                      |                 |              |                          |                                      |             |                       |
|                       |                      |                 |              |                          |                                      | 1           |                       |
|                       |                      |                 |              | 100                      | <br>0xln(RR)                         | 5 -101 5 10 |                       |

Figure S16: Studies providing two-pollutant model estimates for meta-analysis for hospital admissions for asthma, children, 24 hour NO<sub>2</sub>

Figure S17: Studies providing two-pollutant model estimates for meta-analysis for hospital admissions for asthma, various age groups, 24 hour NO<sub>2</sub>

| Author,Year<br>[RMID] | City,<br>Country     | Study<br>Period | Age* | Access<br>ID | Particle<br>Co-pollutant | Correlation,<br>NO <sub>2</sub> + PM |          | ES (95% CI)        |
|-----------------------|----------------------|-----------------|------|--------------|--------------------------|--------------------------------------|----------|--------------------|
| Eur A,Multi-city      |                      |                 |      |              |                          |                                      |          |                    |
| Sunyer,1997 [398]     | 4 European Cities,EL | J 1986-1992     | YA   | 2069         | None                     |                                      | •        | 0.57 (0.06, 1.08)  |
|                       | 3 European Cities,EL | J               |      | 1682         | BS                       | 0.29 - 0.49                          | •        | 1.07 (0.10, 2.04)  |
|                       |                      |                 |      |              |                          |                                      |          |                    |
| Eur A,Single city     |                      |                 |      |              |                          |                                      |          |                    |
| Anderson, 1998 [380   | 0] London,UK         | 1987-1992       | AA   | 2373         | None                     |                                      | •        | 0.65 (0.26, 1.04)  |
|                       |                      |                 |      | 1921         | BS                       |                                      | •        | 0.64 (0.25, 1.03)  |
| Anderson, 1998 [380   | 0] London,UK         | 1987-1992       | E    | 2349         | None                     |                                      | -        | 1.52 (0.35, 2.70)  |
|                       |                      |                 |      | 1909         | BS                       | -                                    | •        | 0.97 (-0.78, 2.73) |
| Galan,2003 [123]      | Madrid,Spain         | 1995-1998       | AA   | 12193        | None                     |                                      |          | 3.25 (1.29, 5.20)  |
|                       |                      |                 |      | 22286        | PM <sub>10</sub>         | 0.717                                | <b>•</b> | 0.10 (-2.94, 3.14) |
|                       |                      |                 |      |              |                          |                                      |          |                    |
|                       |                      |                 |      |              |                          |                                      |          |                    |
|                       |                      |                 |      |              | 1000xln(RR)              | I I<br>-5 -1                         | 0 1 5 10 | )                  |

\* Age: AA = All-ages; E = Elderly; YA = Young adults

Figure S18: Studies providing two-pollutant model estimates for meta-analysis for hospital admissions for cardiac disease, all-ages, 24 hour NO<sub>2</sub>

| Author, Year<br>[RMID] | City,<br>Country       | Study<br>Period | Access<br>ID | Particle<br>Co-pollutant | Correlation,<br>NO <sub>2</sub> + PM |    |      |          |   | ES (95% CI)        |
|------------------------|------------------------|-----------------|--------------|--------------------------|--------------------------------------|----|------|----------|---|--------------------|
| Eur A,Multi-city       |                        |                 |              |                          |                                      |    |      |          |   |                    |
| Ballester,2006 [1646]  | 4 Spanish Cities,Spain | 1995-1999       | 22279        | None                     |                                      |    |      | <b>◆</b> |   | 0.68 (0.17, 1.19)  |
|                        |                        |                 | 22280        | BS                       | 0.23 - 0.69                          |    | _    | ◆        |   | 0.36 (-0.65, 1.37) |
|                        | 5 Spanish Cities,Spain |                 | 22281        | None                     |                                      |    |      | •        |   | 0.67 (0.06, 1.28)  |
|                        |                        |                 | 22282        | PM <sub>10</sub>         | 0.13 - 0.62                          |    | -    | -        |   | 0.02 (-0.67, 0.72) |
|                        | 6 Spanish Cities,Spain |                 | 22283        | None                     |                                      |    |      | +        |   | 1.02 (0.45, 1.60)  |
|                        |                        |                 | 22284        | TSP                      | 0.13 - 0.65                          |    |      | +        |   | 1.07 (0.43, 1.71)  |
|                        |                        |                 |              |                          |                                      |    |      |          |   |                    |
| Eur A,Single city      |                        |                 |              |                          |                                      |    |      |          |   |                    |
| Wong,2002 [1429]       | London,UK              | 1992-1994       | 8214         | None                     |                                      |    |      | <b>+</b> |   | 0.70 (0.30, 1.10)  |
|                        |                        | 1992-1994       | 8343         | PM <sub>10</sub>         | 0.68                                 |    |      | •        |   | 0.60 (0.00, 1.20)  |
|                        |                        |                 |              |                          |                                      |    |      |          |   |                    |
| Wpr B,Single city      |                        |                 |              |                          |                                      |    |      |          |   |                    |
| Wong,2002 [1429]       | Hong Kong,China        | 1995-1997       | 8206         | None                     |                                      |    |      | +        |   | 1.39 (0.90, 1.88)  |
|                        |                        | 1995-1997       | 8331         | PM <sub>10</sub>         | 0.82                                 |    |      | -        |   | 1.69 (0.90, 2.48)  |
|                        |                        |                 |              |                          |                                      |    |      |          |   |                    |
|                        |                        |                 |              |                          |                                      |    |      |          |   |                    |
|                        |                        |                 |              |                          |                                      |    |      |          | 1 |                    |
|                        |                        |                 |              | 1000x                    | In(RR)                               | -5 | -1 ( | ) 1      | 5 | 10                 |

Figure S19: Studies providing two-pollutant model estimates for meta-analysis for hospital admissions for cardiac disease, elderly, 24 hour NO<sub>2</sub>

| Author,Year<br>[RMID]  | City,<br>Country   | Study<br>Period | Access<br>ID | Particle<br>Co-pollutant | Correlation,<br>NO <sub>2</sub> + PM |        |                | ES (95% CI)          |
|------------------------|--------------------|-----------------|--------------|--------------------------|--------------------------------------|--------|----------------|----------------------|
| Amr A,Single city      |                    |                 |              |                          |                                      |        |                |                      |
| Moolgavkar,2000 [1196] | Cook County,USA    | 1987-1995       | 6841         | None                     |                                      |        | +              | 1.49 (1.21, 1.78)    |
|                        |                    |                 | 6846         | PM <sub>10</sub>         | 0.49                                 |        | +              | 1.19 (0.84, 1.54)    |
|                        |                    |                 |              |                          |                                      |        |                |                      |
| Eur A,Single city      |                    |                 |              |                          |                                      |        |                |                      |
| Andersen,2007 [519]    | Copenhagen,Denmark | 1999-2004       | 18381        | None                     |                                      | _      | •              | 0.96 (-0.52, 2.45)   |
|                        |                    |                 | 18383        | PM <sub>10</sub>         | 0.42                                 |        |                | 0.00 (-1.89, 1.89)   |
| Andersen,2008 [1950]   | Copenhagen,Denmark | 2001-2004       | 16127        | None                     |                                      |        | •              | 0.00 (-1.76, 1.76)   |
|                        |                    |                 | 16137        | PNC                      | 0.66                                 |        |                | - 0.00 (-3.56, 3.56) |
|                        |                    |                 |              |                          |                                      |        |                |                      |
|                        |                    |                 |              |                          |                                      |        |                |                      |
|                        |                    |                 |              | 1000vd#(PP)              | <br>-5                               | <br>-1 | <br>   <br>0 1 |                      |

# Figure S20: All available studies providing estimates from both all-year and season-specific models for 24 hour NO<sub>2</sub> and all-cause mortality in all-ages

| Author,Year<br>[RMID]                      | City,<br>Country          | Study<br>Period | Access<br>ID                     | Lag                                    | Season                            |    |            | ES (95% CI)                                                                          |
|--------------------------------------------|---------------------------|-----------------|----------------------------------|----------------------------------------|-----------------------------------|----|------------|--------------------------------------------------------------------------------------|
| Amr A,Multi-city<br>Brook,2007 [485]       | 10 Canadian cities,Canada | 1980-2000       | 15647<br>15649<br>15650          | lag 1<br>lag 1                         | all<br>summer                     |    | *          | 0.66 (0.40, 0.91)<br>1.16 (0.76, 1.55)<br>0.46 (0.25, 0.68)                          |
| Burnett,2004 [3000]                        | 12 Canadian Cities,Canada | 1981-1999       | 22140<br>22300<br>22301          | lag 0-2<br>lag 0-2<br>lag 0-2          | all<br>summer<br>winter           |    | •          | 0.46 (0.29, 0.75)<br>0.95 (0.51, 1.40)<br>0.28 (0.04, 0.52)                          |
| Amr A,Single city<br>Moolgavkar,2003 [162] | Cook County, USA          | 1987-1995       | 12723<br>12780                   | lag 1<br>lag 1                         | all<br>summer                     |    | •          | 0.57 (0.33, 0.81)<br>1.04 (0.50, 1.57)                                               |
|                                            | Los Angeles County, USA   | 1987-1995       | 12805<br>12744<br>12836<br>22328 | lag 1<br>lag 2<br>lag 5                | all<br>summer<br>winter           |    |            | 0.52 (0.40, 0.64)<br>0.83 (0.47, 1.19)<br>0.52 (-1.51, 2.55)                         |
| Eur A,Single city                          |                           |                 |                                  |                                        |                                   |    |            |                                                                                      |
| Wichmann,2000 [1205]                       | Erfurt,Germany            | 1995-1998       | 7480<br>7498                     | lag 4<br>lag 4                         | all<br>summer                     | _  |            | 1.43 (-0.40, 3.26)<br>-0.20 (-3.63, 3.23)                                            |
| Peters,2009 [621]                          |                           | 1995-2001       | 7496<br>21687<br>22325           | lag 4<br>lag 3<br>lag 3                | winter<br>all<br>summer           | _  | •          | 1.96 (-0.05, 3.97)<br>0.69 (-0.88, 2.27)<br>-1.65 (-3.74, 0.44)                      |
| Anderson,1996 [268]                        | London,UK                 | 1987-1992       | 22323<br>641<br>643              | lag 3<br>lag 1<br>lag 1                | winter<br>all<br>summer           |    |            | 1.05 (-0.05, 2.16)<br>0.14 (-0.02, 0.30)<br>0.25 (-0.04, 0.55)<br>0.10 (-0.10, 0.32) |
| Hoek,2000 [175]                            | Netherlands, Netherlands  | 1986-1994       | 5503<br>5544<br>5543             | lag 1<br>lag 0-6<br>lag 0-6            | all<br>summer<br>winter           |    | •          | 0.57 (0.40, 0.75)<br>1.37 (0.76, 1.98)<br>0.82 (0.46, 1.18)                          |
| Michelozzi, 1998 [219]                     | Rome,Italy                | 1992-1995       | 1196<br>1202<br>1200             | lag 2<br>lag 2<br>lag 2                | all<br>summer<br>winter           |    | <b>*</b>   | 0.43 (0.10, 0.76)<br>1.09 (0.48, 1.71)<br>0.07 (-0.32, 0.46)                         |
| Michelozzi,2000 [1299]                     |                           | 1992-1995       | 7320<br>7324<br>7322             | lag 1-2<br>lag 1-2<br>lag 1-2          | all<br>summer<br>winter           |    | <b>*</b> + | 0.40 (0.10, 0.70)<br>1.09 (0.50, 1.69)<br>0.10 (-0.30, 0.50)                         |
| Ocana-Riola, 1999 [190]                    | Seville,Spain             | 1992-1996       | 1031<br>1032<br>1033             | lag 0<br>lag 4<br>lag 0                | all<br>summer<br>winter           |    |            | -1.10`(-2.26, 0.05)<br>1.71 (0.04, 3.37)<br>-2.57 (-3.98, -1.15)                     |
| Wpr A,Single city                          |                           |                 |                                  |                                        |                                   |    |            |                                                                                      |
| Simpson,1997 [233]                         | Brisbane,Australia        | 1987-1993       | 1142<br>1143                     | lag 0<br>lag 0                         | all<br>summer                     | -  |            | -0.27 (-1.39, 0.86)<br>-0.96 (-3.11, 1.19)                                           |
| Simpson,2000 [148]                         | Melbourne, Australia      | 1991-1996       | 1144<br>5634<br>5636<br>5635     | lag 0<br>lag 1<br>lag 1<br>lag 1       | winter<br>all<br>summer<br>winter |    | <b></b>    | 0.31 (-1.13, 1.74)<br>1.25 (0.63, 1.88)<br>1.88 (0.73, 3.03)<br>0.78 (-0.05, 1.62)   |
| Wpr B,Multi-city*<br>Wong,2008 [313]       | Shanghai,China            | 2001-2004       | 16220<br>22302<br>22303          | lag 0-1<br>lag 0-1<br>lag 0-1          | all<br>summer<br>winter           |    | <b>*</b>   | 0.97 (0.66, 1.27)<br>0.46 (-0.07, 0.99)<br>1.23 (0.84, 1.63)                         |
| Wpr B,Single city<br>Wong,2001 [1327]      | Hong Kong,China           | 1995-1997       | 5978<br>6002                     | lag 1<br>lag 1                         | all<br>summer                     |    | <b>*</b>   | 0.67 (0.23, 1.12)<br>0.44 (-0.22, 1.09)                                              |
| Kan,2008 [1973]                            | Shanghai,China            | 2001-2004       | 6003<br>17349<br>17350<br>17351  | lag 1<br>lag 0-1<br>lag 0-1<br>lag 0-1 | winter<br>all<br>summer<br>winter |    | •          | 1.16 (0.47, 1.85)<br>0.97 (0.66, 1.27)<br>0.46 (-0.07, 0.99)<br>1.23 (0.84, 1.63)    |
|                                            |                           |                 |                                  |                                        |                                   |    |            |                                                                                      |
|                                            |                           |                 |                                  |                                        |                                   | -5 | -101 5     | и<br>10                                                                              |
|                                            |                           |                 |                                  | 1000xlr                                | n(RR)                             |    |            |                                                                                      |

# Figure S21: All available studies providing estimates from both all-year and season-specific models for 24 hour NO<sub>2</sub> and all cardiovascular mortality in all ages

| Author,Year<br>[RMID]  | City,<br>Country       | Study<br>Period | Access<br>ID | Lag     | Season |    |          | ES (95% CI)         |
|------------------------|------------------------|-----------------|--------------|---------|--------|----|----------|---------------------|
| Amr A,Single city      |                        |                 |              |         |        |    |          |                     |
| Moolgavkar,2003 [162]  | Cook County, USA       | 1987-1995       | 12877        | lag 3   | all    |    | <b>◆</b> | 0.52 (0.15, 0.89)   |
|                        |                        |                 | 12938        | lag 2   | summer |    |          | 1.19 (0.38, 2.00)   |
|                        |                        |                 | 12963        | lag 4   | winter |    | -        | 0.93 (0.23, 1.64)   |
|                        | Los Angeles County,USA |                 | 12900        | lag 1   | all    |    | •        | 0.52 (0.35, 0.69)   |
|                        |                        |                 | 12992        | lag 2   | summer |    | +        | 0.93 (0.41, 1.46)   |
|                        |                        |                 | 13024        | lag 3   | winter |    | •        | 0.31 (0.01, 0.62)   |
| Eur A,Single city      |                        |                 |              |         |        |    |          |                     |
| Anderson,1996 [268]    | London,UK              | 1987-1992       | 650          | lag 0   | all    |    | •        | 0.12 (-0.11, 0.35)  |
|                        |                        |                 | 652          | lag 0   | summer |    | +        | 0.44 (0.03, 0.84)   |
|                        |                        |                 | 651          | lag 0   | winter |    | +        | -0.02 (-0.30, 0.25) |
| Ocana-Riola,1999 [190] | Seville,Spain          | 1992-1996       | 1043         | lag 3   | all    |    | +        | 1.19 (-0.60, 2.97)  |
|                        |                        |                 | 1044         | lag 3   | summer |    |          | 3.22 (0.56, 5.89)   |
|                        |                        |                 | 1045         | lag 0   | winter | •  |          | -2.11 (-4.25, 0.03) |
| Wpr B,Multi-city       |                        |                 |              |         |        |    |          |                     |
| Wong,2008 [313]        | Shanghai,China         | 2001-2004       | 16224        | lag 0-1 | all    |    | +        | 1.00 (0.55, 1.46)   |
|                        |                        |                 | 22304        | lag 0-1 | summer |    | <b>-</b> | 0.30 (-0.54, 1.14)  |
|                        |                        |                 | 22305        | lag 0-1 | winter |    | +        | 1.25 (0.68, 1.83)   |
| Wpr B,Single city      |                        |                 |              |         |        |    |          |                     |
| Wong,2001 [1327]       | Hong Kong, China       | 1995-1997       | 5982         | lag 2   | all    |    | -        | 1.33 (0.45, 2.21)   |
|                        |                        |                 | 6010         | lag 2   | summer |    | <b>—</b> | 0.00 (-1.36, 1.36)  |
|                        |                        |                 | 6011         | lag 2   | winter |    |          | 2.26 (1.16, 3.37)   |
| Kan,2008 [1973]        | Shanghai,China         | 2001-2004       | 17373        | lag 0-1 | all    |    | +        | 1.00 (0.55, 1.46)   |
|                        |                        |                 | 17374        | lag 0-1 | summer |    | <b>-</b> | 0.30 (-0.54, 1.14)  |
|                        |                        |                 | 17375        | lag 0-1 | winter |    | +        | 1.25 (0.68, 1.83)   |
|                        |                        |                 |              |         |        |    |          |                     |
|                        |                        |                 |              |         |        | -5 | -101 5   | <br>10              |
|                        |                        |                 |              | 1000xln | (RR)   |    |          |                     |

# Figure S22: All available studies providing estimates from both all-year and season-specific models for 24 hour NO<sub>2</sub> and all respiratory mortality in all-ages

| Author,Year<br>[RMID]  | City,<br>Country    | Study<br>Period | Access<br>ID | Lag     | Season     | ES (95% CI)          |
|------------------------|---------------------|-----------------|--------------|---------|------------|----------------------|
| Eur A,Single city      |                     |                 |              |         |            |                      |
| Anderson,1996 [268]    | London,UK           | 1987-1992       | 659          | lag 1   | all 🔶      | -0.18 (-0.63, 0.28)  |
|                        |                     |                 | 661          | lag 1   | summer     | -0.51 (-1.37, 0.34)  |
|                        |                     |                 | 660          | lag 1   | winter 🔶   | -0.05 (-0.56, 0.45)  |
| Ocana-Riola,1999 [190] | Seville,Spain       | 1992-1996       | 1058         | lag 0   | all —      | -2.27 (-5.56, 1.02)  |
|                        |                     |                 | 1059         | lag 1   | summer +   | 3.07 (-2.30, 8.44)   |
|                        |                     |                 | 1060         | lag 0   | winter     | -3.70 (-7.70, 0.29)  |
| Wpr A,Single city      |                     |                 |              |         |            |                      |
| Simpson, 1997 [233]    | Brisbane,Australia  | 1987-1993       | 1233         | lag 0   | all —      | -2.19 (-6.18, 1.81)  |
|                        |                     |                 | 1234         | lag 0   | summer 🔶 🔶 | -3.83 (-12.13, 4.47) |
|                        |                     |                 | 1235         | lag 0   | winter     | -1.94 (-6.66, 2.77)  |
| Simpson,2000 [148]     | Melbourne,Australia | 1991-1996       | 5646         | lag 0   | all —      | 2.35 (0.16, 4.54)    |
|                        |                     |                 | 5648         | lag 0   | summer     | 7.63 (3.75, 11.51)   |
|                        |                     |                 | 5647         | lag 0   | winter     | -0.99 (-3.94, 1.95)  |
| Wpr B,Multi-city       |                     |                 |              |         |            |                      |
| Wong,2008 [313]        | Shanghai, China     | 2001-2004       | 16228        | lag 0-1 | all 🔶      | 1.21 (0.42, 2.01)    |
|                        |                     |                 | 22306        | lag 0-1 | summer     | -1.38 (-2.90, 0.14)  |
|                        |                     |                 | 22307        | lag 0-1 | winter -   | 2.63 (1.66, 3.59)    |
| Wpr B,Single city      |                     |                 |              |         |            |                      |
| Wong,2001 [1327]       | Hong Kong, China    | 1995-1997       | 5986         | lag 0   | all 🔶      | 1.54 (0.45, 2.64)    |
|                        |                     |                 | 6018         | lag 0   | summer     | 1.07 (-0.22, 2.37)   |
|                        |                     |                 | 6019         | lag 0   | winter     | 2.05 (0.47, 3.62)    |
| Kan,2008 [1973]        | Shanghai,China      | 2001-2004       | 17385        | lag 0-1 | all 🔶      | 1.21 (0.42, 2.01)    |
|                        |                     |                 | 17386        | lag 0-1 | summer     | -1.38 (-2.90, 0.14)  |
|                        |                     |                 | 17387        | lag 0-1 | winter -   | 2.63 (1.66, 3.59)    |
|                        |                     |                 |              |         |            |                      |
|                        |                     |                 |              |         | -5 -101 5  | <br>10               |
|                        |                     |                 |              | 1000    | xln(RR)    |                      |

Figure S23: All available studies providing estimates from both all-year and season-specific models for 24 hour NO<sub>2</sub> and all respiratory and all cardiovascular hospital admissions in all-ages

| Author,Year<br>[RMID] | Diagnosis          | City,<br>Country | Study<br>Period | Access<br>ID | Lag     | Season |                  | ES (95% CI)          |
|-----------------------|--------------------|------------------|-----------------|--------------|---------|--------|------------------|----------------------|
| Eur A,Single city     |                    |                  |                 |              |         |        |                  |                      |
| De Leon,1996 [417]    | All respiratory    | London,UK        | 1987-1992       | 1404         | lag 2   | all    | •                | 0.22 (0.01, 0.43)    |
|                       |                    |                  |                 | 1396         | lag 2   | summer | •                | 0.47 (0.07, 0.88)    |
|                       |                    |                  |                 | 1388         | lag 2   | winter | •                | 0.13 (-0.12, 0.37)   |
|                       |                    |                  |                 |              |         |        |                  |                      |
| Sear D,Single city    |                    |                  |                 |              |         |        |                  |                      |
| Jayaraman,2008 [739]  | All respiratory    | Delhi,India      | 2004-2005       | 18727        | lag 3   | all    | +                | 0.40 (-0.80, 1.60)   |
|                       |                    |                  |                 | 18739        | lag 3   | summer |                  | 51.76 (22.47, 81.05) |
|                       |                    |                  |                 |              |         |        |                  |                      |
| Wpr B,Single city     |                    |                  |                 |              |         |        |                  |                      |
| Wong,1999 [364]       | All respiratory    | Hong Kong,China  | 1994-1995       | 2982         | lag 0-3 | all    | •                | 1.98 (1.29, 2.67)    |
|                       |                    |                  |                 | 3005         | lag 0-3 | winter | •                | 0.40 (-1.21, 2.01)   |
|                       | All cardiovascular |                  |                 | 2994         | lag 0-1 | all    | •                | 1.29 (0.70, 1.89)    |
|                       |                    |                  |                 | 3008         | lag 0-3 | winter | •                | 9.80 (-0.10, 19.71)  |
| Chen,2010 [124]       | All respiratory    | Shanghai,China   | 2005-2007       | 21109        | lag 6   | all    | •                | 0.47 (-0.25, 1.19)   |
|                       |                    |                  |                 | 21115        | lag 5   | summer | •                | 0.05 (-0.91, 1.01)   |
|                       |                    |                  |                 | 21114        | lag 5   | winter | •                | 0.65 (-0.37, 1.67)   |
|                       | All cardiovascular |                  |                 | 21108        | lag 5   | all    | •                | 0.80 (0.10, 1.49)    |
|                       |                    |                  |                 | 21113        | lag 5   | summer | +                | -0.26 (-1.18, 0.66)  |
|                       |                    |                  |                 | 21112        | lag 5   | winter | •                | 1.65 (0.68, 2.62)    |
|                       |                    |                  |                 |              |         |        |                  |                      |
|                       |                    |                  |                 |              |         |        |                  |                      |
|                       |                    |                  |                 |              |         |        |                  |                      |
|                       |                    |                  |                 |              | 1000xln | (RR)   | -5-01/5 10 20 50 |                      |



Figure S24: Ranking of NO<sub>2</sub> estimates for all-cause mortality in all-ages by mean levels of 24 hour NO<sub>2</sub> (multi-city studies shown using black bars)

Figure S25: Ranking of NO<sub>2</sub> estimates for all-cause mortality in all-ages by mean levels of PM<sub>10</sub> (multi-city studies shown using black bars)





Figure S26: Ranking of NO<sub>2</sub> estimates for all-cause mortality in all-ages by the  $NO_2/PM_{10}$  concentration ratio (multi-city studies shown using black bars)

Figure S27: Ranking of NO<sub>2</sub> estimates for all-cause mortality in all-ages by daily mean temperature (multi-city studies shown using black bars)



#### **Reference List**

Listed in order of Reference Manager ID (RMID)

- Ostro BD, Hurley S, Lipsett MJ. Air pollution and daily mortality in the Coachella Valley, California: A study of PM10 dominated by coarse particles. Environ Res 1999; 81(NO-3):231-238.
   RMID: 3
- (2) Kan H, Chen BC. Air pollution and daily mortality in Shanghai: A time-series study. Arch Environ Health 2003; 58(6):360-367. RMID: 76
- (3) Galan I, Tobias A, Banegas JR, Aranguez E. Short-term effects of air pollution on daily asthma emergency room admissions. Eur Respir J 2003; 22(5):802-808. RMID: 123
- (4) Chen RJ, Chu C, Tan JG, Cao JS, Song WM, Xu XH et al. Ambient air pollution and hospital admission in Shanghai, China. Journal of Hazardous Materials 2010; 181(1-3):234-240. RMID: 124
- Kan H, Jia J, Chen BH. Acute stroke mortality and air pollution: New evidence from Shanghai, China. Journal of Occupational Health 2003; 45(5):321-323.
   RMID: 130
- (6) Simpson R, Williams G, Petroeschevsky A, Best T, Morgan G, Denison L et al. The shortterm effects of air pollution on daily mortality in four Australian cities. Aust N Z J Public Health 2005; 29(3):205-212. RMID: 133
- (7) Simpson R, Williams G, Petroeschevsky A, Best T, Morgan G, Denison L et al. The shortterm effects of air pollution on hospital admissions in four Australian cities. Aust N Z J Public Health 2005; 29(3):213-221. RMID: 134
- (8) Burnett RT, Brook J, Dann T, Delocla C, Philips O, Cakmak S et al. Association between particulate- and gas-phase components of urban air pollution and daily mortality in eight Canadian cities. Inhal Toxicol 2000; 12:15-39. RMID: 135
- (9) Kan H, Jia J, Chen BH. The association of daily diabetes mortality and outdoor air pollution in Shanghai, China. Journal of Environmental Health 2004; 67(3):21-25. RMID: 150
- (10) Moolgavkar SH. Air pollution and daily mortality in two U. S. counties: Season-specific analyses and exposure-response relationships. Inhal Toxicol 2003; 15(9):877-907. RMID: 162
- Moolgavkar SH. Air pollution and daily mortality in three US counties. Environ Health Perspect 2000; 108(8):777-784.
   RMID: 163
- Hoek G, Brunekreef B, Verhoeff A, van Wijnen J, Fischer P. Daily mortality and air pollution in the Netherlands. J Air Waste Manage Assoc 2000; 50(8):1380-1389.
   RMID: 175

- (13) Chock DP, Winkler SL. A study of the association between daily mortality and ambient air pollutant concentrations in Pittsburgh, Pennsylvania. J Air Waste Manage Assoc 2000; 50(8):1481-1500.
  RMID: 177
- Bremner SA, Anderson HR, Atkinson RW, McMichael AJ, Strachan DP, Bland JM et al. Short-term associations between outdoor air pollution and mortality in London 1992-4. Occupational & Environmental Medicine 1999; 56(4):237-244.
   RMID: 182
- (15) Gouveia N, Fletcher T. Respiratory diseases in children and outdoor air pollution in Sao Paulo, Brazil: a time series analysis. Occupational & Environmental Medicine 2000; 57(7):477-483.
   RMID: 207
- Loomis DP, Castillejos M, Gold DR, McDonnell W, Borja-Aburto VH. Air pollution and infant mortality in Mexico City. Epidemiol 1999; 10(2):118-123.
   RMID: 210
- Borja-Aburto VH, Castillejos M, Gold DR, Bierzwinski S, Loomis D. Mortality and ambient fine particles in southwest Mexico City, 1993-1995. Environ Health Perspect 1998; 106(12):849-855.
  RMID: 214
- Michelozzi P, Forastiere F, Fusco D, Perucci CA, Ostro B, Ancona C et al. Air pollution and daily mortality in Rome, Italy. Occupational & Environmental Medicine 1998; 55(9):605-610.
   RMID: 219
- (19) Farhat SCL, Paulo RLP, Shimoda TM, Conceicao GMS, Lin CA, Braga ALF et al. Effect of air pollution on pediatric respiratory emergency room visits and hospital admissions. Brazilian Journal of Medical and Biological Research 2005; 38(2):227-235.
   RMID: 235
- (20) Kelsall JE, Samet JM, Zeger SL, Xu J. Air pollution and mortality in Philadelphia, 1974-1988. Am J Epidemiol 1997; 146(9):750-762. RMID: 236
- (21) Touloumi G, Katsouyanni K, Zmirou D, Schwartz J, Spix C, De Leon AP et al. Short-term effects of ambient oxidant exposure on mortality: a combined analysis within the APHEA project. Air Pollution and Health: a European Approach. Am J Epidemiol 1997; 146(2):177-185. RMID: 240
- (22) Ostro BD, Sanchez JM, Aranda C, Eskeland GS. Air pollution and mortality: results from a study of Santiago, Chile. J Expo Anal Environ Epidemiol 1996; 6(1):97-114. RMID: 256
- Wong CM, Vichit-Vadakan N, Kan HD, Qian ZM. Public Health and Air Pollution in Asia (PAPA): A multicity study of short-term effects of air pollution on mortality. Environ Health Perspect 2008; 116(9):1195-1202.
   RMID: 313

- (24) Kan H, Jia J, Chen B. A time-series study on the association of stroke mortality and air pollution in Zhabei, Shanghai. Journal of Hygiene Research 2006; 33(1):36-38. RMID: 349
- (25) Anderson HR, Ponce dL, Bland JM, Bower JS, Emberlin J, Strachan DP. Air pollution, pollens, and daily admissions for asthma in London 1987- 92. Thorax 1998; 53(10):842-848.
  RMID: 380
- (26) Sunyer J, Spix C, Quenel P, Ponce-de-Leon A, Barumandzadeh T, Touloumi G et al. Urban air pollution and emergency admissions for asthma in four European cities: The APHEA project. Thorax 1997; 52(9):760-765. RMID: 398
- (27) Brook JR, Burnett RT, Dann TF, Cakmak S, Goldberg MS, Fan XH et al. Further interpretation of the acute effect of nitrogen dioxide observed in Canadian time-series studies. Journal of Exposure Science and Environmental Epidemiology 2007; 17:S36-S44. RMID: 485
- (28) Andersen ZJ, Wahlin P, Raaschou-Nielsen O, Scheike T, Loft S. Ambient particle source apportionment and daily hospital admissions among children and elderly in Copenhagen. Journal of Exposure Science and Environmental Epidemiology 2007; 17(7):625-636. RMID: 519
- (29) Peters A, Breitner S, Cyrys J, Stolzel M, Pitz M, Wolke G et al. The influence of improved air quality on mortality risks in Erfurt, Germany. Research Report Health Effects Institute [137], 5-77. 2009.
  Ref Type: Report RMID: 621
- (30) Samoli E, Nastos PT, Paliatsos AG, Katsouyanni K, Priftis KN. Acute effects of air pollution on pediatric asthma exacerbation: Evidence of association and effect modification. Environ Res 2011; 111(3):418-424.
   RMID: 872
- (31) Hagen JA, Nafstad P, Skrondal A, Bjorkly S, Magnus P. Associations between outdoor air pollutants and hospitalization for respiratory diseases. Epidemiol 2000; 11(2):136-140. RMID: 1071
- (32) Cifuentes L, Vega J, Kopfer K, Lava LB. Effect of the fine fraction of particulate matter versus the coarse mass and other pollutants on daily mortality in Santiago, Chile. J Air Waste Manage Assoc 2000; 50(8):1287-1298.
  RMID: 1152
- (33) Ballester F, Tenias JM, Perez-Hoyos S. Air pollution and emergency hospital admissions for cardiovascular diseases in Valencia, Spain. J Epidemiol Community Health 2001; 55(1):57-65.
   RMID: 1184
- (34) Moolgavkar SH. Air pollution and hospital admissions for diseases of the circulatory system in three US metropolitan areas. J Air Waste Manage Assoc 2000; 50(7):1199-1206.
  RMID: 1196

- (35) Wichmann HE, Spix C, Tuch T, Wolke G, Peters A, Heinrich J et al. Daily Mortality and Fine and Ultrafile Particles in Erfurt, Germany Part I: Role of Particle Number and Particle Mass. 98. 2000. Health Effects Institute. Ref Type: Report RMID: 1205
- (36) Zeghnoun A, Czernichow P, Beaudeau P, Hautemaniere A, Froment L, Le Tertre A et al. Short-term effects of air pollution on mortality in the cities of Rouen and Le Havre, France, 1990-1995. Arch Environ Health 2001; 56(4):327-335.
   RMID: 1374
- (37) Wong CM, Atkinson RW, Anderson HR, Hedley AJ, Ma S, Chau PYK et al. A tale of two cities: Effects of air pollution on hospital admissions in Hong Kong and London compared. Environ Health Perspect 2002; 110(1):67-77. RMID: 1429
- (38) Hong Y-C, Lee J-T, Kim H, Kwon H-J. Air pollution: A new risk factor in ischemic stroke mortality. Stroke 2002; 33(9):2165-2169. RMID: 1448
- (39) Lee JT, Kim H, Song HY, Hong YC, Cho YS, Shin SY et al. Air pollution and asthma among children in Seoul, Korea. Epidemiol 2002; 13(4):481-484.
  RMID: 1466
- (40) D'Ippoliti D, Forastiere F, Ancona C, Agabiti N, Fusco D, Michelozzi P et al. Air pollution and myocardial infarction in Rome A case- crossover analysis. Epidemiol 2003; 14(5):528-535.
  RMID: 1509
- (41) Kan HD, Chen BH. A case-crossover analysis of air pollution and daily mortality in Shanghai. Journal of Occupational Health 2003; 45(2):119-124.
   RMID: 1531
- (42) Oftedal B, Nafstad P, Magnus P, Bjorkly S, Skrondal A. Traffic related air pollution and acute hospital admission for respiratory diseases in Drammen, Norway 1995-2000. Eur J Epidemiol 2003; 18(7):671-675.
  RMID: 1556
- Lee JT, Kim H, Cho YS, Hong YC, Ha EH, Park H. Air pollution and hospital admissions for ischemic heart diseases among individuals 64+years of age residing in Seoul, Korea. Arch Environ Health 2003; 58(10):617-623.
   RMID: 1622
- (44) Yang QY, Chen Y, Krewski D, Burnett RT, Shi YL, McGrail KM. Effect of short-term exposure to low levels of gaseous pollutants on chronic obstructive pulmonary disease hospitalizations. Environ Res 2005; 99(1):99-105.
  RMID: 1638
- (45) Kwon H-J, Cho S-H. Air pollution and daily mortality in Seoul. Korean Journal of Preventative Medicine 1999; 32(2):191-199.
   RMID: 1643
- (46) Chang JH, et al. Effect of air pollution on daily clinic treatments for respiratory cardiovascular disease in central Taiwan, 1997-1999. Zhonghua Occupational Medicine

Journal 2002; 9(2):111-120. RMID: 1645

- Ballester F, Rodriguez P, Iniguez C, Saez M, Daponte A, Galan I et al. Air pollution and cardiovascular admissions association in Spain: results within the EMECAS project. J Epidemiol Community Health 2006; 60(4):328-336.
  RMID: 1646
- (48) Samoli E, Aga E, Touloumi G, Nislotis K, Forsberg B, Lefranc A et al. Short-term effects of nitrogen dioxide on mortality: an analysis within the APHEA project. Eur Respir J 2006; 27(6):1129-1137.
  RMID: 1671
- (49) Wellenius GA, Bateson TF, Mittleman MA, Schwartz J. Particulate air pollution and the rate of hospitalization for congestive heart failure among Medicare beneficiaries in Pittsburgh, Pennsylvania. Am J Epidemiol 2005; 161(11):1030-1036. RMID: 1924
- Qian Z, He Q, Lin HM, Kong L, Liao D, Yang N et al. Short-term effects of gaseous pollutants on cause-specific mortality in Wuhan, China. J Air Waste Manag Assoc 2007; 57(7):785-793.
  RMID: 1945
- (51) Andersen ZJ, Wahlin P, Raaschou-Nielsen O, Ketzel M, Scheike T, Loft S. Size distribution and total number concentration of ultrafine and accumulation mode particles and hospital admissions in children and the elderly in Copenhagen, Denmark. Occup Environ Med 2008; 65(7):458-466. RMID: 1950
- (52) Breitner S, Stolzel M, Cyrys J, Pitz M, Wolke G, Kreyling W et al. Short-Term Mortality Rates during a Decade of Improved Air Quality in Erfurt, Germany. Environ Health Perspect 2009; 117(3):448-454.
   RMID: 1954
- (53) Chen GH, Song GX, Jiang LL, Zhang YH, Zhao NQ, Chen BH et al. Short-term effects of ambient gaseous pollutants and particulate matter on daily mortality in Shanghai, China. Journal of Occupational Health 2008; 50(1):41-47.
   RMID: 1956
- (54) Ren YJ, Li XY, Chen K, Liu QM, Xiang HQ, Jin DF et al. [A case-crossover study on air pollutants and the mortality of stroke]. Zhonghua Liu Xing Bing Xue Za Zhi = Zhonghua Liuxingbingxue Zazhi 2008; 29(9):878-881.
  RMID: 2001
- (55) Barnett AG, Williams GM, Schwartz J, Neller AH, Best TL, Petroeschevsky AL et al. Air pollution and child respiratory health A case-crossover study in Australia and new Zealand. American Journal of Respiratory and Critical Care Medicine 2005; 171(11):1272-1278.
  RMID: 2039
- Lin M, Stieb DM, Chen Y. Coarse particulate matter and hospitalization for respiratory infections in children younger than 15 years in Toronto: A case-crossover analysis. Pediatrics 2005; 116(2):E235-E240.
  RMID: 2040

- (57) Chen RJ, Pan GW, Kan HD, Tan JG, Song WM, Wu ZY et al. Ambient air pollution and daily mortality in Anshan, China: A time-stratified case-crossover analysis. Science of the Total Environment 2010; 408(24):6086-6091.
  RMID: 2052
- Park AK, Hong YC, Kim H. Effect of changes in season and temperature on mortality associated with air pollution in Seoul, Korea. J Epidemiol Community Health 2011; 65(4):368-375.
  RMID: 2067
- (59) Burnett RT, Stieb D, Brook JR, Cakmak S, Dales R, Raizenne M, Vincent R, Dann T. Associations between short-term changes in nitrogen dioxide and mortality in Canadian cities. Arch Environ Health. 2004; 59(5):228-36. RMID: 3000
- (60) HEI Public Health and Air Pollution in Asia Program. (2010) Public Health and Air Pollution in Asia (PAPA): Coordinated Studies of Short-Term Exposure to Air Pollution and Daily Mortality in Four Cities. HEI Research Report 154. Health Effects Institute, Boston, MA.
   RMID: 3003

### APPENDIX 1 Update literature search and commentary

In May 2015, BMJ Open published our systematic review and meta-analysis in which we demonstrated that short-term exposure to NO<sub>2</sub> is associated with mortality and hospital admissions for cardiovascular and respiratory diseases in different age groups (doi:10.1136/bmjopen-2014-006946). Whether the NO<sub>2</sub> associations are independent of the effects of particulate matter (PM) is the subject of the current manuscript under consideration by BMJ Open. The manuscript builds upon our earlier paper and forms the second part of our two-part study. Both parts of the study are based on a literature search with a cut-off of May 2011.

During the peer-review of the first (already published) paper, we faced criticisms regarding our literature cut-off similar to those made about the second manuscript. At that time, we addressed the points by undertaking a *partial* update of the literature:

- (i) using the same search string
- (ii) searching only one (of three) bibliographic databases PubMed
- (iii) focusing only on papers published in the English language

(iv) focusing on the period from  $1^{st}$  April 2011 to 26<sup>th</sup> July 2014, the date of the search After applying the same inclusion criteria, we identified 37 studies of all-year NO<sub>2</sub>.

To address the latest comments regarding the literature cut-off, we re-examined the 37 studies to:

- (i) identify papers which reported estimates of NO<sub>2</sub> adjusted for a metric of PM
- (ii) assess how the adjusted estimates compare with the results of our study
- (iii) determine whether the papers published since our cut-off alter the messages in our manuscript.

Twelve of the 37 studies (that is 32%) reported numerical estimates of NO<sub>2</sub> adjusted for a metric of PM: see reference list. Table 1 provides an overview of the data, by outcome, diagnosis, averaging time, multi-city status of the study and location in which the study was conducted. Table 2 summarises the quantitative results of each study, and the paragraphs which follow provide commentary on the information presented in the tables.

Seven studies examined mortality outcomes whilst five examined hospital admissions. Eleven studies used 24 hour average NO<sub>2</sub> and the majority of the studies used PM<sub>10</sub> to control for the effects of particles. These findings are in keeping with our manuscript: (i) 29% of the studies published up to May 2011 reported estimates of NO<sub>2</sub> adjusted for PM; (ii) 67% of the studies used PM<sub>10</sub> to control for the effects of particles. Table 1 also shows that six of the 12 studies used a multi-city design and the majority of the new data comes from the Western Pacific Region B, which includes China. The growth in studies from this region of the world was identified in our review and cities in this region are represented in our meta-analytic estimates.

Many of the new studies include locations which are represented in our meta-analyses and there is also some overlap in study time periods between studies included in our review and newly published evidence. Some of the new studies are however based on a larger number of cities from a particular country, but also include cities represented in our meta-analyses (Moolgavkar et al, 2013; Chen et al, 2012). Chiusolo et al (2011) report further analyses of

existing data. Only one single-city study provided data for a less well studied part of the world: Ho Chi Minh city, Vietnam (HEI, 2012).

The results of the studies presented in Table 2 indicate that, in general, the associations between NO<sub>2</sub> and mortality and hospital admissions remain after control for PM and support an independent effect of NO<sub>2</sub> (adjusted for PM). This is in keeping with the key findings of our manuscript, and does not alter the conclusions of our review of studies published up to May 2011. Whilst we acknowledge that a more up-to-date review is desirable, it would be unlikely to significantly alter the relevance or importance of our review. To our knowledge, no quantitative systematic review of the two-/multi-pollutant model estimates of NO<sub>2</sub> has been published since 2002 (Stieb et al), and this was only for all-cause mortality. Since then, the evidence of adverse effects of NO<sub>2</sub> has increased and strengthened. Our analyses therefore contribute new quantitative evidence to the science-policy debate, indicating that NO<sub>2</sub> is associated with adverse health outcomes independently of PM (measured mainly as PM<sub>10</sub>, PM<sub>2.5</sub>, and Black Smoke). Table 2 also shows that the estimates of PM are more sensitive to control for NO<sub>2</sub> in joint models than the estimates of NO<sub>2</sub> are. This observation provides some support for the findings in our manuscript, and, as discussed in our manuscript, is an issue which warrants further investigation.

The resources required to undertake a detailed systematic ascertainment and quantitative meta-analysis of the growing time-series literature limits the ability of our systematic review to incorporate the very latest published evidence. Further work would be required to search additional databases (as was done in our manuscript), sift and translate relevant foreign language papers (also done for our review), enter quantitative estimates in our database, and apply our estimate selection protocol before judgements could be made about the specific meta-analyses that would or would not need to be updated in light of the new evidence. Furthermore, as the current manuscript builds upon our earlier paper and forms the second part of our two-part study, it is desirable to base the two papers on the same literature cut-off to enable comparison of results.

# Table 1: Summary of time-series studies of daily $NO_2$ and mortality or hospital admissions published since May 2011

|                      |                   | Total |                       | Multi-city study |                       | Single-city st | udy                   |
|----------------------|-------------------|-------|-----------------------|------------------|-----------------------|----------------|-----------------------|
| Outcome              | Outcome           |       | Hospital<br>admission | Mortality        | Hospital<br>admission | Mortality      | Hospital<br>admission |
| Total                |                   | 7     | 5                     | 4                | 2                     | 3              | 3                     |
|                      | Respiratory       | 3     | 3                     | 2                | 1                     | 1              | 2                     |
| Disease <sup>a</sup> | Cardiovascular    | 4     | 2                     | 3                | 1                     | 1              | 1                     |
|                      | All-cause         | 5     |                       | 2                |                       | 2              |                       |
|                      | American A        | 1     |                       | 1                |                       |                |                       |
|                      | European A        | 1     | 4                     | 1                | 2                     |                | 2                     |
| who                  | Western Pacific B | 5     |                       | 2                |                       | 3              |                       |
| Region <sup>b</sup>  | American B        |       |                       |                  |                       |                |                       |
|                      | Western Pacific A |       |                       |                  |                       |                |                       |
|                      | South East Asia B |       | 1                     |                  |                       |                | 1                     |
|                      | 24 hours          | 7     | 4                     | 4                | 1                     | 3              | 3                     |
| Averaging<br>time    | Maximum 1 hour    |       | 1                     |                  | 1                     |                |                       |
|                      | Other             |       |                       |                  |                       |                |                       |

a - Respiratory includes all-respiratory diseases, asthma, COPD only, COPD (including asthma), lower respiratory infections, and upper respiratory diseases; Cardiovascular includes all-cardiovascular diseases, cardiac disease, heart failure, ischaemic heart disease, dysrhythmia, and stroke. b - WHO regions: A: very low child and adult mortality; B: low child mortality and low adult mortality; C: low child mortality and

b - WHO regions: A: very low child and adult mortality; B: low child mortality and low adult mortality; C: low child mortality and high adult mortality. D: high child mortality and high adult mortality. A list of countries which form part of each WHO region is given in the online supplementary material.

# Table 2: Summary of results of time-series studies of mortality and hospital admissions reporting estimates of NO<sub>2</sub> adjusted for a metric of PM.

|                                                                                               | Outcome                                                          |                                                                                                | t estimate                                           | Correlation                                                                                        | PM effect                                                                                                                                                     | estimate                     |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Author (year)                                                                                 | Diagnosis                                                        | (95% confid                                                                                    | ence interval)                                       | NO <sub>2</sub> /PM                                                                                | (95% confide                                                                                                                                                  | nce interval)                |
| Study location<br>Study period                                                                | Age group                                                        | Single-pollutant                                                                               | Adjusted for PM                                      |                                                                                                    | Single-pollutant                                                                                                                                              | Adjusted for NO <sub>2</sub> |
| <b>Bhaskaran et al (2011)</b><br>15 conurbations in England<br>and Wales<br>2003-06           | Hospital admissions<br>Myocardial infarction<br>Adults / Elderly | 1.1% (0.3, 1.8) per<br>10 μg/m <sup>3</sup> NO <sub>2</sub><br>Lag 1-6 hours<br>Hourly average | 0.8% (0, 1.6)<br>adjusted for PM <sub>10</sub>       | NO <sub>2</sub> /PM <sub>10</sub><br>0.48                                                          | $\begin{array}{l} 1.2\% \ (0.3, 2.1) \ \text{per 10} \\ \mu\text{g/m}^3 \ \text{PM}_{10} \\ \text{Lag 1-6 hours} \\ \text{Hourly averaging time} \end{array}$ | 0.8% (-0.1, 1.8)             |
| <b>Chen et al (2013a)</b><br>8 Chinese cities<br>1996-2008, years varied<br>across the cities | Mortality<br>Stroke (ICD10 I60-69)<br>All ages                   | 1.47% (0.88, 2.06)<br>per 10 μg/m <sup>3</sup> NO <sub>2</sub><br>Lag 0-1<br>24 hour average   | 1.17% (0.47, 1.88)<br>adjusted for PM <sub>10</sub>  | PM <sub>10</sub> /SO <sub>2</sub> /NO <sub>2</sub><br>across cities<br>ranged from<br>0.51 to 0.87 | 0.54% (0.28, 0.81)<br>per 10 μg/m <sup>3</sup> PM <sub>10</sub><br>Lag 0-1<br>24 hour average                                                                 | 0.14% (-0.04, 0.31)          |
| <b>Chen et al (2013b)</b><br>Shanghai<br>2001-2008                                            | Mortality<br>All-cause (ICD10 A00-<br>99)<br>All ages            | 0.66% (0.47, 0.86)<br>per 10 μg/m <sup>3</sup> NO <sub>2</sub><br>Lag 0<br>24 hour average     | 0.81% (0.53, 1.11)<br>adjusted for PM <sub>10</sub>  | None reported                                                                                      | 0.15% (0.07, 0.23)<br>per 10 μg/m <sup>3</sup> PM <sub>10</sub> Lag<br>0<br>24 hour average                                                                   | -0.08% (-0.2, 0.04)          |
| Chen et al (2012)<br>17 Chinese cities<br>1996-2010, years varied<br>across the cities        | Mortality<br>All-cause (ICD10 A00-<br>99)<br>All ages            | 1.63% (1.09, 2.17)<br>per 10 μg/m <sup>3</sup> NO <sub>2</sub><br>Lag 0-1<br>24 hour average   | 1.28% (0.72, 1.84)<br>adjusted for PM <sub>10</sub>  | NO <sub>2</sub> /PM <sub>10</sub><br>0.66                                                          | 0.35% (0.18, 0.52)<br>per 10 μg/m <sup>3</sup> PM <sub>10</sub> Lag<br>0-1<br>24 hour average                                                                 | 0.16% (0.00, 0.32)           |
|                                                                                               | Mortality<br>All cardiovascular (190-<br>99)<br>All ages         | 1.80% (1.00, 2.59)                                                                             | 1.19% (0.30, 2.08)<br>adjusted for PM <sub>10</sub>  |                                                                                                    | 0.44% (0.23, 0.64)                                                                                                                                            | 0.23% (0.03, 0.43)           |
|                                                                                               | Mortality<br>All respiratory (J00-98)<br>All ages                | 2.52% (1.44, 3.59)                                                                             | 1.75% (0.76, 2.75)<br>adjusted for PM <sub>10</sub>  |                                                                                                    | 0.56% (0.31, 0.81)                                                                                                                                            | 0.24% (0.00, 0.49)           |
| <b>Chiusolo et al (2011)</b><br>10 Italian cities<br>2001-2005                                | Mortality<br>All-causes (ICD9 <800)<br>≥ 35 years                | 2.09% (0.96, 3.24%)<br>per 10 μg/m <sup>3</sup> NO <sub>2</sub><br>Lag 0-5<br>24 hour average  | 1.95% (0.50, 3.43%)<br>adjusted for PM <sub>10</sub> | None reported                                                                                      | -                                                                                                                                                             | -                            |

| Author (year)                                               | Outcome<br>Diagnosis                                                       | NO2 effec<br>(95% confid                                                                          | ct estimate<br>lence interval)                       | Correlation<br>NO <sub>2</sub> /PM             | PM effect<br>(95% confide                                                                             | estimate<br>nce interval)               |
|-------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Study location<br>Study period                              | Age group                                                                  | Single-pollutant                                                                                  | Adjusted for PM                                      |                                                | Single-pollutant                                                                                      | Adjusted for NO <sub>2</sub>            |
|                                                             | Mortality<br>Cardiac (ICD9 390-429)<br>≥ 35 years                          | 2.63% (1.53, 3.75)                                                                                | 2.58% (1.05, 4.13)<br>adjusted for PM <sub>10</sub>  |                                                | -                                                                                                     | -                                       |
|                                                             | Mortality<br>All respiratory (ICD9<br>460-519)<br>≥ 35 years               | 3.48% (0.75, 6.29)                                                                                | 3.39% (0.77, 6.08)<br>adjusted for PM <sub>10</sub>  |                                                | -                                                                                                     | -                                       |
|                                                             | Mortality<br>Cerebrovascular (ICD9<br>430-438)<br>≥ 35 years               | 2.35% (-013, 4.89)                                                                                | 2.55% (-0.71, 5.92)<br>adjusted for PM <sub>10</sub> | -                                              | -                                                                                                     | -                                       |
| <b>Faustini et al (2013)</b><br>6 Italian cities<br>2001-05 | Hospital Admissions<br>All respiratory<br>≥ 35 years                       | 1.19% (0.23-2.15)<br>per 10 μg/m <sup>3</sup> NO <sub>2</sub><br>Lag 0-5<br>24 hour average       | 0.86% (0.30–2.02)<br>adjusted for PM <sub>10</sub>   | NO <sub>2</sub> /PM <sub>10</sub><br>0.22-0.79 | 0.59% (0.10-1.08) per<br>10 μg/m <sup>3</sup> PM <sub>10</sub><br>Lag 0-1<br>24 hour average          | 0.45% (-0.12–1.01)                      |
|                                                             | Hospital Admissions<br>COPD<br>≥ 35 years                                  | 1.20% (0.17–2.23)                                                                                 | 1.02% (-0.45–2.51)<br>adjusted for PM <sub>10</sub>  | -                                              | 0.67% (-0.02–1.35)                                                                                    | 0.54% (-0.41–1.49)                      |
|                                                             | Hospital Admissions<br>Lower respiratory tract<br>infections<br>≥ 35 years | 1.79% (-1.16-4.83)                                                                                | 2.01% (-1.78–5.94)<br>adjusted for PM <sub>10</sub>  |                                                | 1.91% (0.06-3.79)                                                                                     | 2.14% (-0.74–5.11)                      |
| <b>Guo et al (2014)</b><br>Shanghai<br>2004-08              | Mortality<br>All-causes<br>All ages                                        | 1.6% (0.4 to 2.8)<br>per 30 μg/m <sup>3</sup> (IQR)<br>NO <sub>2</sub> Lag 0-1<br>24 hour average | 1.6% (-0.2 to 3.5)<br>adjusted for PM <sub>2.5</sub> | NO <sub>2</sub> /PM <sub>2.5</sub><br>0.61     | 1.3% (0.1 to 2.6) per<br>94 μg/m <sup>3</sup> (IQR) PM <sub>2.5</sub> ,<br>Lag 0-1<br>24 hour average | 0.3% (-1.4 to 2.0)<br>PM <sub>2.5</sub> |
|                                                             |                                                                            |                                                                                                   | 0.5% (-1.3 to 2.3)<br>adjusted for PM <sub>10</sub>  | NO <sub>2</sub> /PM <sub>10</sub><br>0.67      | 1.7% (0.6 to 2.9) per<br>106 μg/m <sup>3</sup> (IQR) PM <sub>10</sub>                                 | 1.3% (-0.4 to 3.0)<br>PM <sub>10</sub>  |
| HEI (2012)<br>Ho Chi Minh city, Vietnam                     | Hospital admissions<br>Acute lower respiratory                             | 4.32% (0.04, 8.79)<br>per 10 μg/m <sup>3</sup> NO <sub>2</sub>                                    | 4.81% (0.04, 9.80)<br>adjusted for PM <sub>10</sub>  | NO <sub>2</sub> /PM <sub>10</sub><br>0.78      | 0.26% (-0.94, 1.47)<br>per 10 μg/m <sup>3</sup> PM <sub>10</sub>                                      | -0.31% (-1.65, 1.04)                    |

| Author (year)                                                     | Outcome<br>Diagnosis                                                | NO2 effec<br>(95% confid                                                                                 | ct estimate<br>ence interval)                                     | Correlation<br>NO <sub>2</sub> /PM             | PM effect<br>(95% confide                                                                                                | estimate<br>nce interval)                |
|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Study location<br>Study period                                    | Age group                                                           | Single-pollutant                                                                                         | Adjusted for PM                                                   |                                                | Single-pollutant                                                                                                         | Adjusted for NO <sub>2</sub>             |
| 2003-05                                                           | infections<br>Children <5 years                                     | Lag 1-6<br>24 hour average                                                                               |                                                                   |                                                | Lag 1-6<br>24 hour average                                                                                               |                                          |
| <b>Iskandar et al (2012)</b><br>Copenhagen<br>2001-08             | Hospital admissions<br>Asthma (ICD10 J45-46)<br>Children 0-18 years | OR 1.10 (1.04 to<br>1.16)<br>per 6.53 ppb (IQR)<br>NO <sub>2</sub> Lag 0-4                               | OR 1.08 (1.01 to<br>1.15) adjusted for<br>PM <sub>10</sub>        | NO <sub>2</sub> /PM <sub>10</sub><br>0.43      | OR 1.07 (1.03 to 1.12)<br>per 13.4 μg/m <sup>3</sup> (IQR)<br>PM <sub>10</sub> Lag 0-4                                   | OR 1.04 (1.00 to<br>1.09)                |
|                                                                   |                                                                     | 24 hour average                                                                                          | OR 1.12 (1.05 to<br>1.19)<br>adjusted for PM <sub>2.5</sub>       | NO <sub>2</sub> /PM <sub>2.5</sub><br>0.33     | OR 1.09 (1.04 to 1.13)<br>per 4.8 µg/m <sup>3</sup> (IQR)<br>PM <sub>2.5</sub> Lag 0-4                                   | OR 1.06 (1.02 to<br>1.11)                |
|                                                                   |                                                                     |                                                                                                          | OR 1.13 (1.05 to<br>1.22)<br>adjusted for ultrafine<br>particles  | NO2/ultrafine<br>particles<br>0.51             | OR 1.06 (0.98 to 1.14)<br>per 3812.86<br>particles/cm <sup>3</sup> (IQR)<br>ultrafine particles Lag<br>0-4               | OR 0.97 (0.89 to<br>1.06)                |
| Moolgavkar et al (2013)<br>108 metropolitan US areas<br>1987-2000 | Mortality<br>All-cause<br>All ages                                  | 1.03% (0.91, 1.18)<br>per 10 ppb NO <sub>2</sub><br>Lag 1<br>24 hour average                             | 0.94% (0.60, 1.26)<br>Based on 72 cities                          | None reported                                  | $\begin{array}{c} 0.40\% \ (0.30, 0.53) \ per \\ 10 \ \mu g/m^3 \ PM_{10} \\ Lag \ 1 \\ 24 \ hour \ average \end{array}$ | 0.20% (0.03, 0.36)<br>Based on 72 cities |
| Nuvolone et al (2013)<br>6 urban areas in Tuscany<br>2002-05      | Hospital admissions<br>Myocardial infarction<br>(ICD9 410)          | OR 1.022 (1.004,<br>1.041) per 10 μg/m <sup>3</sup><br>NO <sub>2</sub> Lag 2<br>24 hour average          | OR 1.025 (0.999,<br>1.053)<br>adjusted for PM <sub>10</sub>       | NO <sub>2</sub> /PM <sub>10</sub><br>0.44-0.71 | OR 1.013 (1.000,<br>1.026) per 10 μg/m <sup>3</sup><br>PM <sub>10</sub> Lag 2<br>24 hour average                         | OR 1.001 (0.980,<br>1.021)               |
| <b>Zhang et al (2011)</b><br>Beijing<br>2003-08                   | Mortality<br>All cardiovascular (I90-<br>99)<br>All ages            | RR 1.00271<br>(1.00086, 1.00457)<br>per 10 μg/m <sup>3</sup> NO <sub>2</sub><br>Lag 0<br>24 hour average | RR 0.99866 (0.99765,<br>0.99967) adjusted for<br>PM <sub>10</sub> | NO <sub>2</sub> /PM <sub>10</sub><br>0.615     | RR 1.00164 (1.00144,<br>1.00184) per 10<br>μg/m <sup>3</sup> PM <sub>10</sub> Lag 0<br>24 hour average                   | RR 1.00181<br>(1.00157, 1.00205)         |
|                                                                   | Mortality<br>All respiratory (J00-98)<br>All ages                   | RR 1.00947<br>(1.00759, 1.01135)<br>per 10 μg/m <sup>3</sup> NO <sub>2</sub>                             | RR 1.01005 (1.00782,<br>1.01228) adjusted for<br>PM <sub>10</sub> |                                                | RR 1.00101 (1.00057,<br>1.00145) per 10<br>μg/m <sup>3</sup> PM <sub>10</sub> Lag 0                                      | RR 0.99974<br>(0.99922, 1.00027)         |

| Author (year)                  | Author (year) Outcome | NO2 effec<br>(95% confid | t estimate<br>ence interval) | Correlation<br>NO <sub>2</sub> /PM | PM effect<br>(95% confide | estimate<br>nce interval)    |
|--------------------------------|-----------------------|--------------------------|------------------------------|------------------------------------|---------------------------|------------------------------|
| Study location<br>Study period | Age group             | Single-pollutant         | Adjusted for PM              |                                    | Single-pollutant          | Adjusted for NO <sub>2</sub> |
|                                |                       | Lag 0<br>24 hour average |                              |                                    | 24 hour average           |                              |

### References

Bhaskaran K, Hajat S, Armstrong B, Haines A, Herrett E, Wilkinson P, Smeeth L. (2011) The effects of hourly differences in air pollution on the risk of myocardial infarction: case crossover analysis of the MINAP database. BMJ. 343:d5531. doi: 10.1136/bmj.d5531.

Chen R, Samoli E, Wong CM, Huang W, Wang Z, Chen B, Kan H; CAPES Collaborative Group. (2012) Associations between short-term exposure to nitrogen dioxide and mortality in 17 Chinese cities: the China Air Pollution and Health Effects Study (CAPES). Environ Int. 45:32-8. doi:10.1016/j.envint.2012.04.008.

Chen R, Zhang Y, Yang C, Zhao Z, Xu X, Kan H. (2013a) Acute effect of ambient air pollution on stroke mortality in the China air pollution and health effects study. Stroke. 44(4):954-60. doi: 10.1161/STROKEAHA.111.673442.

Chen R, Wang X, Meng X, Hua J, Zhou Z, Chen B, Kan H. (2013b) Communicating air pollutionrelated health risks to the public: an application of the Air Quality Health Index in Shanghai, China. Environ Int. 168-73. doi: 10.1016/j.envint.2012.11.008.

Chiusolo M, Cadum E, Stafoggia M, Galassi C, Berti G, Faustini A, Bisanti L, Vigotti MA, Dessì MP, Cernigliaro A, Mallone S, Pacelli B, Minerba S, Simonato L, Forastiere F; EpiAir Collaborative Group. (2011) Short-Term Effects of Nitrogen Dioxide on Mortality and Susceptibility Factors in 10 Italian Cities: The EpiAir Study. Environ Health Perspect. 119(9):1233-8. doi: 10.1289/ehp.1002904.

Faustini A, Stafoggia M, Colais P, Berti G, Bisanti L, Cadum E, Cernigliaro A, Mallone S, Scarnato C, Forastiere F; EpiAir Collaborative Group. (2013) Air pollution and multiple acute respiratory outcomes. Eur Respir J. 42(2):304-13. doi: 10.1183/09031936.00128712.

Guo Y, Li S, Tian Z, Pan X, Zhang J, Williams G.(2013) The burden of air pollution on years of life lost in Beijing, China, 2004-08: retrospective regression analysis of daily deaths. BMJ. 347: f7139. doi: 10.1136/bmj.f7139.

HEI Collaborative Working Group on Air Pollution, Poverty, and Health in Ho Chi Minh City<sup>1</sup>, Le TG, Ngo L, Mehta S, Do VD, Thach TQ, Vu XD, Nguyen DT, Cohen A. (2012) Effects of short-term exposure to air pollution on hospital admissions of young children for acute lower respiratory infections in Ho Chi Minh City, Vietnam. Res Rep Health Eff Inst. (169):5-72

Iskandar A, Andersen ZJ, Bønnelykke K, Ellermann T, Andersen KK, Bisgaard H. (2012) Coarse and fine particles but not ultrafine particles in urban air trigger hospital admission for asthma in children. Thorax. 67(3):252-7. doi: 10.1136/thoraxjnl-2011-200324.

Moolgavkar SH<sup>1</sup>, McClellan RO, Dewanji A, Turim J, Luebeck EG, Edwards M. (2013) Time-series analyses of air pollution and mortality in the United States: a subsampling approach. Environ Health Perspect. 121(1):73-8. doi: 10.1289/ehp.1104507.

Nuvolone D, Balzi D, Chini M, Scala D, Giovannini F, Barchielli A. (2011) Short-term association between ambient air pollution and risk of hospitalization for acute myocardial infarction: results of the cardiovascular risk and air pollution in Tuscany (RISCAT) study. Am J Epidemiol. 174(1):63-71. doi: 10.1093/aje/kwr046.

Zhang F, Li L, Krafft T, Lv J, Wang W, Pei D. (2011) Study on the association between ambient air pollution and daily cardiovascular and respiratory mortality in an urban district of Beijing. Int J Environ Res Public Health. 8(6):2109-23. doi: 10.3390/ijerph8062109.