tH#AF A A AR AF AR RAFAA AR A AA AR A AR A AR H A AR AR F A AR AR H A
Function to campare restricted and extended models (class of 1m, glm or

survival) where observations fall within certalin clusters and show inter-—

site depedence. This is a likelihood ratio test like anova () where cluster
information is taken into account by default.

#HAAHFAAARARAARARA AR RAARARA AR AR RA AR AR A AA AR AR AR RAA R AR

source ("Bangladesh_As_adjusted LR test_GRM.r")

LRtest <- function(modelO, modell, cluster) {

#tHE#AF A AR AF AR RAF AR RAA AR A AR R A AR H A AR R AR H A AR AR F A
Compares restricted and extended models that have been fitted to the same
set of clustered data using an "independence" loglikelihood. The comparison
is done using an adjusted likelihood ratio test, as described in

Chandler & Bate (Biometrika, 2007) but using the *vertical* scaling of the
log-likelihood as in their equation (25), rather than the horizontal
scaling that is studied in detail elsewhere in the paper (the two
procedures are asymptotically equivalent, but vertical scaling is
computationally cheaper). Note that with vertical scaling, the numerator
of the scaling factor in equation (25) cancels with the denominator of the
secondary adjustment in equation (20) - the whole thing can therefore be

H o W W O H R R W

done at one stroke.
HAAAHHAHARAAHARARHAAHARA AR A AFARAAHAAA AR A AR AA AR AR A AR

Arguments:

#

#

model0 A model object corresponding to the restricted model
modell Ditto, extended model

cluster A vector of variables defining clusters for each case
in the database used for model (required if the model
objects are of class 1lm, glm, or survreg)

iz adasasasasasaasaasasasasasasssasasasasasssasasasssasssssasasasasasassaadasdi

if (!identical (class(model0),class(modell))) {
stop ("model0 and modell have different classes!")

}

if (any(class(model0) %in% c("1m", "glm", "survreg"))) {

#

Check same response variable in each model (code lifted from
anova.lm)

#

responses <- as.character (lapply(list (model0O,modell),

function(x) deparse(x$terms[[2]])))
if (!'all(responses == responses|[l])) {
stop ("Models have different responses")

}

Check that models are nested, and determine the constraints
for the restricted one.

HH W W W

thetal <- coef (modell); thetal <- coef (modell)

if ('all (names (thetaO) %in% names (thetal))) {
stop ("model0 is not nested within modell")

}

p0 <- length(thetal); pl <- length(thetal)

For survreg objects, the scale parameter is also included
in the ML fit. Although this isn't included in all models
to find out whether or not to include it, nick some code
from getS3method ("summary", "survreg"). Also take the
opportunity to check that the survreg fit contains both
naive and robust covariance matrix estimates

H o W W O W R H

if (class(modell) [1] == "survreg") {
if (is.null(modell$naive.var)) stop("no clusters defined in modell™")

p.all <- nrow(modelOS$var)
if (p.all > p0) {
thetaO <- c(thetal,log(modelO$scale))

if (p.all - p0 == 1) {
names (thetal) <- c(names (modelOS$coefficients),"Log(scale)")
} else {

names (thetal) <- c(names (modelOScoefficients), names (model0S$Sscale))
}

p0 <- p.all

}

p.all <- nrow(modellS$var)

if (p.all > pl) {

thetal <- e(thetal,log(modell$scale))

if (p.all - pl == 1) {
names (thetal) <- c(names (modell$coefficients),"Log(scale)")
} else {

names (thetal) <- c(names (modellS$coefficients),names (modell$scale))
}
pl <= p.all

}

}

kept.pars <- match(names (thetal), names (thetal))

theta.tmp <- round(thetal - thetal) # To copy the coefficient names
theta.tmp[kept.pars] <- thetal

thetal0 <- theta.tmp

zero.pos <- (l:pl) [-kept.pars]

Zdiddaddzddaatdadsaatdsaddaddaasdsdadasdsaddatdsaddadddasdsaddasdaaddadddaddsi
Covariance matrix calculations, and log-likelihoods. For linear and
generalised linear models the latter are derived from the deviances /
residual sums of squares, converted back to the log-likelihood scale,
because it isn't clear that the logLik function gives the right thing.
Actually, in the case of an unknown dispersion parameter we do *not*

use full ML fits of both models - rather, we take the moment estimate from
the larger model as fixed. This is OK, because the estimate will differ
from the *true* dispersion parameter by an amount that is O(k"-0.5) 1in
probability and the computed (naive) likelihood ratio statistic is
calculated as (D0-D1) / \hat{phi} = [(D0O-D1)/phi] * [1 + O(k"-0.5)]

which is asymptotically equivalent to the chi-squared statistic you'd get
if phi were known. The reason for proceeding this way 1s to ensure
compatibility with (e.g.) quasi-Wald statistics, which just use dispersion
estimates from the extended model. If you *don't* do this, then the ML
estimate of the dispersion parameter in the restricted model can “hide'
much of the lack of fit and reduce the significance of extra terms

(or, at least, indicate that they're not necessary because the extra
variation can be explained via increased dispersion). That seems a bit
heuristic - need to understand this a bit better! NB can't use the normal
F ratio to cope with the unknown dispersion, because the residual deviance
doesn't have the same chi-squared distribution as in the independence case.
R

S R R W O ¥ O O R W W W W ¥ ¥ R R R W% %

n <- pl + modell$df.residual
if (class(modell) [1] == "1Im") {
summl <— Im.clus.sum(modell,cluster=cluster)
sigsg <—- summl$sigma”?
logLl <- -modells$df.residual
RSSO <- (n-p0) * summary (model0) $sigma”?2
logL0 <- -RSS0/sigsqg
R <- summlS$cov.scaled; N <- summlS$Scov.unscaled
} else if (class(modell) [1l] == "glm") {
if ('identical (modelOS$family[1:2],modellS$family[1:2])) {
stop ("model0 and modell have different 'family' attributes")
}
summ0 <- summary (modelO)
summl <- glm.clus.sum(modell, cluster=cluster)

dispersion <- summl$dispersion
logL0O <- -summO$deviance / (2*dispersion)
logLl <- -summl$deviance / (2*dispersion)
R <- summlS$Scov.scaled; N <- summlS$Scov.unscaled
} else if (class(modell) [l] == "survreg") {
logL0 <- model0$loglik|[2]
logLl <- modell$loglik|[2]
R <- modellS$Svar; N <- modell$naive.var
}

}

#

OK: here's the scaling factor.

#

thetadiff <- thetal - thetal; psidiff <- thetal[zero.pos]

H <- -solve(N); H.adj <- -solve(R)

R.psi.inv <- -solve(R[zero.pos,zero.pos])

scalfac <- (t(psidiff) %*% R.psi.inv %$*% psidiff) /

(t (thetadiff) $*% H %*% thetadiff)

df <- pl-p0

LR.naive <- 2*(logLl-1logL0)

pval.naive <- pchisqg(LR.naive,df=df, lower.tail=FALSE)

LR.adj <- LR.naive*scalfac

pval.adj <- pchisqg(LR.adj,df=df, lower.tail=FALSE)

data. frame (Lambda=c (LR.naive, LR.adj),
P.value=c(pval.naive,pval.adj),
row.names=c ("Naive", "Adjusted"))

end of the script written by Richard Chandler, Professor of Statistics at
the Department of Statistical Science at University College London.
E-mail: r.chandler@ucl.ac.uk

