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Feature Selection Procedure 
Detail discussion of feature selection process in the protein-protein interaction (PPI) feature domain is given here. PPI 
data was extracted from the STRING database (Szklarczyk D et al., 2014). For each protein in the dataset of 
moonlighting and non-moonlighting proteins (MP and non-MP), we extracted PPI interactions that had sufficient 
confidence score (> 0.4) in STRING. 124 moonlighting proteins (46.3%) and 61 non-moonlighting proteins (37.7%) 
in the dataset had such PPI interactions in STRING. Next, we checked the functional divergence of interacting 
proteins. Interacting proteins for each MP or non-MP were clustered using GO term-based functional similarity. To 
quantify the functional similarity of two proteins, we used the funsim score (Schlicker et al., 2006). The funsim score 
of two GO term sets, GOA and GOB of a respective size of N and M, is calculated from an all-by-all similarity matrix 
sij. 

                                                          (Eqn. 1) 

For sim(GOi
A, GOi

B), we used the relevance similarity score (Schlicker et al., 2006), SSRel for two GO terms, c1 and c2 
is defined as: 

    (Eqn. 2) 

Here p(c) is the probability of a GO term c, which is defined as the fraction of the occurrence of c in the GO database  
(Gene Ontology Consortium, 2013). The root of the ontology has a probability of 1.0.  s(c1,c2) is the set of common 
ancestors of the GO terms c1 and c2. The first term considers the relative depth of the common ancestor c to the depth 
of the two terms c1 and c2 while the second term takes into account how rare it is to identify the common ancestor c 
by chance (i.e. the depth of the c in the GO hierarchy). Since the relevance similarity score is defined only for GO 
pairs of the same category, a matrix is computed separately for the three categories, Biological Process (BP), 
Molecular Function (MF), and Cellular Component (CC). Then, the GOscore of the matrix of each GO category is 
computed as follows:      

       (Eqn. 3) 

GOscore will be any of the three category scores (MFscore, BPscore, CCscore). Finally, the funsim score is computed 
as  

    (Eqn. 4) 

where max(GOscore) = 1 (maximum possible GOscore) and the range of the funSim score is [0, 1]. 

Using this framework of GO-based functional similarity (Eqn. 4) between two proteins, we clustered the 
interacting proteins of each of the MPs and non-MPs in the dataset and created a clustering profile (Fig. S1). A 
clustering profile shows the number of clusters formed by using ten different cutoff values (from 0.1 to 1.0 with an 
interval of 0.1). For PPI network, we selected three different GO category combinations (Fig. S1). Using these three 
clustering profiles (Fig. S1A, S1B, S1C), we selected the number of protein clusters (y-axis) at 5 score thresholds each 
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(0.1, 0.3, 0.5, 0.7, and 0.9 at the x-axis). This procedure constructs 15 features in total for each MPs and non-MPs in 
the PPI feature domain.  

 

 

Supplementary Figure S1 – Clustering profiles of interacting proteins of moonlighting and non-moonlighting 
proteins. Physically interacting proteins for a MP or a non-MP were clustered using 5 cutoff values of a functional 
similarity score. Single linkage clustering was used. (A-B) the average number of clusters of interacting proteins 
relative to the number of interacting proteins. The funsim score with all three GO categories was used for A, and the 
funsim score with BP & MF GO term only in Eqn. 4 was used for B.  C) the funsim score with all three GO categories 
was used. Note that the y-axis is the average number of clusters per interacting proteins in the PPI network, which is 
different from the value used in (A). 
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Performance of MPFit with random forest for GO and all omics-based feature combinations 

 

Figure S2. Performance of MPFit with Random Forest. Results of 5-fold cross validation of MPFit with random 
forest classifier for the GO based features, and all possible feature combinations of the six omics-based features. 
Feature legends – GO: Gene Ontology, PPI: Protein-Protein Interactions, Phylo: Phylogenetic profile, GE: Gene 
Expression, DOR: DisOrdered Regions, GI: Genetic Interactions, NET: 3 graph properties – betweenness, degree 
centrality, closeness centrality. F-score computed as 2-class weighted average over MP/non-MP class. Coverage was 
computed as the mean protein coverage of MP/non-MP classes. For combinations with the same number of features, 
the results are sorted by their F-scores.  

Numbers 1-64 shown on the x-axis represent the following feature combinations: 

1:GO , 2:GE , 3:DOR , 4:Phylo , 5:GI , 6:PPI , 7:NET  
8:Phylo+GI , 9:Phylo+NET , 10:Phylo+GE , 11:PPI+Phylo , 12:Phylo+DOR , 13:PPI+GE , 14:GE+DOR 
,15:PPI+GI , 16:PPI+DOR , 17:PPI+NET , 18:DOR+NET , 19:GE+GI , 20:GI+DOR , 21:GE+NET , 22:GI+NET 
23:Phylo+GI+NET , 24:PPI+Phylo+GE , 25:PPI+GE+GI , 26:PPI+GE+DOR , 
27:GE+DOR+NET ,28:PPI+GE+NET , 29:Phylo+GE+GI , 30:Phylo+GE+DOR , 31:PPI+Phylo+DOR 
32:Phylo+GE+NET , 33:Phylo+GI+DOR , 34:GE+GI+DOR , 35:PPI+Phylo+GI , 36:Phylo+DOR+NET , 
37:PPI+Phylo+NET , 38:PPI+GI+NET , 39:PPI+DOR+NET , 40:GI+DOR+NET , 41:PPI+GI+DOR , 
42:GE+GI+NET 
43:Phylo+GE+GI+DOR , 44:PPI+Phylo+GE+DOR , 45:PPI+Phylo+GE+NET , 46:Phylo+GE+DOR+NET , 
47:PPI+GE+GI+NET , 48:PPI+GE+DOR+NET , 49:PPI+Phylo+GI+NET 50:PPI+GE+GI+DOR , 
51:PPI+Phylo+GE+GI , 52:Phylo+GE+GI+NET , 53:GE+GI+DOR+NET , 54:PPI+Phylo+DOR+NET , 
55:PPI+Phylo+GI+DOR , 56:Phylo+GI+DOR+NET , 57:PPI+GI+DOR+NET 
58:Phylo+GE+GI+DOR+NET , 59:PPI+Phylo+GE+DOR+NET , 60:PPI+Phylo+GE+GI+DOR , 
61:PPI+GE+GI+DOR+NET , 62:PPI+Phylo+GE+GI+NET , 63:PPI+Phylo+GI+DOR+NET , 
64:PPI+Phylo+GE+GI+DOR+NET 

Note that the coverage generally increases as the number of used features increases because missing features were 
imputed for a protein that have at least one feature among a particular combination considered.  
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Performance of MPFit with random forest for GO and all possible omics-based feature 
combinations without missing feature imputation.  

 

Figure S3. Performance of MPFit with random forest without missing feature imputation. Results of a five-fold 
cross validation were reported. Coverage is reported separately for the MP class (circles) and non-MP class (triangles).  

The feature combinations on the x-axis are the same as Fig. S2: 

1:GO , 2:Phylo , 3:PPI , 4:NET , 5:DOR , 6:GE , 7:GI 
8:PPI+Phylo , 9:Phylo+DOR , 10:Phylo+NET , 11:DOR+NET , 12:PPI+DOR , 13:Phylo+GE , 14:GE+DOR , 
15:GE+NET , 16:PPI+NET , 17:PPI+GE , 18:PPI+GI , 19:GI+DOR , 20:GI+NET , 21:GE+GI , 22:Phylo+GI 
23:Phylo+GE+DOR , 24:PPI+Phylo+DOR , 25:Phylo+GE+NET , 26:PPI+GI+DOR , 27:PPI+Phylo+NET , 
28:Phylo+DOR+NET , 29:GE+DOR+NET , 30:PPI+GE+NET , 31:PPI+DOR+NET , 32:PPI+GE+DOR , 
33:PPI+Phylo+GE , 34:GI+DOR+NET , 35:PPI+GI+NET , 36:PPI+GE+GI , 37:GE+GI+DOR , 38:GE+GI+NET 
39:Phylo+GI+DOR , 40:PPI+Phylo+GI , 41:Phylo+GI+NET , 42:Phylo+GE+GI 
43:Phylo+GE+DOR+NET , 44:GE+GI+DOR+NET , 45:PPI+Phylo+GE+NET , 46:PPI+GE+DOR+NET , 
47:PPI+Phylo+GE+DOR , 48:PPI+Phylo+DOR+NET , 49:PPI+GI+DOR+NET , 50:PPI+GE+GI+DOR , 
51:PPI+GE+GI+NET , 52:PPI+Phylo+GI+DOR , 53:Phylo+GI+DOR+NET , 54:Phylo+GE+GI+NET , 
55:PPI+Phylo+GI+NET , 56:Phylo+GE+GI+DOR , 57:PPI+Phylo+GE+GI 
58:PPI+GE+GI+DOR+NET , 59:PPI+Phylo+GE+DOR+NET , 60:PPI+Phylo+GE+GI+DOR , 
61:Phylo+GE+GI+DOR+NET , 62:PPI+Phylo+GE+GI+NET , 63:PPI+Phylo+GI+DOR+NET , 
64:PPI+Phylo+GE+GI+DOR+NET 

Note that the coverages are low because no imputation was performed. 

 

Random forest classifier with a probabilistic imputation  

We also examined a different way of missing feature imputation. In the alternative approach, unlike filling 
missing features by voting using temporarily assigned feature values as described in Methods (termed “explicit 
imputation”), the splitting probabilities in random forest that were learned from the training data were used for 
imputation.  The concrete pipeline of this so-called “probabilistic imputation” is as follows: first, we train the random 
forest with only those proteins that have non-missing features in a certain feature combination. In each branch of each 
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decision tree in the random forest, a fraction is learned (and stored) from the training data that indicates what portion 
of the proteins in the training set was split with that branch. Then we run down each protein Pi in the test data through 
each tree in the trained random forest. Whenever Pi falls into a tree node that splits based on a feature which is missing 
in Pi, we split Pi using the branch probabilities associated with that node that we learned from the training data. Finally, 
a majority vote is taken for Pi counting the number of trees that classifies Pi in MP/non-MP class. Two slightly different 
ways of the probabilistic imputation were implemented. The first method takes a weighted majority vote of the trees 
that classifies a test protein Pi as MP/non-MP, where a weight for one tree Ti is the fraction that is learned from the 
training data for the leaf branch of Ti that leads to a MP/non-MP class for Pi (Random Forest Probabilistic Imputation, 
Weighted, RF-PI-W). The second method simply takes a non-weighted majority vote for the test data point Pi (RF-
PI-NW, Random Forest Probabilistic Imputation, Not Weighted). 

Fig. S4 shows that the explicit imputation overall outperforms the two probabilistic imputation methods. Indeed, the 
explicit imputation showed higher F-score for all the feature combinations except for two cases: The DOR+NET 
combination had a higher F-score with RF-PI-NW (difference is 0.0156) and DOR had a higher F-score with RF-PI-
W than the explicit imputation (difference 0.0139). Comparing the two probabilistic imputation methods, the non-
weighted version (RF-PI-NW) showed a higher F-Score than its weighted counterpart (RF-PI-W) in 38 out of 64 
(59.38%) feature combinations. 

 

 
Figure S4. – Performance comparison of explicit and probabilistic imputation. The former is described in 

Methods. Values shown are the weighted class average F-score over fivefold cross validation. RF-PI-W: Random 
Forest Probabilistic Imputation, Weighted; RF-PI-NW: Random Forest Probabilistic Imputation, Not Weighted. See 
text for details. 

The reason why the explicit imputation worked better than the probabilistic imputation would be because the latter 
performs training on only a small the portion of the dataset that have no-missing features for a certain feature 
combination. For example, for a combination of all six omics features, PPI+Phylo+GE+GI+DOR+NET, there are only 
eight proteins with no missing features that could be used for training the probabilistic imputation. This lack of 
sufficient training data resulted in poor F-scores for MPFit with probabilistic imputation (0.409 for both RF-PI-NW 
and RF-PI-W), which contrasted with the good performance exhibited by MPFit with explicit imputation (F-score: 
0.721) 
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Feature Distribution for Phylogenetic Profile and NET  

 

Supplementary Figure S5 – Feature distribution of moonlighting and non-moonlighting proteins in 
phylogenetic profile and NET domain. A. Phylogenetically interacting proteins for a MP or a non-MP were clustered 
using 5 cutoff values of a functional similarity score. Single linkage clustering was used. The funsim score with all 
three GO categories was used for and the average number of clusters of interacting is shown in the y-axis. B. Quantile 
plot showing the between-ness centrality (one of the three NET features) of MP and non-MP proteins. PPI interaction 
network was used to extract the NET features.  
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