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Appendix A: The TMLE is an asymptotically linear estimator of the
SATE in randomized trial without pair-matching

Consider the statistical parameter corresponding to the population average treatment effect (PATE):
VP (Py) = Eo[Eo(Y|A=1,W) = Eg(Y|A=0,W)]
= Eo[Qo(1, W) — Qo(0,W)]

where Qo(A, W) = Eo(Y|A, W) denotes the conditional expectation of the outcome, given the exposure
and covariates. The TMLE for ¥”(P,) is defined by the following substitution estimator:

1 o= s _
Ca(P) = — D7 [QH(L W) = Q3(0. W)
i=1
where P, denotes the empirical distribution, putting mass 1/n on each O; = (W;, 4;,Y;) and QF (A, W)
denotes the targeted estimator.
Suppose the exposure mechanism, denoted go(A|W) = Py(A|W), is known as in a randomized trial.

Under the following regularity conditions, the TMLE of U7 (P,) is asymptotically linear (van der Laan and
Rubin, 2006):

U, (P,) — VP (Py) = ZDP Q,90)(0i) + op(1/v/n)
with influence curve
I(A=1) IA=0)
DP(@.a0)(0) = (1
go(LIW)  go(O[W)
where Q(A, W) denotes the limit of the TMLE Q7 (A, W). Specifically, we assume the positivity assumption

holds: for some § > 0, § < go(1|W) < 1 — 4. We also assume that I (DX Q5. 90) — DP(Q,gO)]2 — 0 in
probability and that DT (Q%, go) is in the Py-Donsker class with probability tending to 1. Here we used
notation Pyf = [ f(0)dP(0) for some function f.

) (Y — QA W) + QL) — Q0,W) — TP (Ry)

Theorem 1. Suppose we have n i.i.d. observations of random wvariable O = (W, A)Y) ~ Py, where
W denotes the baseline covariates, A denotes the exposure, and Y denotes the outcome. Consider the
sample average treatment effect (SATE) US(Pyp) = 237 | Yi(1) — Y;(0), where Pyo denotes the joint
distribution of the background factors U = (Uw,Ua,Uy) and observed factors O = (W, A,Y). Under the
above regularity conditions, the TMLE W, (P,) = 3" | Qi (1, W;) — Q5 (0, W;) is an asymptotically linear
estimator of the SATE:

U, (Py) — WS(Pyo) = ZDS Q, Qo 90) (Ui, Oi) + op(1/v/n)



with influence curve
D%(Q, Qo, 90)(U, 0) = DY(Q, Qo, 90)(0) — D¥(Qo)(U, O)
CrA A B ]I(Azl)_]I(A:()) A A A
DF(Qo)(U,0) =Y (1) = Y(0) = Qo(W)

where QW) = Q(1,W) — Q(0, W) denotes the difference in the treatment-specific conditional means.

We note that D€ is the influence curve of the TMLE for the conditional estimand WC(Py) = % S Qo(1, W;)—
Qo(0, W;), which corresponds to the conditional average treatment effect (CATE) under the necessary causal
assumptions (Balzer et al., 2015). The remaining non-identifiable piece Dis difference between the unit-
specific effect and the effect within strata of covariates.

Proof. Let Qo(W) = Qo(1, W) — Qo(0, W) denote the true difference in treatment-specific means. We can
write the deviation between the TMLE W,,(P,) for the population estimand W7 (Py) and the SATE as

U, (P,) — VS (Pyp) =0 (P ) = TP (Py) — [U5(Pyo) — TP ()]

*ZDP — [V5(Puo) = WP (Po)] + op(1/V/n)

= Z D”(0;) - {n Z Y;(1) = Y;(0) — Qo(Ws) + Qo(Wi) — \PP(PO)] +op(1/v/n)

_ln I(A;=1) [(A; =0) o o
_”iz;(go(lwi) gO(O’Wi)> (Yi = Q(A, Wy)) + Q(W;) — U7 (Py)

n

- le Z Yi(1) = Yi(0) = Qo(Wi) + Qo(Wi) — WP (o) | +op(1/v/n)

1 - (H(Al_l I(A; = 0)

go(1W;)  go(0|Wy) > (Y — Q(A;, Wy)) = [Qo(W:) — Q(W3)]

TL

n

E S ¥i1) = Yi0) = QoW + or(1/v

lzn:DC — DF(U;,0;) + op(1/y/n)

n

where the influence curve of the TMLE for the conditional estimand W¢(P,) is

e (IA=1) LA=0)
DHo)= <go<1rw> 4o (0[)

) (Y = Q(A,W)) — [Qo(W) — Q(W)]
and where

DF(U,0) =Y (1) =Y (0) — [Qo(1, W) — Qo(0, W)]

Thus, we have shown the TMLE is an asymptotically linear estimator of the SATE:

U, (P,) — U5 (Pyo) = ZDS Us, O;) + op(1/y/n)



with influence curve
DS(U,0) = DY(0) — DF(U,0)
O

Strictly speaking, the influence curve must only be a function of the observed data O. Nonetheless,
the theorem is sufficient to prove asymptotic normality and consistency of the TMLE for estimation and
inference of the SATE.

Appendix A.1: Variance and variance estimation for the TMLE of the SATE in a
randomized trial without pair-matching

Theorem 2. The standardized TMLE for the SATE is asymptotically normal:
V|0, (P,) = U5(Pyo)| 2 N(0,0%5)

with 0> = Var[DC] + Var[DY] — 2Cov[ DY, DF]
= Var[D®] — Var[D¥)

Proof. The covariance term is

Cov[DY, D] = E[DY x D¥]

{458 450 - tam -

For the first term, we have

(A=1) [A=0)\ . -~ . o
EKgo(uW) go<0|w>>(Y Q(A, W) x [Y(1) =Y (0) QO(W)]]

o T(A=1) LA=0)
- E[ <£IO(1W 40 (0]
1

)
o] (450 - 50) o - < -0 -]
)

(A=1) I(A=0)
+ E[ (
90(1\W) 90(0[W)
It follow that this equals

) = Qo) x [Y() - ¥ (0) - Q1]
- B[S0 - Qo0.1) x [Y(1) - Y(0) - Qo))
+E ];(0/(11‘:“/1)) (Qo(1, W) = Q(1,W)) x [Y(1) =Y (0) - QO(W)]]
— 2| (Qo0.W) = Q0.W)) x [Y(1) = Y(0) = Q7]




Under the randomization assumption, we have

E[}I(A = q)

go(a|W)

Y(l),Y(O),W] =1

Therefore, the sum of first two terms reduce to the variance of the D component

B V(1) - Y(0) - Go(W)] x [¥(1) - Y(0) %(W)ﬂ 5 [[Y(l) v () - Qo).
and the sum of the last two terms is
E[{Qo(W) — GOV} x [y (1)~ Y(0) - @0<W>}].

Therefore, we have that the covariance term equals the variance of the non-identifiable component D¥":
Cov[D®, D¥] = Var[D").
Thus, the asymptotic variance of the standardized estimator for the SATE is
0%S = Var[D®] — Var[DF).
O

The asymptotic variance of the standardized TMLE for the SATE ¢2< is always less than or equal
to the asymptotic variance of the standardized TMLE for the conditional parameter 6*¢ = Var[D®]. As
shown in Balzer et al. (2015), we can estimate the upper bound

n

2
6t =6 = %Z {ﬁ%z;:,go)(oi)}
=1
I(A; =1) I(4; =0)

go(1[W;) — go(0[W5)

where DC(Q7, g0)(0;) = ( ) (Yi — Qn (A, W),

Appendix A.2: Generalization to allow for estimation of the exposure mechanism

Suppose our target of inference is the population estimand W7 (Fp) and the exposure mechanism is con-
sistently estimated with maximum likelihood: g¢,(A|W). Then the TMLE is asymptotically linear with
influence curve given by the influence curve at the possibly misspecified limit Q(A, W) minus its projection
on the tangent space T, of the model for go(A|WW) (van der Laan and Robins, 2003):

DP9(Q, go) = D”(Q, 90) — H [D7(Q: 90) [T

This projection is a function of (A, W) with conditional mean zero, given W. Analogously, when we target
the conditional estimand W¢(P), the influence curve of the TMLE is

DC7gn (Q) g()) = DC(Q) g()) - H [‘DC(Qv gO) ’Tg] )
and when we target the SATE ¢ (Pu,0), the influence curve of the TMLE is

DS,gn(QvQO) = DC7gn (Q790) - DF

The proof is analogous to the above and thus omitted.



The standardized estimator of the SATE then is asymptotically normal with mean 0 and variance given
by the variance of influence curve:

o259 — Var[Dc’g”] + Var[DF] - QCov[Dc’gn, DT

The covariance of the projection [] [DC(Q, go)}Tg] and DT is zero. (If we take the expectation given
(A, W), then the projection term is constant and the D term is zero.) Thus, when the exposure mechanism
is estimated according to a correctly specified model, the asymptotic variance of standardized estimator is

o2 — Var[DC’g"] — Var[DF].

We will have a conservative variance estimator by ignoring the projection term and the non-identifiable
: F
piece D*.

Appendix B: The TMLE is an asymptotically linear estimator of the
SATE in a pair-matched trial

First, we review the asymptotic linearity results of Balzer et al. (2015) for estimation and inference of the
the statistical parameter corresponding to the conditional average treatment effect (CATE) (Abadie and
Imbens, 2002) in a trial with adaptive pair-matching:

1 n
TE(Py) = - Z [Eo(Yi|Ai = 1,W;) — Eo(Yi]Ai = 0,W))]

=1
=1

Then, we provide a theorem showing that the TMLE for the SATE is asymptotically normal in a trial
with adaptive pair-matching, which results in n/2 conditionally independent copies of O; = (Ojl, Ojg) =
(Wir, Aj1, Y1), (W, Aj2, Yj2)).

The TMLE for conditional estimand WC¢(Py) is defined by the following substitution estimator:

n

1 . _
i=1
where Q7 (A, W) denotes the targeted estimator. Under the following assumptions, the TMLE for ¥¢(R)
is asymptotically linear:

n/2
(By) — WE(Py) = n}z S D@, Q0. 90)(05) + 0p(1//n]2)
j=1

with influence curve

DY(Q,Q0,90)(0;) = % [DC(Q, Qo,90)(051) + DY(Q, Qo, 90)(Oj2)

. = = I(4; =1) TI(A4; =0) - _ _
with  DYQ, Qo, 90)(0:) = ( - Yi — Q(A;, W) — [QoWi) — Q(W;
(@ Q00000 = (7 oy ) (Y~ QLA W) — [Q0W) — QW)
where Q(A, W) denotes the limit of the targeted estimator of the conditional mean function Qo(A, W);
the marginal probability of being assigned the treatment or the control is known: go(A4) = Py(A) = 0.5,
and Q(W) = Q(1,W) —Q(0, W) denotes the difference in the treatment-specific conditional means (Balzer
et al., 2015). We assume




e Uniform bound: Assume supgezsupg | (Héf(i;_l)) - H;?(ijg)> (Y; — Q(A4;, W;)) |< M < oo where F is

the set of multivariate real valued functions so that Q is an element of F with probability 1 and
where the second supremum is over a set that contains the support of each O;.

° Convergence of variances: Assume that for a specified {o2€(Q) : Q € F}, for any Q € F,
w3 Zn/2 PrDY(Q,Qo,90)* — 0>€(Q) a.s (i.e., for almost every (W™, n > 1)). Throughout P} f =
Eo[f |W"] denotes the conditional expectation of a function f of O™ = (Oy,...,0,), given the vector
of baseline covariates W™ = (Wq,...,W,).

° Convergence of Q* to some limit: For any Q1,Qs € F, we define

02(Q1—Q2) = n/2 Zn/2 P DC(Q1,Qo, 90) — D (Q2,Qo, go) }. Assume that for a particular Q € F,
o2(QF — Q) — 0 in probability as n — oo.

e Entropy condition: Let F¢ = {f; — . fi.fo € F}. Let N(e,0,,F?%) be the covering num-
ber of the class F¢ w.r.t norm/d1551m11ar1ty | f ||= on(f). Assume that the class F satisfies

limg, 0 f06" Vlog N (e, 0, F4)de = 0.

Theorem 3. Let W denote the measured baseline covariates; A denote the intervention assignment and
Y denote the outcome. A randomized trial with adaptive pair-matching results in n/2 conditionally inde-
pendent copies of paired random variable

0; = (0j1,052) = (Wj1, Aj1, Y1), Wiz, Aja, Yj2))

where index j = {1,...,n/2} denotes the partitioning of the study units {1,...n} into matched pairs
according to similarity on their baseline covariates W" = (Wh,...,Wy). Our target of inference is the
sample average treatment effect (SATE) (Neyman, 1923):

V(Pro) = 5 3 Yil1) = Yi(0)

where Py o denotes the joint distribution of the background factors U = (Uw,Ua, Uy) and observed factors
O = (W,A,Y). Under the above conditions, the TMLE W, (P,) = L3 Qx(1,W;) — Q;(0,W;) is an
asymptotically linear estimator of the SATE:

n/2

W (Pa) — U (Puo) = — ZDS (G, Q0. 90)(T;,05) + 0p(1//n2)

with influence curve
DS(Q) Q0790)(Uj7 O]) = DC(Q) Qﬂv gO)(O]) - DF(QO)(Uja O])

where Q(A, W) denotes the limit of the targeted estimator of the conditional mean function Qo(A, W) and
where the marginal probability of being assigned the treatment or the control is known go(A) = Py(A), and
where the pair’s unobserved factors are denoted (jj = (Ujl, Ujg).

The first component DC(Q,QO,gO)(Oj) 1s the influence curve for the TMLE targeting the conditional
estimand W€ (Py) = L 31 [Qo(1, W;) — Qo(0, W5)] in a trial with adaptive pair-matching:

D(Q. Qo.0)(0;) — ;[ ©(Q.Q0.00)(01) + DC(Q. Q0. 0)(O)
( T(A; —1 (4 =0)
90(4i)

with DC(G. Go. 0)(O ) (Y — QAL W) — [Qo(Wi) — QW)



The second component DT (Qo)(Uj;,0;) is the following function of the paired unobserved data U; =
(Uj1,Uj2) and observed data O; = (Oj1,0j2):

DF(Qu)(03,0;) = 3| D" (Qo) (Ui, O) + DT (@) U, Oy
with D¥(Qo)(Us, 0;) = Y;(1) — Y;(0) — Qo(W;).
In a pair- matched trial, the standardized TMLE for the SATE is asymptotically normal with mean 0 and

variance oS given by the limit of

n/2

. o Y
0'721’8 = n/Q;P@n{DS(QanQO)(Ujvoj)}

where PY'f = Ep[f|W™"] denotes the conditional expectation, given the vector of baseline covariates W™ =
(Wh' : aWn)

Proof. Let Qo(W) = Qo(1, W) — Qo(0, W) denote the true difference in treatment-specific means. We can
write the deviation between the TMLE W,,(P,) for the conditional estimand W¢(Py) and the SATE as
U, (P,) — U8 (Pyo)
= U, (P,) — U°(Py) — [T (Py0) — V()]
n/2

n/2 Z D(0;) — [¥5(Py0) — ¥(Ry)] + op(1/4/n/2)

—H}QZDC(@)— Do) - K0 - Q)|+ on1/ Va2
Jj=1 i=1
1 n/2 B B 1 )
ZWZ[DC(Oj)—2(161(1)— 1(0) — Qo(Wj1) + Yjo(1) — -2(0)—Q0(Wj2)>}+op(1/\/m)
j=1
g
= T/QZ |:DC(OJ‘) —DF(U :| + op( 1/\/7
j=1

where DY(0;) is the influence curve of the TMLE for the conditional estimand W¢(P) under adaptive
pair-matching and where D¥'(U;, O;) is the following function:

DY(U;,05) = % [DF(Ujh Oj1) + D" (Uj2, 0j2)
with D (Us, 0;) = Yi(1) = Yi(0) — [Qo(1, Wi) — Qo (0, W)].

Thus, we have shown the TMLE is an asymptotically linear estimator of the SATE in a trial with adaptive
pair-matching:

n/2
U, (Py) — U5 (Puo) = 71}2 S D3 (05, 05) + 0p(1/y/nf2)
j=1

with influence curve

O]

Strictly speaking, the influence curve must only be a function of the observed data. Nonetheless, the
theorem is sufficient to prove asymptotic normality and consistency of the TMLE.



Appendix B.1: Variance and variance estimation for the TMLE of the SATE in a
pair-matched trial

Theorem 4. The standardized TMLE for the SATE is asymptotically normal with mean 0 and variance
given by the limit of

n/2 2
1 I L
o2S = o2 ;PSL{DS(Q,Qo,go)(Uijj)}

n/2

-4 > [P(;‘{DC(Q, Qo,go><0j>}2 -7y {DF(QoW OJ)}Q]'

Proof. The conditional variance can be expressed as

n/2

1 oS msi A
aZ’S:WZPO{DS(Uj,Oj)}

The conditional covariance of the D¢ (0;) and D¥ (U}, O;) components is

R {D°(0) % D (03,0} = 175 { [D°(0) + D(0,)] x [DF (U, 0) + DF W2, 0)] |

= 1|:P61{DC(O]'1) X DF(Ujl,Ojl)} + PO"{DC(O]-I) X DF(UjQ, Ojg)}

4
+ P(?{DC(OJQ) X DF(Ujl, Ojl)} + PSL{DC(OJQ) X DF(U]'Z,OJ‘Q)}] .

As shown in Appendix A.1, the covariance of the D¢ (0;) and D (O;) components is equal to the variance
of D¥(0O;). Therefore, we have

2
P(;Z{DC(Ojl) X DF(Ujlanl)} = P(;l{DF(UjlaOﬂ)}

2
P(}‘{DC(O]'Q) X DF(sz,sz)} = P(;l{DF(Uj%Oﬂ)} :

The conditional covariance term of DC(Ojl) and DY (Uj2,0j2) is given by

Fy'[D( me (Uj2, 0j2)]
- H 90! i1|W;ﬂl g(o(0|WJ10))> (Y1 = Q(451,Wj1) = (Qu(W; )Q(le))} xDF(Uﬂ,Oﬂ)]
a=1) j1=0)
[( 11|WJ1 9o( 01|WJ1 ) Q(4j1, W) x DF(Uj2’Oj2):|
- Py [ QW;j1)) x DF(Uj2, 0, )}



For the first term, we have

]ty i) ﬂ?W~1>>XDF<Uﬂ’Oﬂ>]
=5 [(giﬁv;;)) - Ly ) Uit Win) + QolAin, W) = Goldzn, Warl) x D (U3, O
=] (i~ on;f;) ) 0
oot (i ) @) Qa5 x 7 . 03)
It follow that this equals:
g [E4 ) 1) - @uta, W) ¢ DF 0,030
-5 :W(mm = Qo(0, Wj1)) x D¥ (U, Oﬂ)}
+ Py _W(Qo(l Wii) — Q(1, Wj1)) x DF(Uj27Oj2):|
e _W(Qo(o Wi1) = Q(0,Wj1)) x DF(UﬂvOﬂ)]

Under the randomization assumption, we have

I(Aj1 = a)
Fo [ go(al W)

Yj1<1>7Yﬂ<o>,le,lsz(l),m(oxwﬂ] 1

Therefore, the sum of first two terms reduce to the covariance of the D' components within a matched
pair:

Py | [Yi1(1) = Y51(0) = Qo(Wj1)] x [Via(1) — Yj2(0) — Qo(Wﬂ)]} =K {DF(UJI’Ojl) x D'(Uj2, Ojo) |,
and the sum of the last two terms is
P3| (Qo(Wj1) — Q(Wj1)) x DF(Uj2vOj2)]'

We have that the conditional covariance of DY(0;1) and D (Ujq,0j2) equals the covariance of the D’
components within a matched pair:

P [DY(0j1) x DF(Uj2,0j2)] = B¢ [DT (Uj1, 051) x D (Ujz, 0;2)].

Under the same reasoning, the conditional covariance term of DC(Ojg) and DY (Uj1,0;2) equals the co-
variance of the D¥ components within a matched pair

P [DY(O0z2) x DF (U1, 051)] = B [DF (Uj1,051) x DF (Uj2, 0j2)]



Therefore, the conditional covariance of the DY(0;) and D¥(U;,0;) components equals the conditional
variance of the pairwise D' (U, 0;) component

n B 9 B 7 I 1 n ? 1 10 ?
P {DC(Oj) X DF(Ujvoj)} =150 {DF(Ujlvoj )} + 15 {DF(Uj27Oj2>}

+ ;P(?{DF(UjbOﬂ) x DY (Uja, Oﬂ)}
1 2
= P§{2(DF(Ujla 0j1) + D" (Uj2, 0y ))}
2
= P&{DF(Ujan)}

Thus, the asymptotic variance of the standardized estimator the SATE in a trial with pair-matching is
given by the limit of

s H}QZ [pg{DC(Oj)}Q _P(?{DF(Uj,Oj)}Q:|
]

The asymptotic variance of the standardized TMLE for the SATE ¢ is always less than or equal to
the asymptotic variance of the TMLE for the conditional parameter o2 in a pair-matched trial. As shown
in Balzer et al. (2015), we can estimate the upper bound as

n/2 2

1 N _

~2S8 _ ~2C __ C/A* )
k9D {D (Q"’QO)(O“}

where  DC(Q%,g0)(0;) = % [DC (Q%, 90)(0j1) + D€ @;:,go)(ojz)}
I(A;=1) I(A; =0)
go(A;) go(A;)

Ordering the observations within matched pairs, such that the first corresponds to the unit randomized to
the intervention (A;; = 1) and the second to the control (Ajo = 0), it follows that

and - D(Q5a0)(0) = ( ) (- @i,

DY(QL, 90)(07) = (Yj1 — Q4(1,Wi)) — (Yi2 — Q4(0, Wi2))

allowing us to represent the variance estimator as the sample variance of the difference in residuals within
matched pairs:

n/2 2
1 - _

p 278 — 5 27C e . . . .
78 =52 = DS (W - @) - (2 - Q0 W) |

j=1
This variance estimator will be consistent if there is no heterogeneity in the treatment effect within strata
of covariates (i.e. if the variance of the D7 component is zero) and if the conditional mean function
Qo(A, W) is consistently estimated. Otherwise, the variance estimator will be conservative.

10



Appendix C: Comparison of the asymptotic variance of the TMLESs for
the SATE with and without pair-matching

Let P f to denote the conditional expectation of a function f of O™ given W". As presented in Balzer
et al. (2015), the asymptotic variances of the standardized TMLEs for the conditional parameter ¥€(F)
in a trial without pair-matching and a trial with pair-matching are given by the limits of

1 ¢ 2
2,C _ C
9n,non—matched — E Z P(?{D (OZ)}
=1

_ :LZZZ; {QEO[(Yi — QO W))?|A; = LW”] +2E, [(Yz —Q(0,W))?|4; = O,W”]

+ [Qo(1,W;) — Q(1, Ws) + Qo (0, W;) — Q(0, Wz‘)]z}

and
n/2

2
2. 1 ~C (A _ 2.¢
Un,matched - n/2 Z PSL{D (OJ)} - 0'5Gn,non—matched — PO,
j=1

respectively. pg is the limit of the following pairwise product:
1 n/2 - B - B
po = — Z [Qo(1, Wj1) — Q(1, Wj1) + Qo(0, Wj1) — Q(0, Wj1)]

n 4
Jj=1

x [Qo(1, Wi2) — Q(1, Wjz) + Qo(0, Wjz) — Q(0, Wj2)] }

Also recall that in the pair-matched design, we have

n/2 2 n/2 2 2
1 o =p = ~ 1 1. 1.
n—/2 E PO {DF(UJ‘,O]‘)} = T/Q E |:4P0 {DF(Ujla Ojl)} + ZPO {DF(Uj27Oj2)}
=1 j=1

1
+ 2P5L{DF(UJ‘170J'1) X DF(Uj2,0j2)H~

Substituting these into the formulas for the asymptotic variances of the standardized estimators for the
sample effect, we have

1 @& " 2 . 2
ng:fwn—matched = n Z |:P0 {DC(OZ)} - F {DF(UMOZ)} :|
i=1

1 o _
= Ui:fzon—matched - ﬁ Z Pgb{ (E(l) - 1/1(0) - QO(Wl))Q}
=1

and
n/2

2 2
25 TR R G
O-n,matched:n/sz;PO{DC(Oj)} _TL/QJZPO{DF(UJ’OJ)}

= Oﬁo—ifwn—matched —pPo— i Z PSL{ (Y7'(1) B Y;'(O) N QO(WZ))Q}

2n 4
=1
1 n/2
— =Y P DF(Uj1,041) x DY (Uj2, 0,
n; 0{ (Uj1, Oj1) x (Uj2, Oj2)
2.8
= 0‘5O-n,non—matched —po— %o

11



where

n/2
> BH{D"(Uj1,051) x DX (Uj2, 010) }
=1

1

n

¢o =

-2 Pc?{ (Yi1(1) = Y51.(0) = Qo(Wjn) x (Yia(1) = ¥;2(0) = Qo(Wi2)) }

Thus, the asymptotic variances of the TMLE for the SATE in a non-matched trial is given by the limit

of ai:i on—mateheq/ T Whereas the asymptotic variance of the TMLE in a pair-matched trial is given by the
S 2,8 2,8 . .
limit of 0, ienea/ (M/2) = 03 on—matehed/™ — 2P0/ — 2¢0/n. As discussed in Balzer et al. (2015), when

we match well on measured and unmeasured factors, the deviations between the true conditional means
Qo(A, W) and the limit of the estimated Q(A, W) is expected to be positively correlated within matched
pairs:

po > 0.

Furthermore, when we match on predictive factors, the deviations between the unit-specific treatment effect
and the treatment effect within covariate strata is expected to be positively correlated within matched pairs:

¢o > 0.

Therefore, in most practical settings, the pair-matched trial will be more efficient than its non-matched
counterpart for estimation and inference of the sample effect. Even under consistent estimation of the
conditional mean outcome Qo(A, W) (and therefore pg = 0), there is still will be a gain for matching if
@o > 0.

Appendix D: R Code

Full R code for the simulations and estimators is available below and at
http://works.bepress.com/laura_balzer/26/. Please see the website for updates. We also note that
the following code applies to binary or bounded continuous outcomes.

HHHHEEAE

# Sample R code and Simulations to illustrate estimation and inference

# for the sample average treatment effect in trials with and without pair-matching.
# Demonstrates the unadjusted estimator,

# TMLE with logistic regression for outcome regression E_O(Y|A,W)=Qbar_O(A,W),
# and TMLE with SuperLearner for Qbar_0(A,W)

#

# Programmer: Laura Balzer (1lbbalzer@hsph.harvard.edu)

# Please email with questions, concerns or requests

#

# R version 3.2.1

#

# Last update: Dec 8, 2015

HHHHH A

# _______________________________

# simulate.data.and.run: function to generate the simulated data
# and run the estimators
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simulate.data.and.run<- function(){

# directly simulate the full data (covariates and counterfactual outcomes)
X.full<- generateData(n)

# Sample average counterfactual outcome under A=a
R1<- mean(X.full$Y.1)
RO<- mean(X.full$Y.O)

# SATE is the sample average difference in the counterfactuals
SATE= R1-RO

if (PAIRED) {
# if pair-matching trial, match units and randomize the treatment
X.all <- doPairMatching(matchData=X.full[, matchOn], fullData=X.full)

} else{
# Otherwise, assign the treatment - guarantee that n/2 are treated
A<- rbinom(n/2, 1, 0.5)
A.2<- ifelse(A==1, 0, 1)
A <- sample( c(A,A.2))
X.all <- cbind( X.full, paired=rep(NA, n), A)
b
# we observe the counterfactual outcome corresponding to the observed exp

Y<- ifelse(X.all$A, X.all$Y.1, X.all$Y.0)
X.all<- cbind(X.all, Y)

unadj<- doTMLE(SATE, data=X.all, Qadj=’U’, family=’binomial’)

adj.AW1<- doTMLE(SATE, data=X.all, Qadj=’W.1’, Qform=as.formula(Y~A*W.1), family=’binomial’)
Qadj<- c(’W.1’,’W.2’, ’W.3’, ’W.4’, ’W.5%)

adj.SL<- doTMLE(SATE, data=X.all, Qadj=Qadj, family=’binomial’, Do.SL=T)

RETURN<- list(unadj=unlist(unadj), adj.AWl=unlist(adj.AW1),
adj.SL =unlist(adj.SL) )

RETURN

# generateData: function to generate the full data
# including baseline covariates and the counterfactual outcomes

13



generateData<- function(n){

U.Y<- generateU.Y(n)
W<- generateW(n)
Y.0<- generateY(W=W, A=0, U.Y=U.Y)

if (EFFECT){
Y.1<- generateY(W=W, A=1, U.Y=U.Y)
} elsed{
Y.1 <-Y.0
}
data.frame(W, Y.0,Y.1)
}
# ___________________
# additional functions to generate the simulated data
# ____________________

# generate unmeasured U.Y
generateU.Y<- function(n){
rnorm(n, O, SD)

}

# generate the baseline covariates W
generateW<- function(n) {

Sigma<- matrix(CORR.W*SD*SD, nrow=3, ncol=3)
diag(Sigma)<- SD"2

W<- cbind(rnorm(n,0,1), rnorm(n,0,1), mvrnorm(n, rep(0,3), Sigma))
data.frame(U=1, W=W )
# generate the outcome Y

generateY<- function(W, A, U.Y) {
.2xplogis(1%A + .75*WW.1 + .75*WEW.2 + 1.25*W$W.3 + U.Y + .75%WEW.1%xA - .5*WEW.2%A - AxU.Y )

# get.PATE: function to calculate the true value of the PATE
# over a population of 500,000 units

get .PATE<- function(pop= 500000){
X.full<- generateData(pop)

# average counterfactual outcome under A=a for the population
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R1<- mean( X.full$Y.1)
RO<- mean( X.full$Y.O0)

RD= R1-RO

c(R1, RO, RD)

doPairMatching - function to pair-match units (fullData)
based on the matching covariates (matchData)

and assign the treatment within the resulting matched pairs
Requires nbpMatching package

doPairMatching<- function(matchData, fullData){

dist<- distancematrix(gendistance(data.frame(matchData)))
matches<- nonbimatch(dist)

# matches contains ids for the pair as well as the distance measure
grpA<- as.numeric(matches$halves[,’Groupl.Row’])
grpB<- as.numeric(matches$halves[,’Group2.Row’])

npairs<- length(grpA)
X1<- data.frame(fullDatal[grpA, ], pair=1:npairs, A= rbinom(npairs, 1, .5))
X2<- data.frame(fullDatalgrpB, ], pair=1:npairs, A= ifelse(X1$A==1, 0, 1 ))

Xpaired<- NULL
for(i in 1:npairs){
Xpaired<- rbind (Xpaired, X1[i,], X2[i,])

b
Xpaired
}
# ________________________________
# doTMLE: function to run full TMLE and get inference
# input: SATE (sample ATE for that study), data,
# Qadj (candidate adjustment variables for Qbar_O(A,W))
# Qform (the form of the outcome regression), family (binomial for logistic regression),
# Do.SL (whether or not do SuperLearner)
# output: estimation and inference for the population and sample effect
#
# Requires the SuperLearner package
#
# For further information about coding TMLE and calling SuperLearner,
# please see http://www.ucbbiostat.com/

doTMLE<- function(SATE, data, Qadj, Qform=as.formula(Y~.), family=’binomial’, Do.SL=F){
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if (!Do.SL){ # if not doing SuperLearner

X1 = X0 = X= datal,c(Qadj, ’A’,’Y’)]
X1$A<-1; X0$A<- 0
glm.out<- suppressWarnings( glm(Qform, family=family, data=X) )

# get predicted outcomes under obs exp, txt and control

QbarAW<- suppressWarnings( predict(glm.out, newdata=X, type="response"))
QbarlW<- suppressWarnings( predict(glm.out, newdata=X1, type=’response’))
QbarOW<- suppressWarnings( predict(glm.out, newdata=X0, type=’response’) )

} else{ # do super learner

X1 = X0 = X= data[,C(Qadj, YA%)]
X1$A<-1; X0$A<- O
newX<- rbind(X,X1, X0)

# call Superlearner
if (PAIRED){
# for the cross-validation step, we need to respect the unit of (conditional) independence
Qinit<-SuperLearner(Y=data$Y, X=X, newX=newX, SL.library= QSL.LIBRARY, family="binomial",
cvControl=1list(V=n/2), id=data$pairs )
} elsed{
Qinit<-SuperLearner(Y=data$Y, X=X, newX=newX, SL.library= QSL.LIBRARY, family="binomial",
cvControl=list(V=n/2) )

QbarAW<-Qinit$SL.predict[1:n]
QbarlW<-Qinit$SL.predict[(n+1): (2*n)]
QbarOW<-Qinit$SL.predict [(2*n+1): (3*n)]

# We’re not estimating the known exposure mechanism,

#  but we could for greater efficiency

# For further details, email lbbalzer@hsph.harvard.edu
pscore = rep(0.5,n)

Calculating the clever covariate
.1W<- 1/ (pscore)

.0W<- -1/ (1-pscore)

.AW<- rep(NA, n)

.AW[data$A==1]<- H.1W[data$A==1]
.AW[data$A==0]<- H.OW[data$A==0]

oo om oo m H

# updating step
logitUpdate<- suppressWarnings( glm(data$Y ~ -1 +offset(qlogis(QbarAW)) + H.AW,
family="binomial"))
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# estimated coefficient on the clever covariate
eps<-logitUpdate$coef

# targeted estimates of the outcome regression
QbarAW<-plogis( qlogis(QbarAW)+eps*H.AW)
QbarOW<-plogis( qlogis(QbarOW)+eps*H.OW)
QbariW<-plogis( qlogis(QbarilW)+eps*H.1W)

# risk estimates under txt, under control and risk difference
R1<- mean(QbariW)

RO<- mean(QbarOWw)

RD<- mean(QbariW- QbarOw)

# the relevant components of the influence curve
DY<- H.AWx(data$Y- QbarAW)
DW<- QbariW - QbarOW - RD

if ('PAIRED)A{
var .PATE<- var(DY+DW)/n
var.SATE<- var(DY)/n

df=(n-2)

est.PATE<- get.inference(truth=PATE[3], RD=RD, var=var.PATE, df=df)
est.SATE<- get.inference(truth=SATE, RD=RD, var=var.SATE, df=df)

RETURN<- data.frame(R1=R1, RO=RO, RD=RD, PATE=est.PATE, SATE=est.SATE)
Yelse{

pairs<- data$pair

temp<- unique(pairs)

n.pairs<- length(temp)

# DbarY= 1/2 sum_{i in pairs} HAW_i*(Y_i -Qbar_i)

# Serves as the upper bound on the IC

DY.paired<- rep(NA, n.pairs)

for(i in 1:n.pairs){

DY.paired[i]l<- 0.5*sum(DY[ pairs== temp[i]] )

}

var.SATE<- var(DY.paired)/n.pairs

df= (n.pairs -1)

est.SATE<- get.inference(truth=SATE, RD=RD, var=var.SATE, df=d4f)
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# for estimation of the PATE in an Adaptive Pair-Matched Trial, see van der Laan et al.

RETURN<- data.frame(R1=R1, RO=RO, RD=RD, SATE=est.SATE)

}
RETURN
3
# _____________________
# get.inference:
# input: true value of target parameter, estimate (RD), variance estimate
# and df for t-dist
# output: variance est, test statistic, indicator of 95% CI contained the truth
# and indicator that rejected the null at the alpha=0.05 level

get.inference<- function(truth, RD, var, df){

se<- sqrt(var)
cutoff <- qt(0.05/2, df=df, lower.tail=F)

cov<- (RD - cutoff*se) <= truth & truth <= (RD + cutoff*se)
tstat <- RD/se

reject <- abs(tstat) > cutoff

data.frame(truth=truth, var=var, tstat=tstat, cov=cov, reject=reject)

==
# The remaining are helper functions to run SuperLearner
#
SL.glmAWlint<- function (Y, X, newX, family, obsWeights, ...) {
fit.glm <- glm(Y © A + W.1 + A:W.1, data = X, family = family, weights = obsWeights)
pred <- predict(fit.glm, newdata = newX, type = "response")
fit <- list(object = fit.glm)
class(fit) <- "SL.glmAWlint"
out <- list(pred = pred, fit = fit)
return(out)
}
SL.glmAW2int<- function (Y, X, newX, family, obsWeights, ...) {
fit.glm <- glm(Y ~ A + W.2 + A:W.2, data = X, family = family, weights = obsWeights)
pred <- predict(fit.glm, newdata = newX, type = "response")
fit <- list(object = fit.glm)
class(fit) <- "SL.glmAW2int"
out <- list(pred = pred, fit = fit)
return(out)
}
SL.glmAW3int<- function (Y, X, newX, family, obsWeights, ...) {
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fit.glm <- glm(Y ~ A + W.3 + A:W.3, data = X, family = family, weights = obsWeights)
pred <- predict(fit.glm, newdata = newX, type = "response")

fit <- list(object = fit.glm)

class(fit) <- "SL.glmAW3int"

out <- list(pred = pred, fit = fit)

return(out)
}
SL.glmAW4int<- function (Y, X, newX, family, obsWeights, ...) {
fit.glm <- glm(Y © A + W.4 + A:W.4, data = X, family = family, weights = obsWeights)
pred <- predict(fit.glm, newdata = newX, type = "response")
fit <- list(object = fit.glm)
class(fit) <- "SL.glmAW4int"
out <- list(pred = pred, fit = fit)
return(out)
}
SL.glmAW5int<- function (Y, X, newX, family, obsWeights, ...) {
fit.glm <- glm(Y ©~ A + W.5 + A:W.5, data = X, family = family, weights = obsWeights)
pred <- predict(fit.glm, newdata = newX, type = "response")
fit <- list(object = fit.glm)
class(fit) <- "SL.glmAW5int"
out <- list(pred = pred, fit = fit)
return(out)
}

=+

set.seed (1)
library (MASS)
library(SuperLearner)

library(nbpMatching)

# the following are global variables - specified by the user
n<<- 30

SD<<- 1 #std deviation of baseline covariate
CORR.W<<- .65 # correlation in (W3,W4,W5)

# SuperLearner library for Qbar_O(A,W)
QSL.LIBRARY<<- c(’SL.glmAWlint’, ’SL.glmAW2int’, ’SL.glmAW3int’, ’SL.glmAW4int’, ’SL.glmAW5int’)

PATRED<<- T
matchOn<<- c(’W.1’, ’W.4’,°W.5?)

EFFECT<<- T
PATE<<- get.PATE()

out<- simulate.data.and.run()
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