

Function to campare restricted and extended models (class of lm, glm or

survival) where observations fall within certain clusters and show inter-

site depedence. This is a likelihood ratio test like anova() where cluster

information is taken into account by default.

source("Bangladesh_As_adjusted_LR_test_GRM.r")

LRtest <- function(model0, model1, cluster) {

Compares restricted and extended models that have been fitted to the same

set of clustered data using an "independence" loglikelihood. The comparison

is done using an adjusted likelihood ratio test, as described in

Chandler & Bate (Biometrika, 2007) but using the *vertical* scaling of the

log-likelihood as in their equation (25), rather than the horizontal

scaling that is studied in detail elsewhere in the paper (the two

procedures are asymptotically equivalent, but vertical scaling is

computationally cheaper). Note that with vertical scaling, the numerator

of the scaling factor in equation (25) cancels with the denominator of the

secondary adjustment in equation (20) - the whole thing can therefore be

done at one stroke.

Arguments:

model0 A model object corresponding to the restricted model

model1 Ditto, extended model

cluster A vector of variables defining clusters for each case

in the database used for model (required if the model

objects are of class lm, glm, or survreg)

 if (!identical(class(model0),class(model1))) {

 stop("model0 and model1 have different classes!")

 }

 if (any(class(model0) %in% c("lm","glm","survreg"))) {

Check same response variable in each model (code lifted from

anova.lm)

 responses <- as.character(lapply(list(model0,model1),

 function(x) deparse(x$terms[[2]])))

 if (!all(responses == responses[1])) {

 stop("Models have different responses")

 }

Check that models are nested, and determine the constraints

for the restricted one.

 theta0 <- coef(model0); theta1 <- coef(model1)

 if (!all(names(theta0) %in% names(theta1))) {

 stop("model0 is not nested within model1")

 }

 p0 <- length(theta0); p1 <- length(theta1)

For survreg objects, the scale parameter is also included

in the ML fit. Although this isn't included in all models ...

to find out whether or not to include it, nick some code

from getS3method("summary","survreg"). Also take the

opportunity to check that the survreg fit contains both

naive and robust covariance matrix estimates

 if (class(model1)[1] == "survreg") {

 if (is.null(model1$naive.var)) stop("no clusters defined in model1")

 p.all <- nrow(model0$var)

 if (p.all > p0) {

 theta0 <- c(theta0,log(model0$scale))

 if (p.all - p0 == 1) {

 names(theta0) <- c(names(model0$coefficients),"Log(scale)")

 } else {

 names(theta0) <- c(names(model0$coefficients),names(model0$scale))

 }

 p0 <- p.all

 }

 p.all <- nrow(model1$var)

 if (p.all > p1) {

 theta1 <- c(theta1,log(model1$scale))

 if (p.all - p1 == 1) {

 names(theta1) <- c(names(model1$coefficients),"Log(scale)")

 } else {

 names(theta1) <- c(names(model1$coefficients),names(model1$scale))

 }

 p1 <- p.all

 }

 }

 kept.pars <- match(names(theta0),names(theta1))

 theta.tmp <- round(theta1 - theta1) # To copy the coefficient names

 theta.tmp[kept.pars] <- theta0

 theta0 <- theta.tmp

 zero.pos <- (1:p1)[-kept.pars]

Covariance matrix calculations, and log-likelihoods. For linear and

generalised linear models the latter are derived from the deviances /

residual sums of squares, converted back to the log-likelihood scale,

because it isn't clear that the logLik function gives the right thing.

Actually, in the case of an unknown dispersion parameter we do *not*

use full ML fits of both models - rather, we take the moment estimate from

the larger model as fixed. This is OK, because the estimate will differ

from the *true* dispersion parameter by an amount that is O(k^-0.5) in

probability and the computed (naive) likelihood ratio statistic is

calculated as (D0-D1) / \hat{phi} = [(D0-D1)/phi] * [1 + O(k^-0.5)]

which is asymptotically equivalent to the chi-squared statistic you'd get

if phi were known. The reason for proceeding this way is to ensure

compatibility with (e.g.) quasi-Wald statistics, which just use dispersion

estimates from the extended model. If you *don't* do this, then the ML

estimate of the dispersion parameter in the restricted model can `hide'

much of the lack of fit and reduce the significance of extra terms

(or, at least, indicate that they're not necessary because the extra

variation can be explained via increased dispersion). That seems a bit

heuristic - need to understand this a bit better! NB can't use the normal

F ratio to cope with the unknown dispersion, because the residual deviance

doesn't have the same chi-squared distribution as in the independence case.

 n <- p1 + model1$df.residual

 if (class(model1)[1] == "lm") {

 summ1 <- lm.clus.sum(model1,cluster=cluster)

 sigsq <- summ1$sigma^2

 logL1 <- -model1$df.residual

 RSS0 <- (n-p0) * summary(model0)$sigma^2

 logL0 <- -RSS0/sigsq

 R <- summ1$cov.scaled; N <- summ1$cov.unscaled

 } else if (class(model1)[1] == "glm") {

 if (!identical(model0$family[1:2],model1$family[1:2])) {

 stop("model0 and model1 have different 'family' attributes")

 }

 summ0 <- summary(model0)

 summ1 <- glm.clus.sum(model1,cluster=cluster)

 dispersion <- summ1$dispersion

 logL0 <- -summ0$deviance / (2*dispersion)

 logL1 <- -summ1$deviance / (2*dispersion)

 R <- summ1$cov.scaled; N <- summ1$cov.unscaled

 } else if (class(model1)[1] == "survreg") {

 logL0 <- model0$loglik[2]

 logL1 <- model1$loglik[2]

 R <- model1$var; N <- model1$naive.var

 }

 }

OK: here's the scaling factor.

 thetadiff <- theta1 - theta0; psidiff <- theta1[zero.pos]

 H <- -solve(N); H.adj <- -solve(R)

 R.psi.inv <- -solve(R[zero.pos,zero.pos])

 scalfac <- (t(psidiff) %*% R.psi.inv %*% psidiff) /

 (t(thetadiff) %*% H %*% thetadiff)

 df <- p1-p0

 LR.naive <- 2*(logL1-logL0)

 pval.naive <- pchisq(LR.naive,df=df,lower.tail=FALSE)

 LR.adj <- LR.naive*scalfac

 pval.adj <- pchisq(LR.adj,df=df,lower.tail=FALSE)

 data.frame(Lambda=c(LR.naive,LR.adj),

 P.value=c(pval.naive,pval.adj),

 row.names=c("Naive","Adjusted"))

}

end of the script written by Richard Chandler, Professor of Statistics at

the Department of Statistical Science at University College London.

E-mail: r.chandler@ucl.ac.uk

