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Appendix A: The TMLE is an asymptotically linear estimator of the
SATE in randomized trial without pair-matching

Consider the statistical parameter corresponding to the population average treatment effect (PATE):

ΨP(P0) = E0

[
E0(Y |A = 1,W )− E0(Y |A = 0,W )

]
= E0

[
Q̄0(1,W )− Q̄0(0,W )

]
where Q̄0(A,W ) = E0(Y |A,W ) denotes the conditional expectation of the outcome, given the exposure
and covariates. The TMLE for ΨP(P0) is defined by the following substitution estimator:

Ψn(Pn) =
1

n

n∑
i=1

[
Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

]
where Pn denotes the empirical distribution, putting mass 1/n on each Oi = (Wi, Ai, Yi) and Q̄∗n(A,W )
denotes the targeted estimator.

Suppose the exposure mechanism, denoted g0(A|W ) = P0(A|W ), is known as in a randomized trial.
Under the following regularity conditions, the TMLE of ΨP(P0) is asymptotically linear (van der Laan and
Rubin, 2006):

Ψn(Pn)−ΨP(P0) =
1

n

n∑
i=1

DP(Q̄, g0)(Oi) + oP (1/
√
n)

with influence curve

DP(Q̄, g0)(O) =

(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W )

)
+ Q̄(1,W )− Q̄(0,W )−ΨP(P0)

where Q̄(A,W ) denotes the limit of the TMLE Q̄∗n(A,W ). Specifically, we assume the positivity assumption

holds: for some δ > 0, δ < g0(1|W ) < 1 − δ. We also assume that P0

[
DPn (Q̄∗n, g0) −DP(Q̄, g0)

]2 → 0 in
probability and that DPn (Q̄∗n, g0) is in the P0-Donsker class with probability tending to 1. Here we used
notation P0f =

∫
f(o)dP0(0) for some function f .

Theorem 1. Suppose we have n i.i.d. observations of random variable O = (W,A, Y ) ∼ P0, where
W denotes the baseline covariates, A denotes the exposure, and Y denotes the outcome. Consider the
sample average treatment effect (SATE) ΨS(PU,O) = 1

n

∑n
i=1 Yi(1) − Yi(0), where PU,O denotes the joint

distribution of the background factors U = (UW , UA, UY ) and observed factors O = (W,A, Y ). Under the
above regularity conditions, the TMLE Ψn(Pn) = 1

n

∑n
i=1 Q̄

∗
n(1,Wi)− Q̄∗n(0,Wi) is an asymptotically linear

estimator of the SATE:

Ψn(Pn)−ΨS(PU,O) =
1

n

n∑
i=1

DS(Q̄, Q̄0, g0)(Ui, Oi) + oP (1/
√
n)
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with influence curve

DS(Q̄, Q̄0, g0)(U,O) = DC(Q̄, Q̄0, g0)(O)−DF (Q̄0)(U,O)

DC(Q̄, Q̄0, g0)(O) =

(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W )

)
−
[
Q̄0(W )− Q̄(W )

]
DF (Q̄0)(U,O) = Y (1)− Y (0)− Q̄0(W )

where Q̄(W ) = Q̄(1,W )− Q̄(0,W ) denotes the difference in the treatment-specific conditional means.

We note that DC is the influence curve of the TMLE for the conditional estimand ΨC(P0) = 1
n

∑n
i=1 Q̄0(1,Wi)−

Q̄0(0,Wi), which corresponds to the conditional average treatment effect (CATE) under the necessary causal
assumptions (Balzer et al., 2015). The remaining non-identifiable piece DF is difference between the unit-
specific effect and the effect within strata of covariates.

Proof. Let Q̄0(W ) = Q̄0(1,W )− Q̄0(0,W ) denote the true difference in treatment-specific means. We can
write the deviation between the TMLE Ψn(Pn) for the population estimand ΨP(P0) and the SATE as

Ψn(Pn)−ΨS(PU,O) = Ψn(Pn)−ΨP(P0)−
[
ΨS(PU,O)−ΨP(P0)

]
=

1

n

n∑
i=1

DP(Oi)−
[
ΨS(PU,O)−ΨP(P0)

]
+ oP (1/

√
n)

=
1

n

n∑
i=1

DP(Oi)−
[

1

n

n∑
i=1

Yi(1)− Yi(0)− Q̄0(Wi) + Q̄0(Wi)−ΨP(P0)

]
+ oP (1/

√
n)

=
1

n

n∑
i=1

(
I(Ai = 1)

g0(1|Wi)
− I(Ai = 0)

g0(0|Wi)

)(
Yi − Q̄(Ai,Wi)

)
+ Q̄(Wi)−ΨP(P0)

−
[

1

n

n∑
i=1

Yi(1)− Yi(0)− Q̄0(Wi) + Q̄0(Wi)−ΨP(P0)

]
+ oP (1/

√
n)

=
1

n

n∑
i=1

(
I(Ai = 1)

g0(1|Wi)
− I(Ai = 0)

g0(0|Wi)

)(
Yi − Q̄(Ai,Wi)

)
−
[
Q̄0(Wi)− Q̄(Wi)

]
−
[

1

n

n∑
i=1

Yi(1)− Yi(0)− Q̄0(Wi)

]
+ oP (1/

√
n)

=
1

n

n∑
i=1

DC(Oi)−DF (Ui, Oi) + oP (1/
√
n)

where the influence curve of the TMLE for the conditional estimand ΨC(P0) is

DC(O) =

(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W )

)
−
[
Q̄0(W )− Q̄(W )

]
and where

DF (U,O) = Y (1)− Y (0)−
[
Q̄0(1,W )− Q̄0(0,W )

]
Thus, we have shown the TMLE is an asymptotically linear estimator of the SATE:

Ψn(Pn)−ΨS(PU,O) =
1

n

n∑
i=1

DS(Ui, Oi) + oP (1/
√
n)
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with influence curve
DS(U,O) = DC(O)−DF (U,O)

Strictly speaking, the influence curve must only be a function of the observed data O. Nonetheless,
the theorem is sufficient to prove asymptotic normality and consistency of the TMLE for estimation and
inference of the SATE.

Appendix A.1: Variance and variance estimation for the TMLE of the SATE in a
randomized trial without pair-matching

Theorem 2. The standardized TMLE for the SATE is asymptotically normal:

√
n

[
Ψn(Pn)−ΨS(PU,O)

]
D−→ N(0, σ2,S)

with σ2,S = V ar[DC ] + V ar[DF ]− 2Cov[DC , DF ]

= V ar[DC ]− V ar[DF ]

Proof. The covariance term is

Cov[DC , DF ] = E
[
DC ×DF ]

= E

[{(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W )

)
−
(
Q̄0(W )− Q̄(W )

)}
×
{
Y (1)− Y (0)− Q̄0(W )

}]
= E

[(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W )

)
×
{
Y (1)− Y (0)− Q̄0(W )

}]
− E

[{
Q̄0(W )− Q̄(W )

}
×
{
Y (1)− Y (0)− Q̄0(W )

}]
For the first term, we have

E

[(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
= E

[(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W ) + Q̄0(A,W )− Q̄0(A,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
= E

[(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄0(A,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
+ E

[(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Q̄0(A,W )− Q̄(A,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
It follow that this equals

= E

[
I(A = 1)

g0(1|W )

(
Y (1)− Q̄0(1,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
− E

[
I(A = 0)

g0(0|W )

(
Y (0)− Q̄0(0,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
+ E

[
I(A = 1)

g0(1|W )

(
Q̄0(1,W )− Q̄(1,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
− E

[
I(A = 0)

g0(0|W )

(
Q̄0(0,W )− Q̄(0,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
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Under the randomization assumption, we have

E

[
I(A = a)

g0(a|W )

∣∣∣∣Y (1), Y (0),W

]
= 1

Therefore, the sum of first two terms reduce to the variance of the DF component

E

[[
Y (1)− Y (0)− Q̄0(W )

]
×
[
Y (1)− Y (0)− Q̄0(W )

]]
= E

[[
Y (1)− Y (0)− Q̄0(W )

]2]
,

and the sum of the last two terms is

E

[{
Q̄0(W )− Q̄(W )

}
×
{
Y (1)− Y (0)− Q̄0(W )

}]
.

Therefore, we have that the covariance term equals the variance of the non-identifiable component DF :

Cov[DC , DF ] = V ar[DF ].

Thus, the asymptotic variance of the standardized estimator for the SATE is

σ2,S = V ar[DC ]− V ar[DF ].

The asymptotic variance of the standardized TMLE for the SATE σ2,S is always less than or equal
to the asymptotic variance of the standardized TMLE for the conditional parameter σ2,C = V ar[DC ]. As
shown in Balzer et al. (2015), we can estimate the upper bound

σ̂2,S = σ̂2,C =
1

n

n∑
i=1

{
D̂C(Q̄∗n, g0)(Oi)

}2

where D̂C(Q̄∗n, g0)(Oi) =

(
I(Ai = 1)

g0(1|Wi)
− I(Ai = 0)

g0(0|Wi)

)(
Yi − Q̄∗n(Ai,Wi)

)
.

Appendix A.2: Generalization to allow for estimation of the exposure mechanism

Suppose our target of inference is the population estimand ΨP(P0) and the exposure mechanism is con-
sistently estimated with maximum likelihood: gn(A|W ). Then the TMLE is asymptotically linear with
influence curve given by the influence curve at the possibly misspecified limit Q̄(A,W ) minus its projection
on the tangent space Tg of the model for g0(A|W ) (van der Laan and Robins, 2003):

DP,gn(Q̄, g0) = DP(Q̄, g0)−
∏[

DP(Q̄, g0)
∣∣Tg].

This projection is a function of (A,W ) with conditional mean zero, given W . Analogously, when we target
the conditional estimand ΨC(P0), the influence curve of the TMLE is

DC,gn(Q̄, g0) = DC(Q̄, g0)−
∏[

DC(Q̄, g0)
∣∣Tg],

and when we target the SATE ΨS(PU,O), the influence curve of the TMLE is

DS,gn(Q̄, g0) = DC,gn(Q̄, g0)−DF .

The proof is analogous to the above and thus omitted.
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The standardized estimator of the SATE then is asymptotically normal with mean 0 and variance given
by the variance of influence curve:

σ2,S,gn = V ar[DC,gn ] + V ar[DF ]− 2Cov[DC,gn , DF ]

The covariance of the projection
∏[

DC(Q̄, g0)
∣∣Tg] and DF is zero. (If we take the expectation given

(A,W ), then the projection term is constant and the DF term is zero.) Thus, when the exposure mechanism
is estimated according to a correctly specified model, the asymptotic variance of standardized estimator is

σ2,S,gn = V ar[DC,gn ]− V ar[DF ].

We will have a conservative variance estimator by ignoring the projection term and the non-identifiable
piece DF .

Appendix B: The TMLE is an asymptotically linear estimator of the
SATE in a pair-matched trial

First, we review the asymptotic linearity results of Balzer et al. (2015) for estimation and inference of the
the statistical parameter corresponding to the conditional average treatment effect (CATE) (Abadie and
Imbens, 2002) in a trial with adaptive pair-matching:

ΨC(P0) =
1

n

n∑
i=1

[
E0(Yi|Ai = 1,Wi)− E0(Yi|Ai = 0,Wi)

]
=

1

n

n∑
i=1

[
Q̄0(1,Wi)− Q̄0(0,Wi)

]
.

Then, we provide a theorem showing that the TMLE for the SATE is asymptotically normal in a trial
with adaptive pair-matching, which results in n/2 conditionally independent copies of Ōj =

(
Oj1, Oj2

)
=(

(Wj1, Aj1, Yj1), (Wj2, Aj2, Yj2)
)
.

The TMLE for conditional estimand ΨC(P0) is defined by the following substitution estimator:

Ψn(Pn) =
1

n

n∑
i=1

[
Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

]
where Q̄∗n(A,W ) denotes the targeted estimator. Under the following assumptions, the TMLE for ΨC(P0)
is asymptotically linear:

Ψn(Pn)−ΨC(P0) =
1

n/2

n/2∑
j=1

D̄C(Q̄, Q̄0, g0)(Ōj) + oP (1/
√
n/2)

with influence curve

D̄C(Q̄, Q̄0, g0)(Ōj) =
1

2

[
DC(Q̄, Q̄0, g0)(Oj1) +DC(Q̄, Q̄0, g0)(Oj2)

]
with DC(Q̄, Q̄0, g0)(Oi) =

(
I(Ai = 1)

g0(Ai)
− I(Ai = 0)

g0(Ai)

)(
Yi − Q̄(Ai,Wi)

)
−
[
Q̄0Wi)− Q̄(Wi)

]
where Q̄(A,W ) denotes the limit of the targeted estimator of the conditional mean function Q̄0(A,W );
the marginal probability of being assigned the treatment or the control is known: g0(A) = P0(A) = 0.5,
and Q̄(W ) = Q̄(1,W )− Q̄(0,W ) denotes the difference in the treatment-specific conditional means (Balzer
et al., 2015). We assume
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• Uniform bound: Assume supQ̄∈F supO |
(
I(Ai=1)
g0(Ai)

− I(Ai=0)
g0(Ai)

) (
Yi − Q̄(Ai,Wi)

)
|< M <∞ where F is

the set of multivariate real valued functions so that Q̄∗n is an element of F with probability 1 and
where the second supremum is over a set that contains the support of each Oi.

• Convergence of variances: Assume that for a specified {σ2,C(Q̄) : Q̄ ∈ F}, for any Q̄ ∈ F ,
1
n/2

∑n/2
j=1 P

n
0 D̄

C(Q̄, Q̄0, g0)2 → σ2,C(Q̄) a.s (i.e., for almost every (Wn, n ≥ 1)). Throughout Pn0 f =

E0[f |Wn] denotes the conditional expectation of a function f of On = (O1, . . . , On), given the vector
of baseline covariates Wn = (W1, . . . ,Wn).

• Convergence of Q̄∗n to some limit: For any Q̄1, Q̄2 ∈ F , we define

σ2
n(Q̄1−Q̄2) = 1

n/2

∑n/2
j=1 P

n
0 {D̄C(Q̄1, Q̄0, g0)−D̄C(Q̄2, Q̄0, g0)}2. Assume that for a particular Q̄ ∈ F ,

σ2
n(Q̄∗n − Q̄)→ 0 in probability as n→∞.

• Entropy condition: Let Fd = {f1 − f2 : f1, f2 ∈ F}. Let N(ε, σn,Fd) be the covering num-
ber of the class Fd w.r.t norm/dissimilarity ‖ f ‖= σn(f). Assume that the class F satisfies

limδn→0

∫ δn
0

√
logN(ε, σn,Fd)dε = 0.

Theorem 3. Let W denote the measured baseline covariates; A denote the intervention assignment and
Y denote the outcome. A randomized trial with adaptive pair-matching results in n/2 conditionally inde-
pendent copies of paired random variable

Ōj =
(
Oj1, Oj2

)
=
(
(Wj1, Aj1, Yj1), (Wj2, Aj2, Yj2)

)
where index j = {1, . . . , n/2} denotes the partitioning of the study units {1, . . . n} into matched pairs
according to similarity on their baseline covariates Wn = (W1, . . . ,Wn). Our target of inference is the
sample average treatment effect (SATE) (Neyman, 1923):

ΨS(PU,O) =
1

n

n∑
i=1

Yi(1)− Yi(0)

where PU,O denotes the joint distribution of the background factors U = (UW , UA, UY ) and observed factors
O = (W,A, Y ). Under the above conditions, the TMLE Ψn(Pn) = 1

n

∑n
i=1 Q̄

∗
n(1,Wi) − Q̄∗n(0,Wi) is an

asymptotically linear estimator of the SATE:

Ψn(Pn)−ΨS(PU,O) =
1

n/2

n/2∑
j=1

D̄S(Q̄, Q̄0, g0)(Ūj , Ōj) + oP (1/
√
n/2)

with influence curve

D̄S(Q̄, Q̄0, g0)(Ūj , Ōj) = D̄C(Q̄, Q̄0, g0)(Ōj)− D̄F (Q̄0)(Ūj , Ōj)

where Q̄(A,W ) denotes the limit of the targeted estimator of the conditional mean function Q̄0(A,W ) and
where the marginal probability of being assigned the treatment or the control is known g0(A) = P0(A), and
where the pair’s unobserved factors are denoted Ūj =

(
Uj1, Uj2

)
.

The first component D̄C(Q̄, Q̄0, g0)(Ōj) is the influence curve for the TMLE targeting the conditional
estimand ΨC(P0) = 1

n

∑n
i=1

[
Q̄0(1,Wi)− Q̄0(0,Wi)

]
in a trial with adaptive pair-matching:

D̄C(Q̄, Q̄0, g0)(Ōj) =
1

2

[
DC(Q̄, Q̄0, g0)(Oj1) +DC(Q̄, Q̄0, g0)(Oj2)

]
with DC(Q̄, Q̄0, g0)(Oi) =

(
I(Ai = 1)

g0(Ai)
− I(Ai = 0)

g0(Ai)

)(
Yi − Q̄(Ai,Wi)

)
−
[
Q̄0(Wi)− Q̄(Wi)

]
6



The second component D̄F (Q̄0)(Ūj , Ōj) is the following function of the paired unobserved data Ūj =(
Uj1, Uj2

)
and observed data Ōj =

(
Oj1, Oj2

)
:

D̄F (Q̄0)(Ūj , Ōj) =
1

2

[
DF (Q̄0)(Uj1, Oj1) +DF (Q̄0)(Uj2, Oj2)

]
with DF (Q̄0)(Ui, Oi) = Yi(1)− Yi(0)− Q̄0(Wi).

In a pair-matched trial, the standardized TMLE for the SATE is asymptotically normal with mean 0 and
variance σ2,S given by the limit of

σ2,S
n =

1

n/2

n/2∑
j=1

Pn0

{
D̄S(Q̄, Q̄0, g0)(Ūj , Ōj)

}2

where Pn0 f = E0[f |Wn] denotes the conditional expectation, given the vector of baseline covariates Wn =
(W1, . . . ,Wn).

Proof. Let Q̄0(W ) = Q̄0(1,W )− Q̄0(0,W ) denote the true difference in treatment-specific means. We can
write the deviation between the TMLE Ψn(Pn) for the conditional estimand ΨC(P0) and the SATE as

Ψn(Pn)−ΨS(PU,O)

= Ψn(Pn)−ΨC(P0)−
[
ΨS(PU,O)−ΨC(P0)

]
=

1

n/2

n/2∑
j=1

D̄C(Ōj)−
[
ΨS(PU,O)−ΨC(P0)

]
+ oP (1/

√
n/2)

=
1

n/2

n/2∑
j=1

D̄C(Ōj)−
[

1

n

n∑
i=1

Yi(1)− Yi(0)− Q̄0(Wi)

]
+ oP (1/

√
n/2)

=
1

n/2

n/2∑
j=1

[
D̄C(Ōj)−

1

2

(
Yj1(1)− Yj1(0)− Q̄0(Wj1) + Yj2(1)− Yj2(0)− Q̄0(Wj2)

)]
+ oP (1/

√
n/2)

=
1

n/2

n/2∑
j=1

[
D̄C(Ōj)− D̄F (Ūj , Ōj)

]
+ oP (1/

√
n/2)

where D̄C(Ōj) is the influence curve of the TMLE for the conditional estimand ΨC(P0) under adaptive
pair-matching and where D̄F (Ūj , Ōj) is the following function:

D̄F (Ūj , Ōj) =
1

2

[
DF (Uj1, Oj1) +DF (Uj2, Oj2)

]
with DF (Ui, Oi) = Yi(1)− Yi(0)−

[
Q̄0(1,Wi)− Q̄0(0,Wi)

]
.

Thus, we have shown the TMLE is an asymptotically linear estimator of the SATE in a trial with adaptive
pair-matching:

Ψn(Pn)−ΨS(PU,O) =
1

n/2

n/2∑
j=1

D̄S(Ūj , Ōj) + oP (1/
√
n/2)

with influence curve
D̄S(Ūj , Ōj) = D̄C(Ōj)− D̄F (Ūj , Ōj).

Strictly speaking, the influence curve must only be a function of the observed data. Nonetheless, the
theorem is sufficient to prove asymptotic normality and consistency of the TMLE.
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Appendix B.1: Variance and variance estimation for the TMLE of the SATE in a
pair-matched trial

Theorem 4. The standardized TMLE for the SATE is asymptotically normal with mean 0 and variance
given by the limit of

σ2,S
n =

1

n/2

n/2∑
j=1

Pn0

{
D̄S(Q̄, Q̄0, g0)(Ūj , Ōj)

}2

=
1

n/2

n/2∑
j=1

[
Pn0

{
D̄C(Q̄, Q̄0, g0)(Ōj)

}2

− Pn0
{
D̄F (Q̄0)(Ūj , Ōj)

}2]
.

Proof. The conditional variance can be expressed as

σ2,S
n =

1

n/2

n/2∑
j=1

Pn0

{
D̄S(Ūj , Ōj)

}2

=
1

n/2

n/2∑
j=1

Pn0

{
D̄C(Ōj)− D̄F (Ūj , Ōj)

}2

=
1

n/2

n/2∑
j=1

[
Pn0

{
D̄C(Ōj)

}2

+ Pn0

{
D̄F (Ūj , Ōj)

}2

− 2Pn0

{
D̄C(Ōj)× D̄F (Ūj , Ōj)

}]
.

The conditional covariance of the D̄C(Ōj) and D̄F (Ūj , Ōj) components is

Pn0

{
D̄C(Ōj)× D̄F (Ūj , Ōj)

}
=

1

4
Pn0

{[
DC(Oj1) +DC(Oj2)

]
×
[
DF (Uj1, Oj1) +DF (Uj2, Oj2)

]}
=

1

4

[
Pn0
{
DC(Oj1)×DF (Uj1, Oj1)

}
+ Pn0

{
DC(Oj1)×DF (Uj2, Oj2)

}
+ Pn0

{
DC(Oj2)×DF (Uj1, Oj1)

}
+ Pn0

{
DC(Oj2)×DF (Uj2, Oj2)

}]
.

As shown in Appendix A.1, the covariance of the DC(Oi) and DF (Oi) components is equal to the variance
of DF (Oi). Therefore, we have

Pn0

{
DC(Oj1)×DF (Uj1, Oj1)

}
= Pn0

{
DF (Uj1, Oj2)

}2

Pn0

{
DC(Oj2)×DF (Uj2, Oj2)

}
= Pn0

{
DF (Uj2, Oj2)

}2

.

The conditional covariance term of DC(Oj1) and DF (Uj2, Oj2) is given by

Pn0 [DC(Oj1)×DF (Uj2, Oj2)]

= Pn0

[{(
I(Aj1 = 1)

g0(1|Wj1)
− I(Aj1 = 0)

g0(0|Wj1)

)(
Yj1 − Q̄(Aj1,Wj1)

)
−
(
Q̄0(Wj1)− Q̄(Wj1)

)}
×DF (Uj2, Oj2)

]
= Pn0

[(
I(Aj1 = 1)

g0(1|Wj1)
− I(Aj1 = 0)

g0(0|Wj1)

)(
Yj1 − Q̄(Aj1,Wj1)

)
×DF (Uj2, Oj2)

]
− Pn0

[(
Q̄0(Wj1)− Q̄(Wj1)

)
×DF (Uj2, Oj2)

]
.
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For the first term, we have

Pn0

[(
I(Aj1 = 1)

g0(1|Wj1)
− I(Aj1 = 0)

g0(0|Wj1)

)(
Yj1 − Q̄(Aj1,Wj1)

)
×DF (Uj2, Oj2)

]
= Pn0

[(
I(Aj1 = 1)

g0(1|Wj1)
− I(Aj1 = 0)

g0(0|Wj1)

)(
Yj1 − Q̄(Aj1,Wj1) + Q̄0(Aj1,Wj1)− Q̄0(Aj1,Wj1)

)
×DF (Uj2, Oj2)

]
= Pn0

[(
I(Aj1 = 1)

g0(1|Wj1)
− I(Aj1 = 0)

g0(0|Wj1)

)(
Yj1 − Q̄0(Aj1,Wj1)

)
×DF (Uj2, Oj2)

]
+ Pn0

[(
I(Aj1 = 1)

g0(1|Wj1)
− I(Aj1 = 0)

g0(0|Wj1)

)(
Q̄0(Aj1,Wj1)− Q̄(Aj1,Wj1)

)
×DF (Uj2, Oj2)

]
It follow that this equals:

Pn0

[
I(Aj1 = 1)

g0(1|Wj1)

(
Yj1(1)− Q̄0(1,Wj1)

)
×DF (Uj2, Oj2)

]
− Pn0

[
I(Aj1 = 0)

g0(0|Wj1)

(
Yj1(0)− Q̄0(0,Wj1)

)
×DF (Uj2, Oj2)

]
+ Pn0

[
I(Aj1 = 1)

g0(1|Wj1)

(
Q̄0(1,Wj1)− Q̄(1,Wj1)

)
×DF (Uj2, Oj2)

]
− Pn0

[
I(Aj1 = 0)

g0(0|Wj1)

(
Q̄0(0,Wj1)− Q̄(0,Wj1)

)
×DF (Uj2, Oj2)

]
Under the randomization assumption, we have

E0

[
I(Aj1 = a)

g0(a|Wj1)

∣∣∣∣Yj1(1), Yj1(0),Wj1, Yj2(1), Yj2(0),Wj2

]
= 1

Therefore, the sum of first two terms reduce to the covariance of the DF components within a matched
pair:

Pn0

[[
Yj1(1)− Yj1(0)− Q̄0(Wj1)

]
×
[
Yj2(1)− Yj2(0)− Q̄0(Wj2)

]]
= Pn0

[
DF (Uj1, Oj1)×DF (Uj2, Oj2)

]
,

and the sum of the last two terms is

Pn0

[(
Q̄0(Wj1)− Q̄(Wj1)

)
×DF (Uj2, Oj2)

]
.

We have that the conditional covariance of DC(Oj1) and DF (Uj2, Oj2) equals the covariance of the DF

components within a matched pair:

Pn0
[
DC(Oj1)×DF (Uj2, Oj2)

]
= Pn0

[
DF (Uj1, Oj1)×DF (Uj2, Oj2)

]
.

Under the same reasoning, the conditional covariance term of DC(Oj2) and DF (Uj1, Oj2) equals the co-
variance of the DF components within a matched pair

Pn0
[
DC(Oj2)×DF (Uj1, Oj1)

]
= Pn0

[
DF (Uj1, Oj1)×DF (Uj2, Oj2)

]
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Therefore, the conditional covariance of the D̄C(Ōj) and D̄F (Ūj , Ōj) components equals the conditional
variance of the pairwise D̄F (Ūj , Ōj) component

Pn0

{
D̄C(Ōj)× D̄F (Ūj , Ōj)

}
=

1

4
Pn0

{
DF (Uj1, Oj1)

}2

+
1

4
Pn0

{
DF (Uj2, Oj2)

}2

+
1

2
Pn0

{
DF (Uj1, Oj1)×DF (Uj2, Oj2)

}
= Pn0

{
1

2

(
DF (Uj1, Oj1) +DF (Uj2, Oj2)

)}2

= Pn0

{
D̄F (Ūj , Ōj)

}2

Thus, the asymptotic variance of the standardized estimator the SATE in a trial with pair-matching is
given by the limit of

σ2,S
n =

1

n/2

n/2∑
j=1

[
Pn0

{
D̄C(Ōj)

}2

− Pn0
{
D̄F (Ūj , Ōj)

}2]

The asymptotic variance of the standardized TMLE for the SATE σ2,S is always less than or equal to
the asymptotic variance of the TMLE for the conditional parameter σ2,C in a pair-matched trial. As shown
in Balzer et al. (2015), we can estimate the upper bound as

σ̂2,S = σ̂2,C =
1

n/2

n/2∑
j=1

{
ˆ̄DC(Q̄∗n, g0)(Ōj)

}2

where ˆ̄DC(Q̄∗n, g0)(Ōj) =
1

2

[
D̂C(Q̄∗n, g0)(Oj1) + D̂C(Q̄∗n, g0)(Oj2)

]
and D̂C(Q̄∗n, g0)(Oi) =

(
I(Ai = 1)

g0(Ai)
− I(Ai = 0)

g0(Ai)

)(
Yi − Q̄∗n(Ai,Wi)

)
.

Ordering the observations within matched pairs, such that the first corresponds to the unit randomized to
the intervention (Aj1 = 1) and the second to the control (Aj2 = 0), it follows that

ˆ̄DC(Q̄∗n, g0)(Ōj) =
(
Yj1 − Q̄∗n(1,Wj1)

)
−
(
Yj2 − Q̄∗n(0,Wj2)

)
allowing us to represent the variance estimator as the sample variance of the difference in residuals within
matched pairs:

σ̂2,S = σ̂2,C =
1

n/2

n/2∑
j=1

{(
Yj1 − Q̄∗n(1,Wj1)

)
−
(
Yj2 − Q̄∗n(0,Wj2)

)}2

.

This variance estimator will be consistent if there is no heterogeneity in the treatment effect within strata
of covariates (i.e. if the variance of the DF component is zero) and if the conditional mean function
Q̄0(A,W ) is consistently estimated. Otherwise, the variance estimator will be conservative.
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Appendix C: Comparison of the asymptotic variance of the TMLEs for
the SATE with and without pair-matching

Let Pn0 f to denote the conditional expectation of a function f of On given Wn. As presented in Balzer
et al. (2015), the asymptotic variances of the standardized TMLEs for the conditional parameter ΨC(P0)
in a trial without pair-matching and a trial with pair-matching are given by the limits of

σ2,C
n,non−matched =

1

n

n∑
i=1

Pn0

{
DC(Oi)

}2

=
1

n

n∑
i=1

{
2E0

[(
Yi − Q̄(1,Wi)

)2∣∣∣∣Ai = 1,Wn

]
+ 2E0

[(
Yi − Q̄(0,Wi)

)2∣∣∣∣Ai = 0,Wn

]
+
[
Q̄0(1,Wi)− Q̄(1,Wi) + Q̄0(0,Wi)− Q̄(0,Wi)

]2}
and

σ2,C
n,matched =

1

n/2

n/2∑
j=1

Pn0

{
D̄C(Ōj)

}2

= 0.5σ2,C
n,non−matched − ρ0,

respectively. ρ0 is the limit of the following pairwise product:

ρ0 =
1

n

n/2∑
j=1

{[
Q̄0(1,Wj1)− Q̄(1,Wj1) + Q̄0(0,Wj1)− Q̄(0,Wj1)

]
×
[
Q̄0(1,Wj2)− Q̄(1,Wj2) + Q̄0(0,Wj2)− Q̄(0,Wj2)

]}
.

Also recall that in the pair-matched design, we have

1

n/2

n/2∑
j=1

Pn0

{
D̄F (Ūj , Ōj)

}2

=
1

n/2

n/2∑
j=1

[
1

4
Pn0

{
DF (Uj1, Oj1)

}2

+
1

4
Pn0

{
DF (Uj2, Oj2)

}2

+
1

2
Pn0

{
DF (Uj1, Oj1)×DF (Uj2, Oj2)

}]
.

Substituting these into the formulas for the asymptotic variances of the standardized estimators for the
sample effect, we have

σ2,S
n,non−matched =

1

n

n∑
i=1

[
Pn0

{
DC(Oi)

}2

− Pn0
{
DF (Ui, Oi)

}2]

= σ2,C
n,non−matched −

1

n

n∑
i=1

Pn0

{(
Yi(1)− Yi(0)− Q̄0(Wi)

)2}
.

and

σ2,S
n,matched =

1

n/2

n/2∑
j=1

Pn0

{
D̄C(Ōj)

}2

− 1

n/2

n/2∑
j=1

Pn0

{
D̄F (Ūj , Ōj)

}2

= 0.5σ2,C
n,non−matched − ρ0 −

1

2n

n∑
i=1

Pn0

{(
Yi(1)− Yi(0)− Q̄0(Wi)

)2}

− 1

n

n/2∑
j=1

Pn0

{
DF (Uj1, Oj1)×DF (Uj2, Oj2)

}
= 0.5σ2,S

n,non−matched − ρ0 − φ0
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where

φ0 =
1

n

n/2∑
j=1

Pn0
{
DF (Uj1, Oj1)×DF (Uj2, Oj2)

}
=

1

n

n/2∑
j=1

Pn0

{(
Yj1(1)− Yj1(0)− Q̄0(Wj1)

)
×
(
Yj2(1)− Yj2(0)− Q̄0(Wj2)

)}
.

Thus, the asymptotic variances of the TMLE for the SATE in a non-matched trial is given by the limit
of σ2,S

n,non−matched/n whereas the asymptotic variance of the TMLE in a pair-matched trial is given by the

limit of σ2,S
n,matched/(n/2) = σ2,S

n,non−matched/n − 2ρ0/n − 2φ0/n. As discussed in Balzer et al. (2015), when
we match well on measured and unmeasured factors, the deviations between the true conditional means
Q̄0(A,W ) and the limit of the estimated Q̄(A,W ) is expected to be positively correlated within matched
pairs:

ρ0 ≥ 0.

Furthermore, when we match on predictive factors, the deviations between the unit-specific treatment effect
and the treatment effect within covariate strata is expected to be positively correlated within matched pairs:

φ0 ≥ 0.

Therefore, in most practical settings, the pair-matched trial will be more efficient than its non-matched
counterpart for estimation and inference of the sample effect. Even under consistent estimation of the
conditional mean outcome Q̄0(A,W ) (and therefore ρ0 = 0), there is still will be a gain for matching if
φ0 > 0.

Appendix D: R Code

Full R code for the simulations and estimators is available below and at
http://works.bepress.com/laura_balzer/26/. Please see the website for updates. We also note that
the following code applies to binary or bounded continuous outcomes.

#################

# Sample R code and Simulations to illustrate estimation and inference

# for the sample average treatment effect in trials with and without pair-matching.

# Demonstrates the unadjusted estimator,

# TMLE with logistic regression for outcome regression E_0(Y|A,W)=Qbar_0(A,W),

# and TMLE with SuperLearner for Qbar_0(A,W)

#

# Programmer: Laura Balzer (lbbalzer@hsph.harvard.edu)

# Please email with questions, concerns or requests

#

# R version 3.2.1

#

# Last update: Dec 8, 2015

####################

#-------------------------------

# simulate.data.and.run: function to generate the simulated data

# and run the estimators
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#-------------------------------

simulate.data.and.run<- function(){

# directly simulate the full data (covariates and counterfactual outcomes)

X.full<- generateData(n)

# Sample average counterfactual outcome under A=a

R1<- mean(X.full$Y.1)

R0<- mean(X.full$Y.0)

# SATE is the sample average difference in the counterfactuals

SATE= R1-R0

if(PAIRED){

# if pair-matching trial, match units and randomize the treatment

X.all <- doPairMatching(matchData=X.full[, matchOn], fullData=X.full)

} else{

# Otherwise, assign the treatment - guarantee that n/2 are treated

A<- rbinom(n/2, 1, 0.5)

A.2<- ifelse(A==1, 0, 1)

A <- sample( c(A,A.2))

X.all <- cbind( X.full, paired=rep(NA, n), A)

}

# we observe the counterfactual outcome corresponding to the observed exp

Y<- ifelse(X.all$A, X.all$Y.1, X.all$Y.0)

X.all<- cbind(X.all, Y)

#-----------------

# Estimation and inference

#-----------------

unadj<- doTMLE(SATE, data=X.all, Qadj=’U’, family=’binomial’)

adj.AW1<- doTMLE(SATE, data=X.all, Qadj=’W.1’, Qform=as.formula(Y~A*W.1), family=’binomial’)

Qadj<- c(’W.1’,’W.2’, ’W.3’, ’W.4’, ’W.5’)

adj.SL<- doTMLE(SATE, data=X.all, Qadj=Qadj, family=’binomial’, Do.SL=T)

RETURN<- list(unadj=unlist(unadj), adj.AW1=unlist(adj.AW1),

adj.SL =unlist(adj.SL) )

RETURN

}

#---------------------------

# generateData: function to generate the full data

# including baseline covariates and the counterfactual outcomes
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#---------------------------

generateData<- function(n){

U.Y<- generateU.Y(n)

W<- generateW(n)

Y.0<- generateY(W=W, A=0, U.Y=U.Y)

if(EFFECT){

Y.1<- generateY(W=W, A=1, U.Y=U.Y)

} else{

Y.1 <- Y.0

}

data.frame(W, Y.0,Y.1)

}

#-------------------

# additional functions to generate the simulated data

#--------------------

# generate unmeasured U.Y

generateU.Y<- function(n){

rnorm(n, 0, SD)

}

# generate the baseline covariates W

generateW<- function(n) {

Sigma<- matrix(CORR.W*SD*SD, nrow=3, ncol=3)

diag(Sigma)<- SD^2

W<- cbind(rnorm(n,0,1), rnorm(n,0,1), mvrnorm(n, rep(0,3), Sigma))

data.frame(U=1, W=W )

}

# generate the outcome Y

generateY<- function(W, A, U.Y) {

.2*plogis(1*A + .75*W$W.1 + .75*W$W.2 + 1.25*W$W.3 + U.Y + .75*W$W.1*A - .5*W$W.2*A - A*U.Y )

}

#-----------------------

# get.PATE: function to calculate the true value of the PATE

# over a population of 500,000 units

#-----------------------

get.PATE<- function(pop= 500000){

X.full<- generateData(pop)

# average counterfactual outcome under A=a for the population
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R1<- mean( X.full$Y.1)

R0<- mean( X.full$Y.0)

RD= R1-R0

c(R1, R0, RD)

}

#--------------------

# doPairMatching - function to pair-match units (fullData)

# based on the matching covariates (matchData)

# and assign the treatment within the resulting matched pairs

# Requires nbpMatching package

#-----------------------

doPairMatching<- function(matchData, fullData){

dist<- distancematrix(gendistance(data.frame(matchData)))

matches<- nonbimatch(dist)

# matches contains ids for the pair as well as the distance measure

grpA<- as.numeric(matches$halves[,’Group1.Row’])

grpB<- as.numeric(matches$halves[,’Group2.Row’])

npairs<- length(grpA)

X1<- data.frame(fullData[grpA, ], pair=1:npairs, A= rbinom(npairs, 1, .5))

X2<- data.frame(fullData[grpB, ], pair=1:npairs, A= ifelse(X1$A==1, 0, 1 ))

Xpaired<- NULL

for(i in 1:npairs){

Xpaired<- rbind(Xpaired, X1[i,], X2[i,])

}

Xpaired

}

#--------------------------------

# doTMLE: function to run full TMLE and get inference

# input: SATE (sample ATE for that study), data,

# Qadj (candidate adjustment variables for Qbar_0(A,W))

# Qform (the form of the outcome regression), family (binomial for logistic regression),

# Do.SL (whether or not do SuperLearner)

# output: estimation and inference for the population and sample effect

#

# Requires the SuperLearner package

#

# For further information about coding TMLE and calling SuperLearner,

# please see http://www.ucbbiostat.com/

#-----------------------------------------------

doTMLE<- function(SATE, data, Qadj, Qform=as.formula(Y~.), family=’binomial’, Do.SL=F){
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if(!Do.SL){ # if not doing SuperLearner

X1 = X0 = X= data[,c(Qadj, ’A’,’Y’)]

X1$A<-1; X0$A<- 0

glm.out<- suppressWarnings( glm(Qform, family=family, data=X) )

# get predicted outcomes under obs exp, txt and control

QbarAW<- suppressWarnings( predict(glm.out, newdata=X, type="response"))

Qbar1W<- suppressWarnings( predict(glm.out, newdata=X1, type=’response’))

Qbar0W<- suppressWarnings( predict(glm.out, newdata=X0, type=’response’) )

} else{ # do super learner

X1 = X0 = X= data[,c(Qadj, ’A’)]

X1$A<-1; X0$A<- 0

newX<- rbind(X,X1, X0)

# call SuperLearner

if(PAIRED){

# for the cross-validation step, we need to respect the unit of (conditional) independence

Qinit<-SuperLearner(Y=data$Y, X=X, newX=newX, SL.library= QSL.LIBRARY, family="binomial",

cvControl=list(V=n/2), id=data$pairs )

} else{

Qinit<-SuperLearner(Y=data$Y, X=X, newX=newX, SL.library= QSL.LIBRARY, family="binomial",

cvControl=list(V=n/2) )

}

QbarAW<-Qinit$SL.predict[1:n]

Qbar1W<-Qinit$SL.predict[(n+1): (2*n)]

Qbar0W<-Qinit$SL.predict[(2*n+1): (3*n)]

}

# We’re not estimating the known exposure mechanism,

# but we could for greater efficiency

# For further details, email lbbalzer@hsph.harvard.edu

pscore = rep(0.5,n)

# Calculating the clever covariate

H.1W<- 1/ (pscore)

H.0W<- -1/ (1-pscore)

H.AW<- rep(NA, n)

H.AW[data$A==1]<- H.1W[data$A==1]

H.AW[data$A==0]<- H.0W[data$A==0]

# updating step

logitUpdate<- suppressWarnings( glm(data$Y ~ -1 +offset(qlogis(QbarAW)) + H.AW,

family="binomial"))
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# estimated coefficient on the clever covariate

eps<-logitUpdate$coef

# targeted estimates of the outcome regression

QbarAW<-plogis( qlogis(QbarAW)+eps*H.AW)

Qbar0W<-plogis( qlogis(Qbar0W)+eps*H.0W)

Qbar1W<-plogis( qlogis(Qbar1W)+eps*H.1W)

# risk estimates under txt, under control and risk difference

R1<- mean(Qbar1W)

R0<- mean(Qbar0W)

RD<- mean(Qbar1W- Qbar0W)

#--------------------

# get inference via the influence curve

#--------------------

# the relevant components of the influence curve

DY<- H.AW*(data$Y- QbarAW)

DW<- Qbar1W - Qbar0W - RD

if(!PAIRED){

var.PATE<- var(DY+DW)/n

var.SATE<- var(DY)/n

df=(n-2)

est.PATE<- get.inference(truth=PATE[3], RD=RD, var=var.PATE, df=df)

est.SATE<- get.inference(truth=SATE, RD=RD, var=var.SATE, df=df)

RETURN<- data.frame(R1=R1, R0=R0, RD=RD, PATE=est.PATE, SATE=est.SATE)

}else{

pairs<- data$pair

temp<- unique(pairs)

n.pairs<- length(temp)

# DbarY= 1/2 sum_{i in pairs} HAW_i*(Y_i -Qbar_i)

# Serves as the upper bound on the IC

DY.paired<- rep(NA, n.pairs)

for(i in 1:n.pairs){

DY.paired[i]<- 0.5*sum(DY[ pairs== temp[i]] )

}

var.SATE<- var(DY.paired)/n.pairs

df= (n.pairs -1)

est.SATE<- get.inference(truth=SATE, RD=RD, var=var.SATE, df=df)
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# for estimation of the PATE in an Adaptive Pair-Matched Trial, see van der Laan et al. 2012

RETURN<- data.frame(R1=R1, R0=R0, RD=RD, SATE=est.SATE)

}

RETURN

}

#---------------------

# get.inference:

# input: true value of target parameter, estimate (RD), variance estimate

# and df for t-dist

# output: variance est, test statistic, indicator of 95% CI contained the truth

# and indicator that rejected the null at the alpha=0.05 level

#-------------------------

get.inference<- function(truth, RD, var, df){

se<- sqrt(var)

cutoff <- qt(0.05/2, df=df, lower.tail=F)

cov<- (RD - cutoff*se) <= truth & truth <= (RD + cutoff*se)

tstat <- RD/se

reject <- abs(tstat) > cutoff

data.frame(truth=truth, var=var, tstat=tstat, cov=cov, reject=reject)

}

#==========================================================

# The remaining are helper functions to run SuperLearner

#===========================================================

SL.glmAW1int<- function (Y, X, newX, family, obsWeights, ...) {

fit.glm <- glm(Y ~ A + W.1 + A:W.1, data = X, family = family, weights = obsWeights)

pred <- predict(fit.glm, newdata = newX, type = "response")

fit <- list(object = fit.glm)

class(fit) <- "SL.glmAW1int"

out <- list(pred = pred, fit = fit)

return(out)

}

SL.glmAW2int<- function (Y, X, newX, family, obsWeights, ...) {

fit.glm <- glm(Y ~ A + W.2 + A:W.2, data = X, family = family, weights = obsWeights)

pred <- predict(fit.glm, newdata = newX, type = "response")

fit <- list(object = fit.glm)

class(fit) <- "SL.glmAW2int"

out <- list(pred = pred, fit = fit)

return(out)

}

SL.glmAW3int<- function (Y, X, newX, family, obsWeights, ...) {
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fit.glm <- glm(Y ~ A + W.3 + A:W.3, data = X, family = family, weights = obsWeights)

pred <- predict(fit.glm, newdata = newX, type = "response")

fit <- list(object = fit.glm)

class(fit) <- "SL.glmAW3int"

out <- list(pred = pred, fit = fit)

return(out)

}

SL.glmAW4int<- function (Y, X, newX, family, obsWeights, ...) {

fit.glm <- glm(Y ~ A + W.4 + A:W.4, data = X, family = family, weights = obsWeights)

pred <- predict(fit.glm, newdata = newX, type = "response")

fit <- list(object = fit.glm)

class(fit) <- "SL.glmAW4int"

out <- list(pred = pred, fit = fit)

return(out)

}

SL.glmAW5int<- function (Y, X, newX, family, obsWeights, ...) {

fit.glm <- glm(Y ~ A + W.5 + A:W.5, data = X, family = family, weights = obsWeights)

pred <- predict(fit.glm, newdata = newX, type = "response")

fit <- list(object = fit.glm)

class(fit) <- "SL.glmAW5int"

out <- list(pred = pred, fit = fit)

return(out)

}

#===============================================================

set.seed(1)

library(MASS)

library(SuperLearner)

library(nbpMatching)

# the following are global variables - specified by the user

n<<- 30

SD<<- 1 #std deviation of baseline covariate

CORR.W<<- .65 # correlation in (W3,W4,W5)

# SuperLearner library for Qbar_0(A,W)

QSL.LIBRARY<<- c(’SL.glmAW1int’, ’SL.glmAW2int’, ’SL.glmAW3int’, ’SL.glmAW4int’, ’SL.glmAW5int’)

PAIRED<<- T

matchOn<<- c(’W.1’, ’W.4’,’W.5’)

EFFECT<<- T

PATE<<- get.PATE()

out<- simulate.data.and.run()
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