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1 Optimal Control

There can be an infinite number of inputs, uK, for driving a system from x0

to xT . We wish to find the inputs corresponding to the following minimization
problem:

min
u

∫ T

0

(xT − x)T (xT − x) + ρuTKuK. (1)

Here, ρ ∈ R>0 is a free parameter that scales the relative importance of the
first term to the second term in the integral. We set ρ = 100. To identify the
optimal inputs, uK, we define the Hamiltonian:

H(p,x,u, t) = (xT − x)T (xT − x) + ρuTKuK + p(Ax + BKu). (2)

In this expression A is a scaled version of the weighted connectivity matrix.
Specifically, we divide the original matrix by its largest eigenvalue and subtract
1 from all diagonal elements. This effectively ensures that all eigenvalues are
less than zero and renders the system stable. From the Pontryagin minimiza-
tion principle, if u∗K is an optimal solution to the minimization problem with
corresponding trajectory, x∗, then there exists p∗ such that:

∂H

∂x
= −2(xT − x∗) + ATp∗ = ṗ∗ (3)

∂H

∂uK
= 2ρu∗K + BT

Kp∗ = 0. (4)

This set of equations reduces to:[
ẋ∗

ṗ∗

]
=

[
A −(2ρ)−1BBT

−2I −AT

] [
x∗

p∗

]
+

[
0
I

]
2xT (5)

.
If we denote:

Ã =

[
A −(2ρ)−1BBT

−2I −AT

]
(6)

x̃ =

[
x∗
p∗

]
(7)

b̃ =

[
0
I

]
2xT (8)

then we can then write the reduced equation as:

˙̃x = Ãx̃ + b̃ (9)

which we can solve as:
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x̃(t) = eÃtx̃(0) +

∫ t

0

[eA(t−τ)b̃]dτ (10)

or, alternatively

x̃(t) = eÃtx̃(0) + A−1(eAt − I)b̃. (11)

Then, substituting t = T , we arrive at:

x̃(T ) = eÃT x̃(0) + A−1(eAT − I)b̃. (12)

Let

c = A−1(eAT − I)b̃. (13)

We can then write: [
x∗(T )
p∗(T )

]
=

[
E11 E12

E21 E22

] [
x∗(0)
p∗(0)

]
+

[
c1
c2

]
(14)

Rewriting this, we get:

x∗(T ) = E11x
∗(0) + E12p

∗(0) + c1 (15)

which can be rearranged to write:

p∗(0) = E−112 [x∗(T )−E11x
∗(0)− c1] (16)

Given p∗(0) and x0, we can then integrate x̃ forward, thereby obtaining xT
from which we subsequently obtain the optimal inputs, u∗K.

Note, in this derivation of the optimal inputs, we need only specify the free
parameter ρ and the boundary conditions, namely xT and x0. Collectively,
these variables determine the value of p∗(0). It is also worth noting that while
some of the variables have clear physical interpretations (e.g. (xT −x)T (xT −x)
is the distance from the target state and uTKuK is related to the total energy)
other variables do not. The additional variables that appear in this section are
a consequence of the optimization technique that we used and come from the
technique of Lagrange multipliers [2].

2 Justification for studying linear dynamics

In this paper we use linear control to drive the brain to and from specific states.
The brain;s dynamics, however, are almost certainly non-linear. Therefore, it
would be useful to at least consider the possibility of controlling non-linear
models of brain activity. However, non-linear control is more complicated than
linear control. To motivate our study linear control, we note that in some cases
nonlinear systems can be well-approximated by linear systems. In computa-
tional and network neuroscience, for instance, linear systems have sometimes
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been used as approximations of non-linear systems. For example, one study
[?] used a linearization of the neural mass model described in earlier work (see
[?, ?]), to show that it can generate predictions of the functional connectivity
patterns between different brain regions/neural elements that are approximately
as good as those obtained with the neural mass model, itself. Additionally (and
as noted in [1]), if a linearized system is controllable then it implies that the
non-linear system is locally controllable[?, ?]. Finally, linear models offer good
approximations of their non-linear counterparts in the neighborhood or the op-
erating point. Gain scheduling, for instance, uses multiple linear controllers to
control a nonlinear system around operating points, toggling between different
linear controllers when appropriate [?]. Thus, while brain dynamics are almost
certainly non-linear, using linear models to investigate neural systems can still
offer meaningful insight into the function and organization of neural systems.

3 Sensitivity of results to variation in parame-
ters

The optimal control framework depends upon two free parameters (in addition
to the initial and target states, x0 and xT , respectively) that must be selected by
the user. The free parameter ρ determines the relative importance of the input
amplitude to the distance from the target state. The other parameter, T , is the
control horizon and specifies the time at which the system should be in state
xT . In general, these parameters play a role in determining the optimal input
signals. In this section, we explore how variation in these parameter influence
some of the results presented in the main text.

3.1 Varying ρ

To test the robustness of our results to variation in the parameter ρ, we re-
peated the full control experiment (i.e. all nodes are control sites) for fifteen
different values of ρ, logarithmically-spaced over the interval [10−2, 105] while
fixing T = 1 (as in the main text). At each value of ρ, we obtained the energy
input at each node for every possible transition (all combinations of initial and
target states [4]). We compared these energy inputs at every pair of ρ values by
calculating their Pearson correlation. If different ρ values corresponded to sim-
ilar patterns of energy inputs then the correlation would be close to 1. Initially,
we calculated the correlation of energies for the same control task (i.e. same pair
of initial/target states) at each ρ; we subsequently averaged over these correla-
tion values, so that for each pair of ρ we obtained a single average correlation
coefficient.

The results of this exercise indicated that over a broad range of ρ values, the
overall pattern of energy inputs changes very little (Figure S10). Over the range
of ρ values that we explored, the smallest average correlation that obtained was
0.79 the largest 0.88 (the weakest correlation values was between ρ = 10−2 and
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ρ = 105). In general, this additional analysis supports the hypothesis that the
results reported in the main text are representative over a large range of ρ.

3.2 Varying T

We repeated the above procedure varying the parameter T while fixing ρ =
100 (as in the main text). We varied T over the range [10−3, 101] in fifteen
logarithmically-spaced points. This gave rise to, broadly speaking, two regimes:
a region over short control horizons where the energy inputs are highly correlated
with one another and a second regime over long control horizons where energy
inputs are less similar to one another and also to the first regime (Figure S11).
The value, T = 1, that we used in the main text, is located within the first
regime, suggesting that, while the choice of T can influence the energy inputs,
the value that we selected is representative of nearby parameter values.

4 Robustness to alternative definitions of func-
tional systems

In the main text we defined initial and target states based on clusters/systems
defined in [4]. To demonstrate that our results are robust to alternative defini-
tions of functional systems, we repeated some of our results using the clusters
described in [3], which have also been used in previous studies [1]. Using this
alternative definition, we identified ten systems: auditory, cingulo-opercular, de-
fault mode, dorsal attention, fronto-parietal, other, somatosensory, sub-cortical,
ventral attention, and visual systems. Using connectome data from a single sub-
ject, we tested whether we could predict the control energy in the full control
experiment – i.e. where the control set included all brain regions. In general, our
results were highly consistent with those reported in the main text (Figure S12).
We observed that the energy for initial and target classes could be predicted
with a high degree of certainty based on node degree (r = 0.87 and r = −0.89,
p < 0.05). The ability to predict bulk node’s energies was also predicted by
node strength, but the correlation was not as strong (r = 0.47, p < 0.05). This
supplementary result suggests that, irrespective of how we define our initial and
target states, node strength is still a useful predictor of node’s control energies.

5 Robustness to alternative parcellations and num-
ber of nodes

In the main text we described analyses conducted on a network of white-matter
fiber pathways among N = 129 brain regions. In general, how a brain network’s
nodes are defined can influence its graph-theoretic properties [5]. To demon-
strate that our results are robust to variations in node definition, we tested two
alternative parcellations that give rise to different definitions of nodes: one that
divided the brain into N = 83 nodes and another that resulted in N = 234
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nodes. Using these node definitions, we constructed anatomical brain networks
for a single representative subject using precisely the same techniques as de-
scribed in the main text. Next, we used the optimal control framework to
repeat the full control experiment – using the ten systems defined in [3] – and
tested whether we could still predict node-level control energies based on node’s
strengths. As in the previous section, we observed excellent agreement with the
results reported in the main text. Specifically, we found that with both 83-node
and 234-node parcellation, the control energies of initial and target nodes were
highly correlated with their respective strengths (r = 0.9 and r = −0.91 for the
83-node network and r = 0.84 and r = −0.84 for the 234-node network; Figure
S13 A,B,D,E). Also in agreement with previous results, bulk node control ener-
gies were more difficult to predict, but nonetheless correlated with node strength
(r = 0.46 and r = 0.47 for the 83-node and 234-node networks, respectively;
Figure S13C,F). These supplemental results suggest that the results reported in
the main text are robust to how we define brain network nodes.
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Figure S1: Distance from target is correlated with control energy. We
generated 1000 random initial and target states and calculated both the total
control energy, E, associated with the control task as well as the distance that
the system would be from its target state given that it started in the initial state
and evolved with no exogenous input, ‖v‖. In calculating E we assumed that
all nodes were directly controlled. (A) Scatterplot of the raw log10E against
‖v‖. (B) Scatterplot of ranked log10E against ‖v‖.
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Figure S2: Summary of full control across all participants. In the main
text we demonstrated that control energy was predicted by weighted degree
(strength). Here we show that this same general pattern holds across all 30
participants. We show, here, for all three classes – (A) initial, (B) target, and
(C) bulk – the distribution of correlation coefficients (logarithm weighted degree
versus logarithm energy) obtained across all control tasks.
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Figure S3: Summary of single-region suppression across all partici-
pants. In the main text we demonstrated that communicability between two
regions predicted the extent to which either region compensated for the sup-
pression of the other. We show, here, for all three classes – (A) initial, (B)
target, and (C) bulk – the distribution of correlation coefficients (communica-
bility versus percent change in energy) obtained across all control tasks.
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Figure S4: Summary of initial or target class suppression across all par-
ticipants. In the main text we demonstrated that suppressing entire classes
of brain regions (either initial or target classes) led to compensatory responses
from the remaining brain regions. Moreover, we demonstrated that the percent
change in energy of the remaining regions was closely predicted by their com-
municability to the suppressed class. Here, we show that this effect is consistent
across all participants. Panels (A) and (B) show the distribution of correlation
coefficients (communicability to initial class regions versus percent change in
energy) obtained for target and bulk regions when we suppressed the initial
class. Panels (C) and (D) show the same correlation coefficients but for initial
and bulk classes when the target regions were suppressed.
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Figure S5: Summary of initial and target class suppression across all
participants. In the main text we demonstrated that suppressing entire classes
of brain regions (both initial or target classes) led to compensatory responses
from the remaining brain regions. We showed that the energy associated with
the remaining regions was proportional to their communicability to both sup-
pressed classes and that their percent change in energy was related to how far
their connected neighbors were from their desired state under free evolution.
Here, we recapitulate those results for each participant. Panel (A) shows the
distribution of correlation coefficients (energy versus communicability to ini-
tial and target classes) across all control tasks for each participant. Panel (B)
shows the distribution of correlation coefficients (distance of neighbors from
desired state versus percent change in energy).
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Figure S6: Class assignments by brain system and rich club. We
aggregate class assignment probabilities according to brain system – panels
(A),(C),(E) – and whether or those regions were assigned to the rich club at
k = 84 – panels (B),(D),(F). Each row represents a different node class: target
(xT ), initial (x0), and bulk classes. The probability of being assigned to the
target class was statistically greater for rich club regions compared to non-rich
club regions in 27/30 participants compared to 13/30 and 9/30 for bulk and
initial classes, respectively (p < 0.05; Bonferroni corrected).
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Figure S7: Consistency of rich club. In the main text we focus on the rich
club defined at k = 84, shown in (A). In (B) we show that the composition of
the rich club over the range k = 81 to k = 88 is, generally, consistent. Each
row represents a brain region and each column a different value of k. The color
of each cell represents the fraction of participants for which a brain region was
assigned to the rich club at a given k.
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Figure S8: Effect of rich club rewiring on energy. In the main text we
focus on the rich club defined at k = 84, demonstrating that when rich club con-
nections were rewired the energy associated with transitioning from the optimal
initial class to the optimal target class increased. Here we show the robustness
of that result with respect to variation in the level at which the rich club was
defined. Each plot shows a different rich club, ranging from k = 80 to k = 88.
The y-axis shows the number of nodes assigned to the bulk class and the x-axis
shows the number of nodes assigned to the initial class. Not shown is the num-
ber of target nodes, which can be calculated as N − |bulk| − |x0|. Gray cells
correspond to class compositions that were not possible. The remaining cells
display the probability that rewiring rich club connections will reduce energy,
averaged across all participants.
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Figure S9: Brain system assignments. Topographic distributions of
eight brain systems: Visual system (VIS; dark purple), somatomotor network
(SMN; blue), default mode network (DMN; red), limbic system (LIM; cream),
saliency/ventral attention network (SAL/VEN; light purple), dorsal attention
network (DAN; green), control network (CONT; orange), and subcortex (SUB;
slate).
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Figure S10: Correlation of energy across different values of the pa-
rameter, ρ. Matrix of Pearson correlation between node-wise energy inputs
obtained using different values of the free parameter, ρ, and averaged over all
possible transitions.
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Figure S11: Correlation of energy across different values of the pa-
rameter, T . Matrix of Pearson correlation between node-wise energy inputs
obtained using different values of the free parameter, T , and averaged over all
possible transitions.
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Figure S12: Predicting energy with node strength using an alternative
definition of functional systems. We used a definition of functional systems
different than that reported in the main text and considered all possible tran-
sitions. We show, here, that we can still do a good job in terms of predicting
node-level control energies using node’s strengths.
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Figure S13: Predicting energy with node strength using two alternative
definitions of network nodes. In panels (A - C ) we show control energy
versus node strength for the three classes – initial, target, and bulk – based on
division of the brain into 83 nodes. In panels (D - F ), we show similar plots
but for a division of the brain into 234 nodes.
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