

## SUPPLEMENTAL FIGURES

**Figure SI. A**, Immunohistochemistry confirms Cad-11 overexpression in mouse aortic valves in Cad11 OX mice compared to WT at 10 months (n=5, \*p<0.01), and sections treated with no primary antibody display minimal non-specific staining (insert) Scale bar=50µm. **B**, Cad11 OX AoVs display equal elastin compared to WT mice at 10 months (n=6) Scale bar=50µm. **C**, Cad11 OX AoV have greater  $\beta$ 1 integrin expression compared to WT mice at 10 months (n=4) Scale bar=200µm. **D**,**E**, Cad11 OX mice have significantly more number of cells in a cross-section, but have equal cell density compared to WT controls at 10 months (n=8, \*p<0.0005). **F**, WT and Cad11 OX mice do not differ in aortic root diameter at 10 months as measured by echocardiography (n=5). **G**, H&E staining shows minimal artifact staining. Significance was determined using the Student's t-test.



**Figure SII. A**, At 1 month, WT and Cad11 OX mice do not differ significantly in aortic valve morphology as measured by valve thickness and cross-sectional area. **B**, Cad11 OX AoVs have more Ki67 positive cells than WT mice at 1 month, indicating increased proliferation. **C,D**, Cad11 OX AoVs display increased GTP-RhoA and Sox9 activity relative to WT mice at 1 month. White arrows indicate Sox9 localized to the nucleus. Significance was determined using the Student's t-test (n=4, \*p<0.05, \*\*p<0.001).



**Figure SIII.** Increased  $\alpha$ SMA indicate an activated, myofibroblastic phenotype in diseased Cad11 OX AoVs compared to WT at 10 months (**A**,**D**). Cad11 OX mice highly express markers of osteoblastic differentiation Runx2 (white arrowheads) and Osteocalcin at 10 months whereas expression is limited in WT mice (**B**,**C**,**E**,**F**). Significance was determined using the Student's t-test ( $\alpha$ SMA n≥4, Runx2 n=3, Osteocalcin n≥5, \*p<0.005, \*\*p<0.001) Scale bar=50µm



**Figure SIV.** Cad11 OX mice have larger hearts compared to WT controls at 10 months (**A**,**B**) due to left ventricular hypertrophy with thickening of the interventricular septum and left ventricular wall as indicated by H&E staining (**C**-**F**). Significance was determined using the Student's t-test (n=6, \*p<0.005 \*\*p<2E-5). Scale bars=2mm (Ao=aorta; LA=left atrium; LV=left ventricle; RA=right atrium; RV=right ventricle; IVS=interventricular septum; LVW=left ventricular wall).



**Figure SV. A,** Cad11 OX and WT mice do not differ significantly in mitral valve morphology as measured by valve cross-sectional area, maximum valve thickness, average valve thickness, and valve length at 10 months (n=4). **B,** Von Kossa staining reveals that WT and Cad11 OX mice do not differ in mitral valve mineralization at 10 months (n=4). Significance was determined using the Student's t-test at p<0.05.



**Figure SVI. A**, qRT-PCR demonstrates a ~100 fold increase in Cad-11 mRNA following transfection with the Cad-11 plasmid. Bars that do not share any letters are significantly different according to a one-way ANOVA with Tukey's post-hoc test (p<0.05, n=4). **B**, Immunohistochemistry qualitatively shows an increase in Cad11 (red) at the protein level. **C,D**, Western blotting quantitatively shows an increase in Cad-11 protein expression relative to control plasmid in OGM. Bars that do not share any letters are significantly different according to a one-way ANOVA with Tukey's post-hoc test (p<0.05, n=4).



**Figure SVII. A,** PAVICs transfected with a Cad-11 overexpressing plasmid exhibit increased migration compared to control cells in a wound closure assay after 12 hours (n=6, \*p<0.05). **B,** Quantification of number of lone cells (<4 in-contact neighboring cells) reveals that control PAVICs have more lone, migrating cells than Cad-11 transfected PAVICs, which migrate mostly as a collective front (n=7, \*p<0.01). **C,** Cad-11 overexpressing PAVICs displayed greater compaction in a free-floating 3D collagen gel compared to control cells after 7 days (n=6, \*p<0.05). Significance was determined using the Student's t-test at p<0.05.



**Figure SVIII.** At 10 days, PAVICs in regular growth media (**A**) do not calcify, while cells in OGM (**B**) form multiple Alizarin Red-positive calcific nodules. Treatment with Y27632 (**C**) prevents nodule formation. **D**, Brightfield imaging of calcific nodules shows aggregation of cells. **E**, Live/Dead staining shows the nodules have a partially apoptotic core. **F**, Quantitative real-time PCR shows differences in gene expression among PAVICs in the three conditions relative to control Bars that do not share any letters are significantly different according to a one-way ANOVA with Tukey's post-hoc test (p<0.01, n=4).



**Figure SIX.** At 10 days, PAVICs in regular growth media (**A**) do not calcify, while Cad-11 overexpressing cells (**B**) form small, Alizarin Red-positive calcific nodules (arrows). Treatment with Y27632 (**C**) prevents nodule formation. **D**, Quantification of calcific nodules per well. Bars that do not share any letters are significantly different according to a one-way ANOVA with Tukey's post-hoc test (p<0.05, n=4). **E**, qRT-PCR shows differences in gene expression among PAVICs in the three conditions compared to control. Bars that do not share any letters are significantly different according to a oneway ANOVA with Tukey's post-hoc test (p<0.01, n=4).



**Figure SX.** Movat's Pentachrome (**A**) and Hematoxylin and Eosin (H&E) stains (**B-D**) reveal dysregulated matrix, leaflet thickening, and severe calcification in calcified human aortic valves. Asterisks (\*) indicate calcific nodules, F=Fibrosa, S=Spongiosa, V=Ventricularis.



**Figure SXI.**  $\beta$ 1 Integrin,  $\alpha$ SMA, and Runx2 expression are lowest in control human valves (**A-C**) relative to calcified human aortic valves (CHAV). VICs in calcified regions (CR) of CHAV display increased expression of  $\beta$ 1 Integrin,  $\alpha$ SMA, and Runx2 (**G-I**) relative to non-calcified regions (NCR) of CHAV (**D-F**). Colored boxes correspond to magnified regions in **Figure 7**. CR=Calcified Region, NCR=Non-Calcified Region. Significance was determined using the Student's t-test (n=3 Control, n=5 CHAV, \*p<0.01 \*\*p<0.005 \*\*\*p<0.001 vs. Control, \*p<0.05 \*\*\*p<0.01 vs. CHAV-NCR)

|          | Nfatc1 <sup>Cre</sup> ;<br>R26-Cad11 <sup>Tg/Tg</sup> | Nfatc1 <sup>Cre</sup> ;<br>R26-Cad11 <sup>Tg/+</sup> | Nfatc1 <sup>cre</sup> ;<br>R26-Cad11 <sup>+/+</sup> | p-value |
|----------|-------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|---------|
| Birth    | 22 (34.9%)                                            | 26 (41.3%)                                           | 15 (23.8%)                                          | 0.18    |
| Expected | 15.75 (25%)                                           | 31.5 (50%)                                           | 15.75 (25%)                                         |         |

**Table SI.** Two *Nfatc1<sup>Cre</sup>;R26-Cad11<sup>Tg/+</sup>* were mated and produced 6 litters, averaging 10.7 pups (total 63 pups). Pups were *Nfatc1<sup>Cre</sup>;R26-Cad1<sup>Tg/Tg</sup>, Nfatc1<sup>Cre</sup>;R26-Cad11<sup>Tg/+</sup>,* or *Nfatc1<sup>Cre</sup>;R26-Cad11<sup>+/+</sup>*. Chi-squared analysis using expected Mendelian ratios shows non-lethal effects of the Cad11 transgene (n=63, p=0.18)

| Primer           | Forward Sequence     | Reverse Sequence      |
|------------------|----------------------|-----------------------|
| Pig 18s          | AATGGGGTTCAACGGGTT   | TAGAGGGACAAGTGGCGT    |
| Pig Cad11        | TGGAGATGGGATGGAATTGT | CTGATGAACTTCGGGTCGAT  |
| Pig ACTA2 (αSMA) | CAGCCAGGATGTGTGAAGAA | TCACCCCCTGATGTCTAGGA  |
| Pig RhoA         | AACAGGATTGGTGCTTTTGG | CAGCAGGGTTCACAAGACA   |
| Pig Sox9         | GTACCCGCACCTGCACAAC  | TCTCGCTCTCATTCAGCAGTC |
| Pig RunX2        | GCACTACCCAGCCACCTTTA | TATGGAGTGCTGCTGGTCTG  |
| Pig OCN          | TCAACCCCGACTGCGACGAG | TTGGAGCAGCTGGGATGATGG |

**Table SII.** Real-time PCR primers used for porcine genes.

