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Cue/Signal/Response Relationships

Cell Fates

Cues

(e.g. growth factors, steroids, ECM)

Signals

(e.g. phosphorylation, transcription)

= - -

Due to time scale and multiple
components, difficult to model
with mechanistic detail

Response
(e.g., proliferation, apoptosis,

migration, differentiation )




Methods for Signal/Response Modeling

Signal Level Response
1 5 We can classify and from the variation see that:
2 10
1.5 7 Low signal is correlated with Low response
5 24 High signal is correlated with High response
6 31
7 35

Alternatively, we may want to find a quantitative correlation between the signal
and response.
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Challenges with Univariate Relationships
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The relationship between JNK activation and apoptosis appears to be highly
context-dependent

—> univariate relationships are often insufficient

Janes, et al Science 2005



Multi-Linear Regression

In biology we often have multiple signals and multiple responses that were measured:

y1=aX; +byx, +e;
Y, = a,X; + bx, + e,

This can be written more concisely in matrix notation as:

Y=XB+E

Where Y is a n x p matrix and X is a n x m matrix; minimizing E and solving for B:

B = (XX)1XtY

If n observations and m variables:
* m<n = no exact solution, least-squares solution possible
* m=n -2 one solution
* m>n =2 no unique solution unless we delete independent variables
since XX cannot be inverted
m >n is often the case in systems biology!



Principal Components Regression (PCR)

One solution - use the concepts from PCA to reduce dimensionality

1) Decompose X matrix

X = TPt+E

scores

loadings residuals
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As an alternative to finding the
eigenvectors, the NIPALs algorithm
breaks the X and Y matrices into a
sum of vector products that
recapitulate the eigenvectors/
eigenvalues

The components are found
successively, with the first
component found from X and the
next from the residual of X —t,p,’

Geladi Analytica Chimica Acta 1986



Principal Components Regression (PCR)

One solution - use the concepts from PCA to reduce dimensionality

1) Decompose X matrix

X = TPt+E

scores loadings residuals

Loadings (p) are the direction of the
principal component in space

Scores (t) are the magnitude of
.. where an observation is along the
principal component

Geladi Analytica Chimica Acta 1986



Principal Components Regression (PCR)

One solution - use the concepts from PCA to reduce dimensionality

1) Decompose X matrix

X = TPt+E

scores loadings residuals

2) Regress Y again the scores (Scores describe observations — by using them we link
X and Y for each observation)

Y =TB+E



Principal Components Regression (PCR)

Result — for each observation (®), there is a residual (I) between the actual y
value and the value for the y plane fit to the principal components.

PC2

PC1

Problem — PCs for the X matrix do not necessarily capture X-variation that is
important for Y

Example — the first components capture signaling that is related to
another cell fate, while the signals that co-vary for this particular y are
buried in later components



PLSR

PLSR = partial least squares regression
OR projection to latent structures

Xz V&Y
Data has values in both X and Y b 00
. o
spaces for each observation 0% O o
» 02 >
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Find PCs for both matrices (while emphasizing the parts of X
that correlate with Y) — will use NIPALs algorithm to construct

the principal components. X = TPt +E
Y =UQ'+F

scores loadings residuals

Eriksson, et al. Multi- and Megavariate Data Analysis 2006




PLSR — NIPALs with Scores Exchanged

x,A Comp 1 (t,) Ya
Steps for each component (h) A Somp(u)
1) Find scores forY (u,)

A

2) Use u, to find the loadings for X (p,,)

>
Xp Y,
3) Use p,, to find scores for X (t,)
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Note: Data is mean-centered for PLSR. Unit o

variance scaling can also be applied if the
magnitudes of X values are not considered

important Eriksson, et al. Multi- and Megavariate Data Analysis 2006




PLSR — NIPALs with Scores Exchanged

By forcing the X and Y matrices to swap scores vectors we
rotate the principal components toward the independent
variables that link most strongly to the dependent variables.

y f'=Y'9‘n
The first component still
captures the most information,
and what is in PC1 is subtracted » 0 0

before PC2 is calculated.

Eriksson, et al. Multi- and Megavariate Data Analysis 2006




Components in PLSR and PCA Differ

a

Variables =
Observations  AKT JNK MK2 AKT-sub
0 min AKT o in INKgin MK2yi, .- AKT-subg .,
5 min AKT .. JNK; .. MK2 . ... AKT-subg ..

X

Compare 2 models:

1) PCA on the X matrix

Y

2) PLSR of the X and Y matrix

For example, AKT has a larger
loading in PC1 in PLSR than in PCA
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Janes Nat Rev MCB 2006



Determining the Number of Components

The optimal model will have enough components to accurately fit data and be

predictive, but remain simple enough for interpretation. Additionally, the
model is subject to over-fitting constraints.

Three metrics are used to evaluate the utility of adding a new component (a):

R2X: sum of squares for the variation in the X matrix
R2X=1- 2(Xmodel,a_xobs)2
Z(Xobsz)

R2Y: sum of squares for the variation in the Y matrix
R2Y =1- Z(Ymodel,a_Yobs)2
Z(Yobsz)

Q?Y: fraction of the total variation in the Y matrix that can be predicted
Q%Y = [1.0 — [1(PRESS/SS),]

PRESS = Prediction Error Sum of Squares

1) Remove an individual data element (i k)
2) Fit model

3) Predict the element i,k that was withheld
(observed; — predicted, )
4) Repeat until each element has been withheld once and only once




Determining the Number of Components

Each component contributes to these metrics — we evaluate those contributions and
the cumulative value to determine if adding a new component is beneficial (Q?Y is

prioritized in this evaluation).

With each new component, evaluate the change to the cumulative Q%Y
* Q?Y increases significantly (>0.05), keep the component and evaluate the

effect of adding another component
* Q?Y goes down or has minimal change, stop model at the previous

component
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Utilizing PLSR for Predictions

Once the PLSR function has been defined, it can be used to predict the Y
values for a new set of X values.

Can evaluate prediction accuracy:

DModY =s/s, where s; is the distance of the predictions and s is
a normalization term accounting for the residual
standard deviation in the model (smaller DModY
indicates better prediction)

Eriksson, et al. Multi- and Megavariate Data Analysis 2006




PLSR to Study ErbB in Ovarian Cancer

* Advanced tumors express
multiple receptors/ligands

e (Clinical trials with ErbB
inhibitors have had little
success - I \‘r___ a5
TGFa NRG1

B HB-EGF

. ErbB1 ErbB2 ErbB3 ErbB4
* Trials have not targeted

inhibitors to particular
sub-groups =2 how to
identify these groups?

Prasasya, et al. Biotech and Bioeng 2012



Hypothesis:

Sensitivity to ErbB Inhibitors is a Function of ErbB
Network Composition

S
o

Prasasya, et al. Biotech and Bioeng 2012



OvCa Express ErbB Ligands and Receptors

1.04

4 08 |

1 ErbB1 1 ErbB3 0.031

3 0.6 T

E 1 0.021

° 2] O 041 1

3 3 0.011

- 4 - i

5 | 5 < of

? ° L 12

o o o § 2 “IHB-EGF

hed = = O
g 2 S .o 9 2
O “[ErbB2 @ “TErbB4 o2
= 1.5] = 0.9 o
5 | g gt
(o) () c 2
@ o 0.6- G5
4 | (92e))
e
0.51 0.3 >
| 1 e

0 - 0 - 5.

=2 < < < < = < < < < 1

(©] o o o o g (©] o o o o g :

> > > > ) > > 3 > 3 -

© ©o ©o © © © © © 5

0_

OV-90
OVCA420
OVCA429
OVCA432
OVCA433

OVCARS5

Six ovarian cancer cell lines were examined for ErbB receptor (Western blots) and
ligand (ELISA) levels

* The levels of each individual protein varied widely across the panel
* The receptor/ligand combinations also varied across the panel

Prasasya, et al. Biotech and Bioeng 2012



OvCa Have Different Sensitivity to CI-1033

OVCAR5
80
S 407 OV-90 53.2
1. N 2 Lk OVCA420 91.1
0 T T T T T
OVCA429 46.9
190 OVCA433
OVCA432 48.5
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S B3 .
201 = o Av:arage%Dead OVCARS 12.6
Curve Fit
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These cell lines were treated with increasing doses of CI-1033 and the level of cell
death determined by CytoTox Glo (Promega)
e EC50 showed small variation (3-20uM)
 The maximum increase in cytotoxicity varied greatly across the panel
Sensitivity = Maximum % Dead — Baseline % Dead

Prasasya, et al. Biotech and Bioeng 2012



PLSR Relates ErbB Levels to Sensitivity
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Interpreting PLSR - Scores
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Prasasya, et al. Biotech and Bioeng 2012



Interpreting PLSR - Loadings
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Prasasya, et al. Biotech and Bioeng 2012



Interpreting PLSR - VIP
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VIP = Variable Importance of Projection
* Evaluated for each X variable across the entire model, not for individual

components

* Incorporates the weights for each variable and the variation for each
respective component across the model

e Values > 1.0 indicate important variables for explaining Y

Prasasya, et al. Biotech and Bioeng 2012



PLSR Predicts Sensitivity with Mixed Results
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Receptor and ligand levels were determined for 6 additional cell lines and
sensitivity predicted from the PLSR model.

For 3 of the 6 cells the prediction is accurate, while for 3 there are large errors.

To improve the model, need to determine source of this error.

Prasasya, et al. Biotech and Bioeng 2012



PLSR Predicts Sensitivity with Mixed Results

Relative Expression

AY)

OVCAR3
TOV112D
A2780
Ca-OVv3
SKOV3

190
ErbB2 l
1703

TOV21G

A\

OVCAR3 Good
TOV112D Poor
A2780 Poor
Ca-0OVv3 Good
SKOV3 Poor
TOV21G Good

Examining the X matrix, we clearly see a connection between cells with high

ErbB2 levels and failure to accurately predict.

Possible solutions:

1) Expand training set data to include a cell line that overexpresses ErbB2

2) Remove ErbB2 from the model

Prasasya, et al. Biotech and Bioeng 2012



Expanded Training Set Improves Prediction
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Prasasya, et al. Biotech and Bioeng 2012



Smaller Model Improves Prediction
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ErbB2 is rarely overexpressed in ovarian cancer.
Rebuild model without ErbB2 in X matrix and get accurate prediction of all 6 cell lines.

Leaving data out can improve prediction accuracy.

Prasasya, et al. Biotech and Bioeng 2012



O

timal Models Need ErbB1 & ErbB Li

ands

Tried 127 model variants (all possible combinations of X matrix)
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DmodY = distance of Predicted

- = included in X matrix prediction data set to

model

= excluded from X matrix

Best models do not include ErbB2.

Best models include at least 2 ligands suggesting autocrine loops are
linked to sensitivity.

Prasasya, et al. Biotech and Bioeng 2012



PLSR Variants

e DPLS — Discriminant PLS

— The response matrix consists of classifications such as
control =0, treated =1

 OPLS/O2PLS — Orthogonal PLS

— OPLS — the X matrix is broken down into parts that
predict Y and parts that are unrelated to Y

— O2PLS — both matrices are broken down into related and
unrelated parts



Summary

PLSR vs. PCA
PCA — has an X matrix; maximize the variance

PLSR — has an X and Y matrix; maximize the covariance

Interpreting PLSR
R2X, R%Y, Q%Y (maximum value of 1)
Using Q?Y to determine number of components
Scores/loadings
DModY (lower = better prediction)
VIP (>1 indicates important)



