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1 Sequential tuning of random walk Metropolis algorithm proposal vari-
ance

The random walk Metropolis algorithm is a frequently used Markov chain Monte Carlo algorithm which
requires the definition of a distribution q(.) to generate proposal values for the parameters of interest. Al-
though arbitrary, the efficiency of the chain is highly dependent on the specification of this distribution. To
improve the mixing and efficiency of the algorithm, we follow Sherlock et al. (2010), using Algorithm 2 of
the sequential tuning approach outlined. We denote θi the parameters to be updated via the random walk
Metropolis algorithm and θ(ξ)i the value of the parameter at the current iteration. The variances λ2i of the
proposal distribution q(θ(ξ)i , λ2i ) are tuned independently for each parameter. For a Gaussian proposal and
target distribution, the optimum acceptance probability is between 0.4 and 0.45. The target distributions
in this application are, however, not Gaussian so we found that tuning the proposals to give acceptance
probabilities between 0.1 and 0.8 gave the best mixing. In general, the sequential tuning algorithm used
here works on the basis that if the proposal variance is too small, acceptance probabilities tend to be high
(and hence the chain will move slowly around parameter space). Conversely, variances that are too large
will produce acceptance probabilities that are smaller and hence the chain will get stuck at the same value
for longer periods.

During the burn-in phase, for parameter θi:

1. At iteration ξ of the MCMC algorithm, with current parameter value θ(ξ)i , generate new parameter
value φ from q(θ

(ξ)
i , λ

2(ξ)
i ).

2. Calculate the acceptance probability,

α(θ
(ξ)
i , φ) = min

(
1,

π(φ|.)q(θ(ξ)i ,λ
2(ξ)
i )

π(θ
(ξ)
i |.)q(φ,λ

2(ξ)
i )

)
.

where π(φ|.) is the posterior conditional distribution of parameter φ, coinditional on the other param-
eters in the model and the data.
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3. Set θ(ξ+1)
i = φ with probability α(θ(ξ)i , φ).

4. If α(θ(ξ)i , φ) < 0.1 set λ2(ξ+1)
i = λ

2(ξ)
i /2.

5. If α(θ(ξ)i , φ) > 0.8 set λ2(ξ+1)
i = 1.5 λ2(ξ)i .

6. Set ξ = ξ + 1 and return to step 1 until ξ = burn-in.

2 Reversible jump algorithm

The reversible jump algorithm used in the paper can be defined as follows. We denote θm = {α,β,γ}
for all βj and γk in model m. At each iteration, a single regression parameter is proposed to be added or
removed from the model, depending on whether or not it is in model m.

1. Suppose that at iteration ξ the Markov chain is in model m. Update all regression parameters in θm
and additional variance parameters (φ, p and ε) using the random walk Metropolis algorithm and σ2

via the inverse-gamma Gibbs algorithm, conditional on model m.

2. Select one of the regression parameters at random. Propose to move to a new neighbouring model m′

with probability p(m′|m) and associated regression parameter vector θ′m.

If the proposed parameter is not currently in the model, then θm = {δ} and θ′m = {δ′, κ′},

i. Set δ′ = δ and κ′ = u, where u ∼ q(u).
ii. Calculate acceptance probability in min(1, A), where,

A =
π(θ′

m,m
′|.)p(m|m′)

π(θm,m|.)p(m′|m)q(u)

∣∣∣∣∂(δ′,κ′)
∂(δ,u)

∣∣∣∣.
iii. With probability min(1, A) set (θξ+1

m ,mξ+1) = ({δ′, κ′},m′), else (θξ+1
m ,mξ+1) = (δ,m).

Else if we propose the reverse move from θ′m = {δ′, κ′} and θm = {δ},

i. Remove κ′ from the model (equivalently set u = κ′) and calculate A as above.

ii. With probability min(1, A−1) set (θξ+1
m ,mξ+1) = (δ,m), else (θξ+1

m ,mξ+1) = ({δ′, κ′},m).

Using the identity function as the bijective function means that the Jacobian,

∣∣∣∣∂(δ′,κ′)
∂(δ,u)

∣∣∣∣ =
∣∣∣∣∣ ∂δ

′

∂δ
∂δ′

∂u
∂κ′

∂δ
∂κ′

∂u

∣∣∣∣∣ =
∣∣∣∣1 0
0 1

∣∣∣∣ = 1.

Equal prior probabilities are specified on the covariates being present or absent i.e. p(m|m′) = p(m′|m) =
0.5 and hence A can be simplified to,

A = π(θ′,m′|.)
π(θ,m|.)q(u) .

The parameters of the proposal distribution q(u) = N(θ̂i, λ̂i
2
) are estimated from a previous analysis con-

ducted in the saturated model. The model was run for 20,000 iterations and the first 5,000 were discarded
as burn-in. Posterior means and variances θ̂i and λ̂i

2
correpsond to the posterior means and variances of

the parameters respectfully.
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