
Table S1: Related to Figure 3. Comparisons between Weaver and other tools on SV identification. SN and SP are shown
under different sequencing coverage (SN/SP). ‘Overall’ is the average across different coverages.

SV type Tools Overall Coverage
20 30 40 50 60

Deletion

Weaver 98.7 / 98.9 96.8 / 100.0 99.8 / 99.4 98.9 / 98.9 98.7 / 98.1 99.1 / 98.1
BreakDancer 96.8 / 44.0 97.0 / 66.3 97.9 / 52.9 97.0 / 45.9 96.2 / 37.7 95.7 / 31.6
CREST 41.3 / 100 42.1 / 100 43.7 / 100 41.4 / 100 41.1 / 100 41.7 / 100
DELLY 98.0 / 73.6 100 / 80.6 99.8 / 76.7 98.7 / 73.3 96.8 / 70.3 94.9 / 68.3

Tandem Dup

Weaver 97.2 / 94.8 94.4 / 97.2 97.1 / 95.8 98.2 / 95.2 98.0 / 93.4 98.4 / 92.6
BreakDancer 91.0 / 30.7 92.6 / 52.8 91.2 / 40.9 91.5 / 32.6 90.7 / 25.0 89.3 / 20.1
CREST 40.2 / 100 44.6 / 100 42.0 / 100 42.0 / 100 42.4 / 100 41.1 / 100
DELLY 95.6 / 71.1 98.1 / 74.8 98.1 / 73.9 97.3 / 72.5 94.0 / 69.1 90.7 / 65.5

Rearrangement

Weaver 98.7 / 93.6 97.1 / 96.0 98.8 / 94.7 98.0 / 93.3 99.7 / 92.2 100 / 92.0
BreakDancer 70.0 / 71.4 70.8 / 72.3 70.0 / 71.4 70.0 / 71.2 69.4 / 70.8 70.0 / 71.2
CREST 17.9 / 100 18.0 / 100 17.1 / 100.0 17.6 / 100 16.7 / 100 17.1 / 100
DELLY 44.4 / 45.9 51.0 / 70.0 51.0 / 59.3 45.2 / 45.6 38.8 / 35.8 35.9 / 30.6



Table S2: Related to Figure 4. Correlation between MCF-7 SVs and ChIA-PET clusters from various cell lines

Dataset MCF-7 PolII Hela PolII K562 NB4 Hct116
+CTCF+ERa PolII+CTCF

Long range overall 4,708 305 2,057 42 198
Correlated 485 2 6 0 0
P-value NA <0.0001 <0.0001 0.0296 <0.0001
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Figure S1: Comparison between Weaver and other ASCN-G tools. Related to Figure 3. (A) Comparison on finding CNA
breakpoints from Weaver, CNVnator, and HMMcopy with different levels of SV ratio. For each method, SN and SP are
shown. X axis represents the ratio of correct SVs provided to Weaver and 0 stands for the case where no SV was provided,
as for the tools they do not consider SV when performing CNA analysis. >1 SV ratio means that false SVs have been added.
(B) ASCN-G results comparison of Weaver, ASCAT, and CNVnator+THetA on one simulation dataset. Note that CNVnator
does not provide allele-specific information. Red segments indicate overall copy number; blue and green segments indicate
copy number on two separate alleles. Note that here Weaver’s result completely agrees the true answer from simulation.
(C) Base-pair level copy number accuracy comparison of the three tools.
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Figure S2: Additional results from Weaver on MCF-7. Related to Figure 4. (A) Optical Mapping (OM) analysis supports
a tandem duplication (TD) in MCF-7 identified by Weaver. A whole chromosome amplification happened after the initial
TD. Two OM Rmaps are shown as blue lines, with red dots represent theoretical cutting cites of restriction enzymes on
reference genome and purple dots represent cutting sites missed by OM. Black number on each segment of OM Rmaps
shows the expected length (kb) of OM Rmaps between two cutting sites on the reference and blue number below each
segment shows the observed length (kb) of OM Rmaps. The expected length of OM Rmap covering the TD breakpoint
is 23.7 kb, while the observed lengths of two OM Rmaps are 22.4 kb and 23.1 kb, respectively. The strong concordance
between the expected and the observed OM Rmaps independently corroborates this TD detected by Weaver. (B) Cancer
contig with eight fragments from chr17 and nine fragments from chr20 in MCF-7. ChIA-PET cluster has linked two flanking
promoters BMP7 and INTS2 together, suggesting the existence of the entire complex cancer contig. Note that this region
has been amplified many times and the chr20 amplified region also links to another amplified region on chr20 (around 52
Mb).



1:1 2:1 2:2 3:1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3:2 4:1
Allele copy ratio

R
N

A
-s

eq
 a

lle
lic

 e
xp

re
ss

io
n 

ra
tio

HeLa

20 Mb
10,000,000 20,000,000 30,000,000 40,000,000 50,000,000

chr19 19p13.3 19p13.2 13.12 19p13.11 19p12 p11 q11 19q12 q13.11 q13.12 19q13.2 q13.32 19q13.33 13.41 q13.42 q13.43

Allele
frequency

Coverage

Allele 1
Allele 2

Del

Dup

HH

TT

2:1

chr13:55878043

0 3:1 2:1 1:1

1X

0

0.5

(A) (B)

Figure S3: Additional results from Weaver on HeLa. Related to Figure 6. (A) Distribution of allelic expression ratio
measured by RNA-seq for different allele copy number categories in HaLa. Red stars indicate allele copy number ratio. (B)
Rearrangements and ASCN-G of ch19 in HeLa. All SVs on chr19 have copy number 1 and on one copy of allele 1 (blue),
except the inter-chromosomal SV (chr13:55.8Mb-chr19:12.9Mb) which is on allele 2 (green). The high allele specificity of
SVs and the fact that there is no fold-back inversion suggest that allele 1 of chr19 might be rearranged from a chromothripsis
event. Weaver has labeled all intra-chromosomal SVs on chr19 as post-aneuploidy, where one copy of allele 1 does not
have SVs after the initial amplification of allele 1, consistent with previous observation that there are two normal copies of
chr19 in HeLa (Macville et al., 1999) .
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Figure S5: Related to Figure 7. Circos plots of the Weaver results from all 44 TCGA ovarian cancer samples.
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Figure S6: Related to Figure 7. (A) Overview of the genomic landscape of a TCGA ovarian cancer sample (TCGA-36-
1571). In this cancer genome, there are two groups of highly inter-connected chromosomes: chr4-chr22 and chr6-chr14.
By calculating the detailed copy number of the involved SVs and genomic regions, the chr4-chr22 group showed signatures
of chromothripsis of multiple chromosomes, while chr6-chr14 group showed extensive focal copy number gains and is most
likely to be formed by progressive process rather than a single catastrophic chromosome shattering event. (B) Most of
SVs linking chr4 and chr22 have copy number one. (C) chr6-chr14 region has high number of fold-back inversions (FBIs).
Three high-coverage FBIs are observed at the boundaries of highly amplified region on chr14, indicating many rounds of
breakage-fusion-bridge cycles. Interestingly, FOXG1 gene is proximal to the FBI site on chr14 and highly amplified. It was
reported that the over-expression of FOXG1 contributes to TGF-β resistance in ovarian cancer, leading to loss of growth
inhibitory response to TGF-β, which is common in epithelial cancers (Chan et al., 2009). (D) Number of FBIs per 10Mbp
in all chromosomes is calculated across 44 TCGA ovarian cancer samples in this study. chr19 is significantly enriched with
FBIs.
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Figure S7: Related to Figure 2. (A) Posterior distribution of b and φ given the MCF-7 data. Dark red region represents the
most probable configuration of (b, φ), which is measured as (19.4, 1.5). (B) Testing on simulated data with over-dispersion
φ = 1.5, Weaver achieved R2 = 0.998 when inferring µ0.



Data S1. Output from Weaver on MCF-7, HeLa, and 44 TCGA ovarian cancer samples. Related to Figure 4, Figure 6, Figure
7.



SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Preparing the input for Weaver

As shown in Figure 1, all sample-dependent input of Weaver is just the cancer sample alignment BAM file (normal
alignment file is another input if available) and the direct inputs for Weaver MRF model are generated by the
following approaches.

Alignment and SNP finding. In this study, all NGS read alignment was done by BWA (version 0.7.4) (Li and
Durbin, 2009), with default parameter settings. SAMtools (version 0.1.19) (Li et al., 2009) was used to call SNPs.
In order to estimate ASCN-G and the phasing of SNPs, we only retained SNPs from the original SNP list from
SAMtools with the following criteria: (i) heterozygous; (ii) not in segmental duplications (from UCSC Genome
Browser, defined as stretches of DNA that are at least 1 kb in length and share a sequence identity of at least
90% (Bailey et al., 2001)); (iii) mappability >0.2 (using the wgEncodeCrgMapabilityAlign100mer table at UCSC
Genome Browser); (iv) reported in 1KGP; (v) if normal counterpart is available, SNP needs to be found in normal
sample. As an example, 1,507,969 SNPs were retained in the MCF-7 dataset, which were used to infer ASCN-G
and assist phasing.

SNP linkage from 1KGP. 1KGP Phase 1 release has provided the haplotype phased 1,092 individuals (Consortium
et al., 2012), from which linkage disequilibrium (LD) can be calculated for adjacent SNPs. The method to calculate
SNP linkage from 1KGP is in Equation 1.

SNP linkage from sequencing reads. We assume that if two SNPs are found on the same read (or read pair), they
are likely from the same allele. The method to calculate SNP linkage from reads is in Equation 2.

SVs identification. Although the main focus of Weaver is not on SV identification, the inconsistency between
current SV detection tools motivated us to develop an SV finding procedure to reliably detect SV with base-pair
resolution, combining the following two strategies:

1. Discordant paired-end clusters: When mapping paired-end reads onto the reference genome, the reads
mapped to smaller coordinates are expected to be on the forward strand, while their paired-end partners
are on the reverse strand. The presence of abnormal paired-end mappings, either from unexpected insert size
or mapping orientation, is indication of SVs. We cluster all abnormal paired-end mappings by their mapping
positions and only the clusters with at least four read-pairs are retained, denoted as P .

2. Soft-clip mapping clusters: Some read alignment tools, such as BWA (Li and Durbin, 2009), will search
for local alignment (soft-clip) when they fail to find confidant alignment for the entire read. Many of those
soft-clipped reads may be spanning across SV breakpoints. The ‘clipped’ part of those reads can in fact be
split from the original read and then re-aligned to the other side of breakpoint, revealing base-pair resolution
breakpoints, similar to the approach in (Wang et al., 2011; Rausch et al., 2012). We cluster these split
alignments by coordinates. Only the clusters with at least four split-reads are retained, denoted as S.

We combine the clusters from both P and S to get highly reliable SVs, which are supported by both discordant
mappings and breakpoint spanning reads. However, some SVs are small in scale or proximal to each other, making
it extremely difficult to detect them in P . Also, some other SVs have undergone mutations around breakpoints
and it is difficult to recognize them at base-pair resolution in S. We therefore also retain SVs supported by
only one cluster, either P or S, with higher read number cut-offs (we use 10 in this work). The final SV set is
C := P

⋂
S
⋃
{x : x ∈ P \ S

⋃
S \P , N(x) > 10}. For simplicity, we use C to represent the set of SVs.

To further filter out potential false positives, we screen C using the following steps:

1. We pull out the flanking genomic regions on both sides of a combined cluster and map them independently
back to the reference genome. We only retain SVs inferred from clusters with flanking regions uniquely
mapped, filtering out potential false positives caused by read mapping ambiguity. This approach may miss



some breakpoints in highly repetitive regions. However, this also significantly reduces false positives. This
is an important tradeoff for the short read data that we deal with in this work.

2. We scan the mappability score around both breakpoints of the SV. If the average score of one breakpoint is
less than 0.1, the SV will be discarded.

3. For long range SVs, we observed that some false positive SVs are in fact germline segmental duplications.
Therefore, if the two breakpoints are in paired regions of segmental duplications, the SV will be discarded.

We further screen our SV list using germline SV database, Database of Genomic Variants (DGV) (MacDonald
et al., 2013), as well as SVs called from normal sample if available, when the overlap is >90%, to make sure that
the ones we identified are somatic alterations. The final list of SVs from the cancer sample is reported in VCF
format (Danecek et al., 2011). The output of Weaver SV finding pipeline is the SV list C with linkage information
to adjacent SNPs (if within the range of read pairs), which is used to assist SV phasing.

For the SV breakpoint identification pipeline in Weaver, we compared it with CREST (v1.0) (Wang et al.,
2011), BreakDancer (v1.4.4) (Chen et al., 2009), and DELLY (v0.0.11) (Rausch et al., 2012). CREST has achieved
high specificity, but significantly lower sensitivity as compared to other tools. Both BreakDancer and DELLY have
consistently lower SN and SP as compared to Weaver, on almost all test datasets. The detailed comparison is
summarized in Table S1. Although Weaver is designed for analyzing somatic SVs, we selected two HapMap
genomes (NA18507 and NA12878) with high coverage Illumina sequencing data available to test the capability of
Weaver SV pipeline as a generic SV detection tool. Since short range SVs have marginal impact on copy number,
we focus our analysis on germline deletions and duplications with range >2 kb. DGV (MacDonald et al., 2013)
and the variants reported in 1KGP (Mills et al., 2011) were used as the benchmark of germline SVs. 1,184 of 1,204
(98.3%) deletions and duplications reported by Weaver are annotated, while Yang et al. (2013) reported 931 in 969
(96.1%).

It is important to note that users can use the results from other SV identification tools as the SV input for
Weaver. Based on our observation, variation on SV breakpoint detection has little effect on the SV quantifica-
tion step if the breakpoints are mostly overlapping from different tools. Weaver can also tolerate false positive
breakpoints. However, if more false negatives can be uncovered, the results from Weaver will be more reliable.

Hidden states H in the MRF model M

For ith genome node Ri ∈ R ⊂M, the hidden states are Hi={Ca
i ,C

b
i , G

a
i , G

b
i}, where Ca

i = {Cai,0, ..., Cai,K}
and Cb

i = {Cbi,0, ..., Cbi,K} are vectors of non-negative integer numbers representing copy numbers for allele a
and b of kth population on Ri, respectively. k = 0 stands for the fraction of normal cells. Note that although
the Weaver framework is generic and in principle can be applied for multiple subclones (K > 1), in our current
implementation, Weaver only processes tumor samples without significant subclonal structure (i.e., K = 1). We
leave the K > 1 cases of tumors with abundant subclonal structure as future work.

Gai and Gbi represent the genotype of allele a and b of Ri, which is independent from subclone structure since
only germline SNPs are considered. For convenience, we also set variable Ci,k as the overall copy number of kth

population on Ri (Ci,k = Cai,k + Cbi,k). Since cancer genomes typically have highly amplified regions, we do not
set an arbitrary limit for Ci,k. The hidden copy number is bounded by the observation of sequencing depth in each
region. Note that for regions with low mappability or extreme GC content, it is not reliable to infer hidden state
space with observed local sequencing coverage. Instead, we search the closest neighboring region and inherit its
hidden state space setting, assuming that there is no dramatic state change between them. The hidden states Hc on
cancer nodes Rc are discussed below.

Observations O in the MRF model M

For ith genome node Ri ∈ R ⊂M, the observation from the hidden state is the read coverage Oi of Ri, which
can be estimated by tools such as BEDTools (Quinlan and Hall, 2010) based on the input BAM file. For tumor



sample with matched normal genome sequenced, we calculateONormi for the sameRi and normalize theOi using:
Onewi = ONorm × Oi/O

Norm
i , where ONorm is the median coverage of the entire normal genome. If Ri has

SNP, Oai and Obi are the number of reads containing the SNP based on a/b allele, respectively, which can be
obtained from SNP calling pipelines such as Li (2011). In practice, neither sequencing nor mapping is uniform
across the genome. Here we consider two widely used factors, the GC-content and short read mappability (from
UCSC Genome Browser). Using two HapMap samples NA18507 and NA12878, we split the human genome into
consecutive 100 bp bins and calculated the average mapping coverage on each bin. Among the bins that have
unexpectedly low or high coverage as compared to the rest of the genome, more than 91% have either mappability
< 0.6 or GC-content < 0.2 or > 0.6. Therefore, we label all Ri as not read-depth informative, if its mappability
< 0.6 or GC-content < 0.2 or > 0.6. The read depth of such uninformative region is inherited from neighboring
regions.

For two adjacent genomic regions Ri, Ri+1 ∈ R, there are two independent observations for their genotype
linkage (as observation on Er).

(i) We assume the genotypes on i and i + 1 are Gai /G
b
i and Gai+1/G

b
i+1, respectively. We define the Linkage

Disequilibrium (LD) score for the phasing configuration Gai , G
a
i+1/G

b
i , G

b
i+1 as:

LD(Gai , G
a
i+1/G

b
i , G

b
i+1) =

Nld(G
a
i , G

a
i+1) ·Nld(G

b
i , G

b
i+1)

Nld(G
a
i , G

a
i+1) ·Nld(G

b
i , G

b
i+1) +Nld(G

a
i , G

b
i+1) ·Nld(G

b
i , G

a
i+1)

(1)

whereNld(G
a
i , G

a
i+1) is the number of phased haplotypes (total number 1092×2 in phase 1) in the 1000 Genomes

Project (1KGP) with genotype (Gai , G
a
i+1). Other genotype configurations can be calculated accordingly.

(ii) We define the read linkage score (RL) for the phasing Gai , G
a
i+1/G

b
i , G

b
i+1 as:

RL(Gai , G
a
i+1/G

b
i , G

b
i+1) =

Nrl(G
a
i , G

a
i+1) +Nrl(G

b
i , G

b
i+1)

Nrl(Ri, Ri+1)
(2)

where Nrl(Ri, Ri+1) is the total number of reads covering genomic region (Ri, Ri+1) and Nrl(G
a
i , G

a
i+1) is the

total number of reads covering (Gai , G
a
i+1). If there are no reads covering (Ri, Ri+1) (i.e. Nrl(i, i+ 1) = 0), then

RL = 0.
Therefore, we define genotype linkage (GL) as:

GL(Gai , G
a
i+1/G

b
i , G

b
i+1) = log

(
LD(Gai , G

a
i+1/G

b
i , G

b
i+1) ·RL(Gai , G

a
i+1/G

b
i , G

b
i+1)

)
(3)

In cancer genome sequencing data application, we found that RL and LD correlated very well. For example,
in the MCF-7 genome analysis, when we chose SNP pairs with 100% RL support as gold standard, we found
AUC= 0.9964 using LD scores.

Genome node potential function ΘR(O|Hi) and parameter Θ̂R estimation
ΘR(O|Hi) is the log-potential function providing constraints for each node Ri. Empirically, the distribution
of read coverage on chromosomal regions with identical copy number follows Poisson distribution (dispersion
φ = 1). Due to various source of variations in sequencing as well as alignment, negative binomial (NB) model
has been proposed to consider the over-dispersion (φ > 1) (Robinson and Smyth, 2008). With the observation
in cancer genomes from extensive focal amplifications caused by various mechanisms including breakage-fusion-
bridge cycles, we set no limit on the size of state space (i.e., total copy number) in our model. Our model is based
on the assumption that the mean coverage of a genomic region is proportional to its copy number. We set µ as the
vector with the fraction of normal and cancer cells (as mentioned before, in our current model, we only consider
the case k < K = 1 where k = 0 refers to the normal part and k = 1 refers to the cancer part), b as the base
coverage on each haplotype, φ as dispersion parameter of negative binomial distribution, thus parameter set for the
genome node potential function is ΘR = {φ, b, µ}.



For Ri without SNP,

ΘR(O|Hi) = log NB

(
Oi|

1∑
k=0

µkCi,kb, φ

)
(4)

For Ri with SNP,

ΘR(O|Hi) = log NB

(
Oai |

1∑
k=0

µkC
a
i,kb, φ

)
+ log NB

(
Obi |

1∑
k=0

µkC
b
i,kb, φ

)
(5)

where

NB(y|x, φ) =
Γ(y + φ−1)

Γ(φ−1)Γ(y + 1)

(
1

1 + xφ

)φ−1 (
x

x+ φ−1

)y
, and

1∑
k=0

µk = 1

x denotes the expected mean coverage based on copy number and base coverage. φ denotes the dispersion. y
denotes the observed number of reads mapped to the given region Ri.

Unlike copy number analysis in normal genomes, the unknown degree of aneuploidy and the level of normal
contamination in cancer sequencing data makes the estimation of single chromosomal coverage challenging. Initial
partition of the genome in Weaver leads to continuous genomic regions with start and end points defined by SV
breakpoints. Although we assume that most of copy number changes have corresponding breakpoints and can be
detected by reads, some partitioned region will still have copy number change and thus is not suitable for dispersion
estimation. We estimate the parameters Θ̂R = (b̂, φ̂, µ̂) from high confidence regions S with sampling φ < 3 and
size > 1 Mb. Within each continuous region Si, the hidden ASCN-G state Hi (Cai,k and Cbi,k) is identical. Given
our sequencing data, we can calculate the posterior distribution using Bayesian methods, with prior information on
ASCN-G of Si, P (Ci), as:

P (Ci) =


0, if Cbi,0 6= 1 ∨ Cai,0 6= 1

0.1 · t, else if Ci,1 ≥ 4
t, else

(6)

µ0 is normal cell fraction, thus Cai,0 and Cbi,0 are both 1. As mentioned before, we set k <= 1 in the current
Weaver implementation, so Ci,1 stands for the copy number of the cancer sample. Knowing that ultra-hyperploid
copy number is rare, penalty factor (0.1) is imposed on ≥ 4 copies. The exact value of parameter t has no impact
on Θ̂R estimation. The parameters can be estimated by:

Θ̂R = arg max
ΘR

L(ΘR|S)

L(ΘR|S) =
P (S|ΘR)P (ΘR)

P (S)
∝ P (S|ΘR)

=
∏
i∈S

∏
Rj∈Si

P (Oj |b, φ, µ) =
∏
i∈S

∏
Rj∈Si

∑
Ci

P (Oj ,Ci|b, φ, µ)P (Ci)

=
∏
i∈S

∏
Rj∈Si

∑
Ci

NB

(
Oaj |

1∑
k=0

µkC
a
i,kb, φ

)
NB

(
Obj |

1∑
k=0

µkC
b
i,kb, φ

)
P (Ci)



(7)

L(ΘR|S) models the likelihood of parameter set ΘR = {φ, b, µ} when having the observations in S.
We numerically estimate (i.e., enumerating all discrete nodes within parameter space lattice, with fixed step

size) the posterior distribution and estimate the Bayesian credible interval for the MAP parameters (Figure S7A).
We also evaluated Weaver on simulated data with respect to purity estimation of the tumor. The results are plotted
in Figure S7B. With various normal cell fraction µ0, Weaver precisely reported µ0, with R2 = 0.998.



Genome edge potential function ΨR(O|Hi, Hi+1)

Genome edge potential function ΨR(Hi, Hi+1) provides constraints on the node set Ri, Ri+1:

ΨR(O|Hi, Hi+1) = −β log
1∑

k=0

{
|Cai,k − Cai+1,k|+ |Cbi,k − Cbi+1,k|

}
+GL(Gai , G

a
i+1/G

b
i , G

b
i+1) (8)

The term β models the penalty of ASCN-G change between Ri and Ri+1. The hidden ASCN-G between two
adjacent genome nodes stays the same for most of the regions and only changes under two conditions: (i) One
of the two nodes is linked to telomere of the derived cancer chromosome; (ii) A breakpoint undetected by initial
SV identification resides between the two nodes. Both of these two scenarios are rare, except for the case of cen-
tromeres when chromosome arm level amplification or loss happened. SVs inside centromeres are also infeasible
to detect at the moment because of the repetitive nature of centromere sequences. We set β between two genome
nodes flanking the centromere as 0.1β.

Cancer node potential function ΘC(O|Hc)

For cancer node Rc, we set the involved SV c with index: (δiRi ∼ δjRj), δ ∈ {+,−}. Thus Rc := {Ri, Ri+δi1,
Rj , Rj+δj1}. The potential function for cancer nodes Rc is defined as follows. As we defined earlier, without loss
of generality, we name two alleles on each SV-involved chromosome as a and b. We assume SV c is on allele a.
Cc refers to the hidden copy number of the SV.

1. If c is intra-chromosomal (i.e., Ri and Rj are on the same chromosome), there are two possible constraints:
(i) SV c occurs in a single allele (heterozygous) and it could be either germline or somatic. (ii) c occurs in
both alleles (homozygous) and it is germline (one somatic SV rarely independently occurs on both a and
b alleles, with the same genomic coordinates), we set range limit L as 1 Mb (very large germline SVs are
rare (Mills et al., 2011)) for germline SVs. Under our assumption, if SV is on both a and b alleles, it must
be on all copies of a and b alleles.

ΘC(O|Hc)

= GL(Gai , G
a
i+δi1

/Gbi , G
b
i+δi1

) +GL(Gaj , G
a
j+δj1

/Gbj , G
b
j+δj1

) +RLSV (Gai , c) +RLSV (Gaj , c)

+



π(Cc,k, C
a
i,k)

+π(Cc,k, C
a
j,k)

somatic SV if


Cai,k − Cai+δi1,k = Caj,k − Caj+δj1,k = Cc,k
Cbi,k − Cbi+δi1,k = Cbj,k − Cbj+δj1,k = 0

k = 1

Pgerm del

+RLSV (Gbi , c)
+RLSV (Gbj , c)

germline del if



dist(Ri, Rj) < L
δi = +, δj = −
Cai+δi1,k = Caj+δj1,k = 0

Cbi+δi1,k = Cbj+δj1,k = 0

Cai,k = Caj,k > 0

Cbi,k = Cbj,k > 0

Cc,k = Cai,k + Cbi,k > 0

Pgerm dup

+RLSV (Gbi , c)
+RLSV (Gbj , c)

germline dup if



dist(Ri, Rj) < L
δi = −, δj = +
Cai+δi1,k = Caj+δj1,k > 0

Cbi+δi1,k = Cbj+δj1,k > 0
Cai,k

Cai+δi1,k
=

Caj,k
Caj+δj1,k

∈ Z (integer)

Cbi,k
Cbi+δi1,k

=
Cbj,k

Cbj+δj1,k
∈ Z

Cc,k = Cai,k + Cbi,k − Cai+δi1,k − C
b
i+δi1,k

−∞ else

(9)



RLSV (Gai , c) =

{
1 if reads (that support c) cover genotype Gai
0 else

(10)

π(Cc, C
a
i ) =


π1 if Cai = Cc = 1
π2 if Cai,k = Cc,k > 1

π3 if Cai,k > Cc,k ≥ 1
(11)

π1 represents the prior probability of an SV without timing information; π2 represents the prior probability
of a pre-aneuploidy SV that has been amplified; π3 represents the prior probability of a post-aneuploid SV.
We assume π1 ≈ π2 ≈ π3 � Pgerm del ≈ Pgerm dup.

2. If c is inter-chromosomal (i.e., Ri and Rj are on different chromosomes), SV c is unlikely to be germline,
thus SV c is unlikely to be on both a and b alleles. Without loss of generality, we still name two alleles on
each SV involved chromosome as a and b, and we expect SV c to be on allele a.

ΘC(O|Hc) = GL(Gai , G
a
i+δi1

/Gbi , G
b
i+δi1

) +GL(Gaj , G
a
j+δj1

/Gbj , G
b
j+δj1

)

+RLSV (Gai , c) +RLSV (Gaj , c)

+

 π(Cc, C
a
i ) if

{
Cai − Cai+δi1 = Caj − Caj+δj1 = Cc
Cbi − Cbi+δi1 = Cbj − Cbj+δj1 = 0

−∞ otherwise

(12)

Cancer edge potential function ΨC(Hc, Hi)

For i ∈N (c), the pairwise potential function on cancer edge (Rc, Ri) is:

ΨC(Hc, Hi) =

{
s if Hi 6= H ′i
1− s if Hi = H ′i

(13)

The parameter s is small (0.01 in current version of Weaver) and models the penalty of copy number inconsistency
between SV and the involved genomic regions.

Converting cancer genome graph to the MRF representation

We convert the cancer genome graph G = (R,E) to MRF M with the following steps (see Figure 2C for
example):

1. Nodes R in G are inherited as genome nodes in M, with potential function described in Equation 4 and 5.
We still use R to represent the set of genome nodes in M.

2. Reference adjacency (+Ri ∼ −Ri+1) without cancer breakpoints (+Ri 6∈ Ec, −Ri+1 6∈ Ec) are inherited
in MRF as genome edge. For example, in Figure 2C, (+R3 ∼ −R4) is retained from G to M, while
(+R6 ∼ −R7) in G is not included in M since +R6 is involved in SV n := (+R6 ∼ −R10). The
corresponding potential function is discussed above. We use Er as the set of genome edges in M.

3. For each cancer adjacency Ec := (δiRi ∼ δjRj), δ ∈ {+,−}, all reference adjacencies in G linking Ri,
Ri+δi1 andRj , Rj+δj1 are deleted and a cancer nodeRc is added. The potential function forRc is discussed
above. For example, in Figure 2C, the edges (+R6 ∼ −R7) and (+R9 ∼ −R10) in G are deleted and a new
node Rn is added in MRF. We use Rc as the set of cancer nodes in M.

4. Cancer node Rc connects to genome nodes Ri, Ri+δi1, Rj and Rj+δj1 by adding cancer edges in MRF. For
example, in Figure 2C, the R6, R7 and R9, R10 connect to Rn. We use Ec as the set of cancer edges in M.

We denote the MRF as M := {R,Rc,Er,Ec}.



Reducing the number of nodes in MRF

We reduce the number of nodes in the original M to speed up the computation. For each chain of genome nodes
Rρ, (ρ := {n, n + 1, ...,m}, m > n) with deg(Rρ) = 2, Rn links to cancer node Rt and Rm links to cancer
node Rs. We replace all nodes in ρ with a supernode R(n,m), which is the Cartesian product of Rn and Rm,
|R(n,m)| = |Rn| × |Rm|. As illustrated in Figure 2C, node chains which can be clustered as supernode are shaded
in light blue. For convenience, here we denote all remaining nodes other than Rρ in M as R′. From the global
Markov property of MRF, given the node Rn and Rm, nodes in Rρ\(n,m) are conditionally independent from R′,
since all paths in M between Rρ\(n,m) and R′ are separated by Rn and Rm. Therefore, the configurations of
the global MAP on M also maximize the conditional probability P (Hρ\(n,m)|(Hn, Hm)). The node potential
function for the new supernode R(n,m) is defined as:

ΘR(H(n,m)) = max
Hρ\(n,m)

{
P (Hρ\(n,m)|(Hn, Hm))

}
+ ΘR(Hn) + ΘR(Hm)

= max
Hρ\(n,m)

{
m−1∑
i=n+1

ΘR(Hi) +

m−1∑
i=n

ΨR(Hi, Hi + 1)

}
+ ΘR(Hn) + ΘR(Hm)

(14)

The edge potential functions of (Rs, R(n,m)) and (Rt, R(n,m)) are:

ΨC(H(n,m), Ht) = ΨC(Hn, Ht) (15)

ΨC(H(n,m), Hs) = ΨC(Hm, Hs) (16)

Note that cancer node t can be the same as s, as in the case of R(7,9) in Figure 2. When applying Weaver on
MCF-7 data, initially we had 1,764,136 nodes and we later reduced to 2,588. Finding the variable configuration
for node set Rρ\(n,m) to maximize P (Hρ\(n,m)|(Hn, Hm)) can be viewed as linear (deg(Rρ\(n,m)) = 2) hidden
Markov model decoding problem, which can be efficiently solved by the Viterbi algorithm.

Loopy Belief Propagation to find the MAP configuration of MRF

We use Loopy Belief Propagation to find the MAP configuration of MRF (Frey and MacKay, 1998). The message
updating rule from node Rj to node Ri (as illustrated in Figure 2E) at (t+ 1)th iteration is:

m
(t+1)
j→i (Hi) ∝ max

Hj

ΨR(Hj , Hi) + ΘR(Hj) +
∑

s∈N (j)\i

m
(t)
s→j(Hj)

 (17)

where N (j) \ i stands for index of all the nodes linked to node j, except node i. Note that the max-sum form of
message passing is used to get state configuration with MAP. The above function assumes Ri and Rj are genome
nodes, as ΨR and ΘR are used. If Ri or Rj is cancer node, then the corresponding potential function will be used.

The belief vector (max-marginal) is computed for each node at tth iteration:

b
(t)
i (Hi) = ΘR(Hi) +

∑
j∈N (i)

m
(t)
j→i(Hj) (18)

If convergence (b
(T )
i (Hi) = b

(T−1)
i (Hi)) or the maximum iteration number is reached at T th iteration, the final

belief vector for each node is b(T )
i (Hi). The set of Ĥ that provides the largest belief: b(T )

i (Ĥi) = max(b
(T )
i (Hi))

will be the MAP solution for our problem. Since the message passing in belief propagation is proportional to the
number of nodes, we reduce the number of nodes (using a procedure described above) in order to make the overall
computation much more efficient.



Simulation method

Here we describe our methods of data simulation for evaluating Weaver. Although Weaver is designed for whole
genome sequencing data, for the purpose of efficient evaluation with inter-chromosomal SVs under different
parameter settings, we first used regions from chr21 and chr22 (coordinates based on hg19, chr21:16M-40M,
chr22:22M-50M) to build a pseudo-reference genome. For simplicity, we use chrA and chrB to represent those
two regions from chr21 and chr22, respectively. We then randomly chose 10 European individuals from 1KGP
phase 1 phased haplotypes by retrieving their SNP configurations within chrA and chrB regions. We built parental
alleles by editing the original human reference. The WgSim (Li et al., 2009) read simulator was used, with 0.01
sequencing error to generate paired-end reads with 100 bp read length and 500 bp mean insert size. The number
of reads in simulation was used to control the sequencing coverage. Indeed, many factors which contribute to the
noise of read mapping are difficult to simulate realistically, including mappability, GC bias, and repetitive regions.
Weaver consider all of these factors when running on real data.

Algorithm 1 Simulating cancer genome sequencing data, with coverage X , allele ratio P : Q, individual M

Add N0
SV (deletions or duplications) onto chrA and chrB, as germline homozygous deletions/duplications.

Convert the chosen individual haplotype M from 1KGP into chrA and chrB, leading to chrA1, chrA2, chrB1,
chrB2

Simulate reads from chrA1, chrA2, chrB1, chrB2, as normal sample.
Add N1

SV onto chrA1 and chrB1 as pre-aneuploid SVs.
Add N2

SV onto chrA2 and chrB2 as pre-aneuploid SVs.
Randomly choose NA (NB) non-overlapping fragments {chrA1

1,...,chrAN1 } ({chrB1
1 ,...,chrBM

1 }) from chrA1

(chrB1).
Randomly shuffle the set

{
chrA1

1, ..., chrAN1
}
∪
{

chrB1
1 , ..., chrBN

1

}
Link the shuffled fragments, leading to chrA1B1 which is a derived chromosome (with chromothripsis).
while copy number of chrA1B1 < P do

Amplify (duplicate) chrA1B1.
Add post-aneuploid SVs on one of the amplified chromosomes.

end while
while copy number of chrA2 and chrB2 < Q do

Amplify chrA2 and chrB2.
Add post-aneuploid SVs on one of the amplified chromosomes.

end while
Assume the overall length of all chromosome sequences simulated is L(bp), XL/200 pairs of 100 bp reads will
be generated.

The outline of the simulation process is given in Algorithm 1. We modeled different alleles with different
types of SVs. ChrA2 and chrB2 only had deletions and local duplications and may have whole chromosome
amplifications. ChrA1 and chrB1 model rearrangements events, where chromosomes were broken into multiple
non-overlapping fragments and randomly joined together simultaneously. Sequences were derived from 10 indi-
viduals selected from EUR population from 1KGP. For each individual, 7 different combinations of two alleles
were simulated, 1:1, 2:1, 2:2, 3:1, 3:2, 4:1, 4:2, with 5 different haplotype coverage, 20X, 30X, 40X, 50X, 60X.
For each simulation, 5-10 duplications (50 kb), 3-5 large deletions (100 kb) and 17-23 rearrangements were simu-
lated. In total, 350 simulation datasets were generated. Results in Figure 3, Figure S1A, and Table S1 were based
on these datasets.

In order to evaluate Weaver’s performance on the entire chromosomal regions including centromeres and low
complexity regions, we also designed a simulation dataset that derived from entire chr17, chr19, and chr4. chr17
and chr19 are two most rearranged chromosomes according to our SV analysis on TGCA deep whole genome
sequencing data (data not shown). Both intra- and inter-chromosomal SVs were modeled on chr17 and chr19,
following the same method described in Algorithm 1. Chr4 is the most stable chromosome in terms of SV density



and we only added small scale SVs on chr4. Therefore, we selected chr17, chr19, and chr4 to evaluate Weaver on
both highly rearranged and stable chromosomal regions. We set the allele ratio in this simulation dataset as 2:1,
which is most frequent allele ratio in aneuploid cancer genomes. Overall, 52 SVs (40 on chr17 and chr19; 12 on
chr4) were randomly simulated with the SV breakpoint density per Mb (0.314) to approximate the SV breakpoint
density (0.327) of chromothripsis chromosomes in TCGA analysis. Specifically, deletions and duplications were
simulated to have the median sizes similar to the median sizes (111,404 bp for deletion and 142,922 bp for dupli-
cation) in TCGA data analysis. The number of deletion (9), duplication (11), intra- (18) and inter-chromosomal
SVs (14) were also chosen to be similar with observations.

Simulation from whole chromosomes.

We also tested Weaver on simulation dataset derived from whole chr4, chr17 and, chr19 to generate more realistic
datasets in terms of distribution of SVs. Overall, all 52 simulated SVs have been identified by Weaver, with 49 of
exact base-pair resolution breakpoint boundaries. The remaining three SVs had breakpoints within low complexity
regions where the ‘soft-clip’ strategy failed to identify the detailed breakpoints. However, ‘discordant paired-end’
strategy still identified these three SVs with an estimation of their breakpoint locations. 100% ASCN-S reported
by Weaver are consistent with simulation gold standard.

In terms of timing of SVs relative to chromosomal duplications (aneuploidy), all 36 pre-aneuploid SVs in this
randomly generated dataset were correctly identified. Weaver labeled 10 SVs as post-aneuploid and 2 of them
were incorrect since they were assigned to the wrong alleles. These two false positive post-aneuploid SVs were
actually on the alleles that were not amplified, therefore no timing information would be inferred from them. For
ASCN-G, within 330,988,351 bp simulated regions, 2,829,832 bp (0.85%) had incorrect ASCN-G. For the overall
copy number, ignoring allele information, 1,257,919 bp regions (0.38%) had incorrect copy number.

Comparison between Weaver and other ASCN-G methods.

All CNA methods based on high-throughput technologies including array CGH, SNP arrays, and NGS adopt a sim-
ilar workflow for the detection of CNAs where the segmentation is the core step. Signals are used in segmentation,
including the signal intensity in array or read counts in NGS and the b-allele frequency in array or allele frequency
in NGS. We compared Weaver to CNVnator (Abyzov et al., 2011) and HMMcopy (Ha et al., 2012), both designed
for partitioning normal genome sequenced by NGS, without considering allele information. The output of both
tools is segmented genomic regions with gain, loss or neutral labels, without exact copy numbers. The segmenta-
tion results from all three tools were compared to the simulated gold standard (if an identified breakpoint is within
+/-1 kb region of the simulated ones, that breakpoint is considered as correct) with both SN ((correctly identified
breakpoints)/(all breakpoints in the simulation benchmark)) and SP ((correctly identified breakpoints)/(all reported
breakpoints from Weaver)) calculated. When SV information was omitted (SV ratio = 0), Weaver achieved an
average of 80.6% sensitivity and 92.5% specificity in finding copy number change points (Figure S1A), with
increasing SV information, the performance of Weaver gradually improved, suggesting that the advantage of con-
sidering CNA together with SV. Even with false SV predictions (SV ratio > 1), Weaver still had accurate results.
Also, we observed that CNVnator performed consistently better than HMMcopy for both SN and SP.

To evaluate the performance on identifying exact ASCN-G, we compared Weaver with ASCAT (Van Loo
et al., 2010) and CNVnator+THetA (Oesper et al., 2013) (THetA needs a third-party tool to perform segmenta-
tion). We converted our sequencing data to logR and BAF values for SNP positions from Illumina HumanOmni2.5
BeadChip (2,015,318 SNP positions genome wide). Overall 43,758 SNPs were within the simulated region. CN-
Vnator+THetA can work for NGS data, but only reports overall copy number. Weaver identified 97.2% genomic
regions with the same copy number with simulation gold standard, while both ASCAT and CNVnator+THetA had
much lower consistency (Figure S1B-C). These simulation results suggest that it is important to simultaneously
consider CNAs and SVs, especially in highly rearranged cancer genomes.



Impact of tumor subclones on Weaver’s performance

To estimate the performance of Weaver on patient samples with tumor subclones, we ran Weaver on simulated
datasets prepared using the following procedures. We took cancer genome A as major clone (higher fraction)
and B as minor clone (lower fraction), both simulated on chr4, chr17, and chr19 as previously described. Cancer
genomesA andB had different ASCN-G profiles and were then mixed together to simulate cancer sequencing data
with intra-tumor copy number heterogeneity. The fractions of B genome were simulated as 5%, 10%, 15%, 20%,
25% and 30%, with 10 replicates on each B fraction level. We ran Weaver on 60 simulation datasets without any
knowledge on the tumor heterogeneity and subclone structure, and compared the ASCN-G results from Weaver
with the real ASCN-G profile of major clone A.

As shown in Figure S4, the percentage of genome regions being identified with correct ASCN-G will drop as
the fraction of minor clone fraction goes up, as expected. From our simulation results, it shows that Weaver can
still achieve over 95% ASCN-G accuracy on tumor samples with less than 10% copy number subclones, which is
the case for almost all the TCGA OV samples we selected in this study. We also note that even if the accuracy of
Weaver on tumor samples with substantial copy number subclone fraction is hampered, Weaver is still accurate on
SNV subclones when they share the same ASCN-G profiles.
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