Supplementary Information

Ratio abstraction over discrete magnitudes by newly hatched domestic chicks (*Gallus gallus*)

Rosa Rugani, Koleen McCrink, Maria-Dolores de Hevia, Giorgio Vallortigara, Lucia Regolin

Subject	Number of	Correct	Correct	First trial
	training trials	responses	responses	(C= correct
	to learning	(%) in all 20	(%) in the	I= incorrect
	criterion	testing trials	first 5 trials	
1	42	60	60	С
2	53	65	80	С
3	20	80	80	С
4	78	63.158*	80	С
5	75	85	80	С
6	81	90	100	С
7	68	80	100	С
8	104	90	80	С
9	42	73.684*	80	С
10	68	85	60	С

Supplementary Table S1

Table S1. Data of Experiment 1. The total number of trials needed during training to reach the learning criterion, the correct number of valid trial in overall test, the number of correct responses emitted by each chick in the first five testing trials and the data of the very first trial were reported. For each chick were computed the percentage of correct responses by dividing the number of correct responses by the total number of valid trial.

* Because the chicks' performance was scored off-line by a coder naïve to the hypotheses of the study, for subjects number 4 and 9 one testing trail was not clearly detectable on the videos and therefore for these two subjects total number of valid trials was 19. For these two subjects we calculated the number of correct trials and the percentages were computed as: (Number of Correct Choices / 19) x 100.

Supplementary Table S2.

Subject	Number of	Correct	Correct	First trial
_	training trials	responses	responses	(C= correct
	to learning	(%) in all 20	(%) in the	I= incorrect
	criterion	testing trials	first 5 trials	
1	102	75	80	I
2	186	65	80	I
3	172	70	60	С
4	121	75	60	С
5	49	70	60	С
6	126	80	100	С
7	123	75	80	С
8	20	70	60	С
9	28	60	60	С
10	144	70	80	
11	114	45	40	C
12	30	70	60	C

Table S1. Data of Experiment 2. The total number of trials needed during training to reach the learning criterion, the correct number of valid trial in overall test, the number of correct responses emitted by each chick in the first five testing trials and the data of the very first trial were reported.