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1 Supplementary Note

Definitions for commonly used variables

Symbol Definition
K Number of ancestral or founder haplotypes
T Number of SNPs in region
N Number of sample individuals
G Number of generations since population founding
Rr Read with index r which spans Jr SNPs, with SNP indices ur, sequenced bases

sr and base qualities br, or Rr = {ur, sr, br}
Jr Number of SNPs spanned by read Rr
cr Central SNP for read Rr
Ot Set of reads with central SNP t, Ot = {Rr|cr = t}
O Set of observations for each SNP t on the chromosome, O = {Ot|t = 1, ..., T}

ur,j For SNP j in read Rr, its index with respect to the chromosomal listing of
SNPs (e.g. If the physical position of SNP t in the region is Lt for t = 1, ..., T ,
then SNP j in read Rr has physical position Lur,j

)
sr,j Sequencing base for SNP j in read Rr, with sr,j = 1 for the alternate base and

0 for the reference base
br,j Base quality for SNP j in read Rr
Rr,j Subset of read Rr for SNP j, or Rr,j = {ur,j , sr,j , br,j}
φir,j Probability of SNP j from read Rr coming from an underlying genotype i, or

P (sr,j |g = i)
It Variable counting the number of recombinations that take place between SNPs

t and t+ 1
Hj
r Variable that takes value 1 if SNP j from read Rr is the alternate base and

value 0 if it is the reference base
Hr Variable that takes value 1 if read Rr comes from the maternal haplotype and

2 if it comes from the paternal haplotype
πk Probability of starting in state k at the first SNP
σt Recombination distance between SNPs t and t+ 1

αt,k Probability of switching into state k between SNPs t and t+ 1
θt,k Probability that haplotype k emits the alternate base at SNP t
λ Parameters of the model λ = {π, σ, α, θ}

In the main text, we described the model by showing one would simulate it,
and more formally laid out the details necessary to generate probabilities under
the model. Here, we further specify the model by describing how the expectation
of the complete data likelihood can be used in an EM framework to provide
updated parameters λi+1 which guarantee no decrease in the likelihood of the
observed data. Doing this requires state space augmentation and calculating
expectations over hidden states in the Markov model. Here we show how these
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expectations are calculated for the haploid, diploid and pseudo-haploid cases.
Later, initialization, bounding, and heuristics of the model are given as well.

First, we give a brief review of notation (and see list above). We consider
a genomic region with T SNPs, and sequencing reads from N individuals. For
each individual, we index their reads with r so we speak of read Rr. We define
a central SNP cr for read Rr, so that for each SNP in the region, we observe
a set of reads, Ot = {Rr|cr = t}. Read Rr consists of a triplet of vectors: ur,
the indices; sr the reference (0) or alternate (1) bases; and the base qualities
br. From this we use φir,j , the probability SNP j in read Rr has underlying
genotype i.

We model our population as having been founded G generations ago with
K ancestral haplotypes. Sampling a set of observations for an individual can
be thought of as 1) choosing an initial haplotype k according to πk, the prior
probability of starting in state k; 2) choosing where to switch states according to
σt, the genetic distance between SNPs t and t+1; 3) choosing which haplotype k
to sample at recombination breakpoints according to αt,k, the local probability
of switching into haplotype k at SNP t+1; and 4) sampling reads by i) choosing
read breakpoints and determining ur,j , the indices of the SNPs in the read;
ii) obtaining br,j , the base qualities of the SNPs in the read; iii) choosing the
real bases of the SNPs in the read according to θur,j ,k, the probability that
haplotype k emits the alternate base at SNP ur,j ; iv) observing sequenced bases
sr,j according to br,j and the real bases.

In the unaugmented hidden state space, the haploid model corresponds to
a set of kt ∈ 1, ...,K ∀t = 1, ..., T . For the diploid model, this consists of a
set of pairs of states (kt,1, kt,2), while for the pseudo-haploid mode, it is two
hidden states kt,1 and kt,2. In the augmented hidden state space, we further
consider knowledge of: how many recombinations occur between SNPs t and
t+1, defined by variable It; whether base j of read Rr is a reference or alternate
base, defined by variable Hj

r ; and whether read Rr comes from the maternal
or paternal haplotype, defined by variable Hr. Utilization of the augmented
hidden state space is necessary for updating parameters, as explained below.

1.1 Pseudo-haploid model

The diploid model presented here and used in fastPHASE and other similar
algorithms suffers from a quadratic computational complexity due to the need
to sum over K2 possible diploid states at each site. With sequencing reads,
the observed data fundamentally comes from either the first (e.g. maternal) or
second (e.g. paternal) haplotype. If we had labels for each read as to whether
they came from the maternal or paternal haplotype, we would have separable
likelihoods, and could use the maternal reads to infer the maternal states, and
likewise for the paternal reads and paternal states, which would have computa-
tional cost proportional to 2×K as opposed to K2.

In the diploid EM algorithm, we use the current set of parameters to gen-
erate the posterior probability of the pair of hidden states given the observa-
tions, and use these to generate a new set of parameters that maximize the
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likelihood. An alternative approach is to average over sampled hidden states
realized through a hypothetical Gibbs sampler that i) samples labels conditional
on states, observations, and parameters, and ii) samples states conditional on
labels, observations and parameters. Implementing such a Gibbs sampler in re-
ality would be computationally unwise, as it would likely take at least as long as
the original diploid EM. However, with certain assumptions about the posterior
distribution of the labels, we can approximate the posterior distribution of the
hidden states quickly.

Let q1 be the full hidden state for haplotype 1, the maternal haplotype. Let
Hr be the label for read r with Hr = 1 corresponding to the maternal haplotype
and Hr = 2 corresponding to the paternal haplotype. Let O = {Rr} be the set
of all reads, with |O| reads in total, and let H correspond to an assignment of
labels H ∈ H = {1, 2}|O|. Let Rh = {Rr|Hr = h} be the set of reads with label
h. Then we have

P (q1|O, λ) =
∑
H∈H

P (q1, H|O, λ) (1)

=
∑
H∈H

P (q1|H,O, λ)P (H|O, λ) (2)

=
∑
H∈H

P (q1|H,O, λ)

|O|∏
r=1

P (Hr|O, λ) (3)

where the last equality requires the approximation that the probability of the
labels are independent of each other. Now, the probability of a state given labels
and reads can be further written as

P (q1|H,O, λ) =
P (O|H, q1, λ)P (q1|H,λ)

P (O|H,λ)
(4)

=

(∏
r:Hr=1 P (Rr|q1, λ)

)
P (R2|hap2, λ)P (q1|λ)

P (R1|hap1, λ)P (R2|hap2, λ)
(5)

where we use P (q1|H,λ) = P (q1|λ), since labels dont affect state probabili-
ties without observations, and where (R1|hap1, λ) is the probability of observ-
ing the set of reads labeled as coming from haplotype 1, conditional on their
having come from haplotype 1. If we further approximate P (R1|hap1, λ) =∏
r:Hr=1 P (Rr|hap1, λ), and approximate P (Rr|hap1, λ) = P (Rr|λ), we get that

P (q1H,O, λ) = P (q1|λ)
∏

r:Hr=1

(P (Rr|q1|λ))/(P (Rr|λ)) (6)
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This gives us that

P (q1|O, λ) =

( ∑
H∈H

P (q1|λ)
( ∏
r:Hr=1

P (Rr|q1, λ)

P (Rr|λ)

))( |O|∏
r=1

P (Hr|O, λ)
)

(7)

= P (q1|λ)
∑
H∈H

|O|∏
r=1

(
P (Hr|O, λ)

(
I{Hr = 1}P (Rr|q1, λ)

P (Rr|λ)
+ I{Hr = 2}1

))
(8)

= P (q1|λ)

|O|∏
r=1

(
P (Hr = 1|O, λ)

P (Rr|q1, λ)

P (Rr|λ)
+ P (Hr = 2|O, λ)

)
(9)

Therefore, we get that read r contributes P (Hr = 1|O, λ)P (Rr|q1, λ) +P (Hr =
2|O, λ)P (Rr|λ) to the likelihood, after multiplying by the constant P (Rr|λ), as
opposed to P (Rr|q1, λ) as it would under a fully seperable model. When testing
on real data, we found that we achieved marginally but consistently better
performance using P (Hr = 1|O, λ)P (Rr|q1, λ) + P (Hr = 2|O, λ)P (Rr|hap2, λ)
instead, so this equation was used when calculating the state probabilities.

To use this, we need an estimate of the probability of a label given the data.
To do this, consider a read Rr, with lead SNP cr, and label Hr. Then we can
calculate the following

P (Hr = 1|O, λ) =
∑
q1,q2

P (Hr|q1, q2, O, λ)P (q1, q2|O, λ) (10)

=
∑
q1,q2

P (Hr|q1, q2, Rr, λ)P (q1, q2|O, λ) (11)

=
∑
q1,q2

P (Rr|q1, λ)

P (Rr|q1, λ) + P (Rr|q2, λ)
P (q1, q2|O, λ) (12)

= Eq1,q2
[ P (Rr|q1, λ)

P (Rr|q1, λ) + P (Rr|q2, λ)
|O, λ

]
(13)

≈ Eq1 [P (Rr|q1, λ)|O, λ]∑2
h=1 Eqh [P (Rr|qh, λ)|O, λ]

(14)

This uses a prior probability on labels of P (Hr = 1) = P (Hr = 2) = 1
2 . We also

use the approximation that the expectation of ratios is equivalent to the ratio
of expectations, to avoid a calculation with computational complexity of order
K2. To perform this calculation we use

P (Rr|haph, λ) = Eqh [P (Rr|qh, λ)|O, λ] ≈
K∑
k=1

P (Rr|qh = k, λ′)P (qk|O, λ′)

(15)
where λ′ are the parameters from the previous iteration.

Therefore, in calculating the complete data probability for the pseudo-haploid
model for haplotype H = 1, we use the probability of the observation at SNP t
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given state qt = kt and parameters λ as

PH=h(Ot|qt = kt, λ) =

Jr∏
j=1

PH=h(Rr|qt = kt, λ)

=

Jr∏
j=1

P (Hr = h|O, λ)P (Rr|q1, λ) + P (Hr 6= h|O, λ)P (Rr|haph, λ)

(16)

where P (Hr = h|O, λ) is from Equation 14, P (Rr|q1, λ) is as defined in the
main text, P (Hr 6= h|O, λ) = 1 − P (Hr = h|O, λ), and P (Rr|haph, λ) is from
Equation 15.

1.2 Maximization and parameter updating

In the EM algorithm, one defines a “complete dataset” D including the observed
data (O, the reads), as well as the hidden parameters (Q, the hidden states).
Given a set of parameters λ, one defines the log-likehood of the complete data as
L(λ) = log(l(λ|D)) = log(l(λ|D = (O,Q))). Given a current set of parameters
λi, we generate a new set of parameters λi+1 to maximize the expectation of
l(λi+1) with respect to the distribution of hidden parameters obtained by λi

U(λi+1, λi) =E[l(λi+1)|O, λi]

=
∑
Q

P (Q|O, λi) log(P (O,Q|λi+1)) (17)

Standard theory implies that by choosing λi+1 to maximize U(λi+1, λi), we also
increase the likelihood of the observed data, l(λi+1|O) > l(λi|O) [1].

In applying the EM algorithm, we first initialize with a set of parameters
λ0. For each subsequent iteration i = 1, 2, ..., we then iteratively alternate be-
tween the “Expectation” phase, where we calculate U(λi+1, λi), and the “Max-
imization” phase, where we calculate λi+1 to maximize U(λi+1, λi). In the
Expectation phase, the crucial component is calculating the state probabilities
P (Q|O, λi) - these are calculated using the forward and backward algorithms. To
calculate the updates in the Maximization stage, we must further augment the
latent space to model how many recombinations occur between SNPs, whether
emissions were due to occurences of an alternate base or a reference base, and
whether observed reads were from the maternal or paternal haplotype. To cal-
culate the updates in the Maximization stage, we must further augment the
latent space to model whether transitions occur due to recombinations or not,
and whether emissions were due to occurrences of an alternate base or a ref-
erence base. In this new augmented latent space, for some fixed set of hidden
parameters for the N samples, consider some sums that can be calculated. Let
n1k be the number of sample haplotypes in state k at the first SNP, ntstay be
the number of sample haplotypes which do not recombine between SNPs t and
t+1, ntswitch,k be the number of sample haplotypes which switch into ancestry k

6



between SNPs t and t+1, and ntk,s be the number of reads that have a reference
s = 0 or alternate s = 1 base for SNP t that are in state k for their central SNP.
Then the complete data log likelihood is

l(λ) = log(P (O,Q|λ))

=

K∑
k=1

n1k log(πk)

+

T−1∑
t=1

ntstay log(e−Gσt) +

T−1∑
t=1

K∑
k=1

ntswitch,k log((1− e−Gσt)αt,k)

+

T∑
t=1

K∑
k=1

ntk,1 log(θt,k) +

T∑
t=1

K∑
k=1

ntk,0 log((1− θt,k)) (18)

Calculating updates for a parameter is done by taking the derivative of U(λi+1, λi)
with respect to that parameter, setting it equal to 0 and solving. Employing
the notation E[x|O, λ] = Eλ[x], it is easy to calculate the following updates for
λi+1 = (πi+1, θi+1, αi+1, σi+1)

πi+1
k =

Eλi [n1k]∑K
j=1 Eλi [n1j ]

(19)

θi+1
t,k =

Eλi [ntk,1]

Eλi [ntk,0] + Eλi [ntk,1]
(20)

αi+1
t,k =

Eλi [ntswitch,k]∑K
j=1 Eλi [ntswitch,j ]

(21)

σi+1
t =

1

−G
log

( ∑K
k=1 Eλi [ntswitch,k]∑K

k=1 Eλi [ntswitch,k] + Eλi [ntstay]

)
(22)

1.2.1 Useful Variables

We use a standard forward backward HMM implementation with a set of pa-
rameters λ. Recall that qt is the hidden state at SNP t. We use the following
notations for states kt at SNP t and kt+1 at SNP t+ 1

αt(kt) = P (O1O2...Ot, qt = kt|λ)

βt(kt) = P (Ot+1Ot+2...OT |qt = kt, λ)

γt(kt) = P (qt = kt|O, λ) =
αt(kt)βt(kt)

P (O|λ)

ξt(kt, kt+1) = P (qt = kt, qt+1 = kt+1|O, λ)

=
αt(kt)P (qt+1 = kt+1|qt = kt, λ)βt+1(kt+1)P (Ot+1|qt+1 = kt+1, λ)

P (O|λ)
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The diploid version of these equations, where we go from state (kt,1, kt,2) at
SNP t to state (kt+1,1, kt+1,2) at SNP t+ 1 is

αt(kt,1, kt,2) =P (O1O2...Ot, qt = (kt,1, kt,2)|λ)

βt(kt,1, kt,2) =P (Ot+1Ot+2...OT |qt = (kt,1, kt,2), λ)

γt(kt,1, kt,2) =P (qt = (kt,1, kt,2)|O, λ) =
αt(kt,1, kt,2)βt(kt,1, kt,2)

P (O|λ)

ξt

(
(kt,1, kt,2), (kk+1,1, kt+1,2)

)
=P (qt = (kt,1, kt,2), qt+1 = (kt+1,1, kt+1,2)|O, λ)

=
1

P (O|λ)
αt(kt,1, kt,2)P (qt+1 = (kt+1,1, kt+1,2)|qt = (kt,1, kt,2), λ)×

βt+1(kt+1,1, kt+1,2)P (Ot+1|qt = (kt,1, kt,2), λ)

1.2.2 Haploid model

Initial probabilities
To update the prior parameters, we need the expectation of n1k, which we define
as the number of sample haplotypes in state k at the first SNP. Denote the
probability that the sample is in the first state at SNP t by γt(k). Let γn,t(k)
be γt(k) for sample n. We can therefore calculate the required expectation from
the main text as

Eλ[n1k] =

N∑
n=1

γn,1(k) (23)

Transition matrix probabilities
To update the transition parameters, we use an augmented state space where
we have knowledge of how many recombinations occured between two SNPs.
Define a variable It as the count of the number of recombinations between
SNPs t and t+ 1; in the haploid model, this takes value 0 or 1. This will allow
us to calculate the expectation of ntstay, the number of sample haplotypes that
do not recombine between SNPs t and t + 1, and ntswitch,k, the number that
switch into state k between SNPs t and t+ 1.

We extend our transition probability to include It as follows

P (qt+1 = kt+1, It|qt = kt, λ) =


e−Gσt if kt = kt+1 and It = 0

0 if kt 6= kt+1 and It = 0

(1− e−Gσt)αt,kt+1
if It = 1

Recall that ξt(kt, kt+1) is

ξt(kt, kt+1) =
αt(kt)P (qt+1 = kt+1|qt = kt, λ)βt+1(kt+1)P (Ot+1|qt+1 = kt+1, λ)

P (O|λ)
(24)
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Denote the probability given the observed data O that across SNP t, the sample
has states kt, kt+1 and indicator It by ξt(kt, kt+1, It). Then

ξt(kt, kt+1, It) =
αt(kt)P (qt+1 = kt+1, It|qt = kt, λ)βt+1(kt+1)P (Ot+1|qt+1 = kt+1, λ)

P (O|λ)
(25)

Let ξt(kt, kt+1, It) be ξn,t(kt, kt+1, It) for sample n. We can therefore calculate
expectations as

Eλ[ntstay] =

N∑
n=1

K∑
k=1

ξn,t(k, k, It = 0) (26)

Eλ[ntswitch,k] =

N∑
n=1

K∑
i=1

ξn,t(i, k, It = 1) (27)

and since

Eλ[ntstay] = 1−
N∑
n=1

K∑
i=1

K∑
k=1

ξn,t(i, k, It = 1) = 1−
K∑
k=1

Eλ[ntswitch,k] (28)

it is therefore sufficient to calculate Eλ[ntswitch,k] to perform the EM updating
from the main text.
Emission matrix probabilities
To update the emission parameters, we use an augmented state space where
we have knowledge of whether emissions were due to the alternate or reference
base. Recall that φir,j is the probability SNP j in read Rr came from a read

with underlying genotype i. Denote by Hj
r a variable which takes value 1 if the

underlying base is the alternate base and 0 if it is the reference base. We will
use this to calculate the expectation of ntk,s, the number of reads with a base
at SNP t that contain the alternate (s = 1) or reference (s = 0) base where the
sample was in state k at the central SNP of the read.

Recall that the original definition of the probability of read Rr given hidden
state k at SNP t and parameters λ is

P (Rr|qt = k, λ) =

Jr∏
j=1

P (Rr,j |qt = k, λ) =

Jr∏
j=1

(
φ1r,jθur,j ,k + φ0r,j(1− θur,j ,k)

)
(29)

We extend our emission probability to include Hj
r as follows

P (Rr, H
j
r |qt = kt, λ) =


[∏

i 6=j P (Rr,i|qt = kt, λ)
]
φ1r,jθur,j ,k if Hj

r = 1[∏
i 6=j P (Rr,i|qt = kt, λ)

]
φ0r,j(1− θur,j ,k) if Hj

r = 0

(30)

For read Rr with central SNP cr, the probability of the observation (set of reads)
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at SNP t = cr and Hj
r becomes

P (Ot, H
j
r |qt = kt, λ) =


P (Ot|qt = kt, λ)

φ1
r,jθur,j ,k

φ1
r,jθur,j ,k

+φ0
r,j(1−θur,j ,k

)
if Hj

r = 1

P (Ot|qt = kt, λ)
φ0
r,j(1−θur,j ,k

)

φ1
r,jθur,j ,k

+φ0
r,j(1−θur,j ,k

)
if Hj

r = 0

(31)

We expand γt(kt) as

γt(kt) =
αt(kt)βt(kt)

P (O|λ)

=
[
∑K
l=1 αt−1(l)P (qt = kt|qt−1 = l, λ)]P (Ot|qt = k, λ)βt(kt)

P (O|λ)
(32)

where we note that for t = 1, we substitute πk for [
∑K
l=1 αt−1(l)P (qt = kt|qt−1 =

l, λ)]. Denote the probability that for SNP j in read Rr with central SNP t = cr,
the sample has a hidden state kt and has indicator Hj

r given observed data O
and parameters λ by γt(kt, H

j
r ). Then

γt(kt, H
j
r ) =

[
∑K
l=1 αt−1(l)P (qt = kt|qt−1 = l, λ)]

P (O|λ)
P (Ot, H

j
r |qt = k, λ)

=


γt(kt)

φ1
r,jθur,j ,k

φ1
r,jθur,j ,k

+φ0
r,j(1−θur,j ,k

)
if Hj

r = 1

γt(kt)
φ0
r,j(1−θur,j ,k

)

φ1
r,jθur,j ,k

+φ0
r,j(1−θur,j ,k

)
if Hj

r = 0
(33)

Let γn,t(kt, H
j
r ) be γt(kt, H

j
r ) for sample n, and let An be the complete set

of SNPs j from reads Rr for sample n such that ur,j = t. We can therefore
calculate the required expectations from the main text as

Eλ[ntk,1] =

N∑
n=1

∑
(r,j)∈An

γn,cr (k,Hj
r = 1) (34)

Eλ[ntk,0] =

N∑
n=1

∑
(r,j)∈An

γn,cr (k,Hj
r = 0) (35)

1.2.3 Pseudo-haploid model

In the pseudo-haploid model, the only changes to the likelihood occur through
the emissions; as such, we need to re-calculate Equations 34 and 35. To update
the emission parameters for the pseudo-haploid model, we use an augmented
state space where we have knowledge of whether emissions were due to the
alternate or reference base, and further have knowledge of whether the read
came from the maternal or paternal haplotype. Recall that φir,j is the probability
that observed base j in read Rr came from a read with underlying genotype i.
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Recall that Hj
r is an indicator variable which takes value 1 if the underlying

base is the alternate base and 0 if it is the reference base. Let Hr take value 1 if
the read came from the maternal haplotype and 2 if it came from the paternal
haplotype. We will use these to calculate the expectation of ntk,s, the number of
reads that emit the alternate base (s = 1) or reference base (s = 0) given they
are in state k at the central SNP of the read.

Recall that for each individual, we make two forward backward passes of
the algorithm, once for the maternal haplotype (h = 1), and a second time for
the paternal haplotype (h = 2). We also attempt to probabilistically infer for
each read which haplotype it came from. Let H refer to the haplotype we are
currently modelling (maternal or paternal).

First, recall that the original definition of the probability while modelling
haplotype h of read Rr given hidden state k at SNP t and parameters λ is

PH=h(Rr|qt = kt, λ) = P (Rr|qt = kt, λ)P (Hr = h|O, λ)

+ P (Rr|Hr 6= h, λ)P (Hr 6= h|O, λ) (36)

For notational convenience, set Fr,j,h = P (Hr = h|O, λ)
[∏

i 6=j P (Rr,i|qt = k, λ)
]
.

We therefore expand the emission probability to include Hj
r and Hr as follows

PH=h(Rr, H
j
r , Hr|qt = k, λ) =


Fr,j,hθur,j ,kφ

1
r,j if Hj

r = 1, Hr = h

Fr,j,h(1− θur,j ,k)φ0r,j if Hj
r = 0, Hr = h

P (Hr 6= h|O, λ)P (Rr|Hr 6= h, λ) if Hr 6= h

Denote the probability that haplotype h of the sample is in state kt at SNP t
with Hj

r and Hr given observed data O and parameters λ by γt,h(kt, H
j
r , Hr).

Then, we get that

γt,h(kt, H
j
r , Hr) =

γt,h(kt)
Fr,j,hθur,j ,k

φ1
r,j

PH=h(Rr|qt=kt,λ) if Hj
r = 1, Hr = h

γt,h(kt)
Fr,j,h(1−θur,j ,k

)φ0
r,j

PH=h(Rr|qt=kt,λ) if Hj
r = 0, Hr = h

Let γn,t,h(kt, H
j
r , Hr) be γt,h(kt, H

j
r , Hr) for sample n, and let An be the com-

plete set of SNPs j from reads Rr for sample n such that ur,j = t. We can
therefore calculate the required expectations from the main text as

Eλ[ntk,1] =

N∑
n=1

∑
(r,j)∈An

2∑
h=1

γn,cr,h(k,Hj
r = 1, Hr = h) (37)

Eλ[ntk,0] =

N∑
n=1

∑
(r,j)∈An

2∑
h=1

γn,cr,h(k,Hj
r = 0, Hr = h) (38)

1.2.4 Diploid model

Initial probabilities
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To update the prior parameters, we need the expectation of n1k, which we define
as the number of sample haplotypes in state k at the first SNP. Denote the
probability that sample n is in pairs of states (kt,1, kt,2) at SNP t given observed
data O by γn,t(kt,1, kt,2). We can therefore calculate the required expectation
from the main text as

Eλ[n1k] =

N∑
n=1

K∑
j=1

(γn,1(k, j) + γn,1(j, k)) (39)

Transition probabilities
To update the transition parameters for the diploid model, we use an augmented
state space where we have knowledge of how many recombinations occured
between two SNPs. Here we define a variable It which counts the number of
recombinations that occur between SNPs t and t+ 1 for the two haplotypes of
the diploid sample, and takes values 0, 1 or 2. This will allow us to calculate the
expectation of ntstay, the number of sample haplotypes that do not recombine
between SNPs t and t+ 1, and ntswitch,k, the number of sample haplotypes that
switch into state k between SNPs t and t+ 1.

We can therefore extend the diploid transition probability to include It by
multiplying the haploid transition probabilities as follows

P (qt+1 = (kt+1,1, kt+1,2), It|qt = (kt,1, kt,2), λ) =



e−2Gσt if It = 0 and kt+1,1 = kt,1 and kt+1,2 = kt,2

e−Gσt(1− e−Gσt)αt,kt+1,1
if It = 1 and kt+1,1 6= kt,1 and kt+1,2 = kt,2

e−Gσt(1− e−Gσt)αt,kt+1,2
if It = 1 and kt+1,1 = kt,1 and kt+1,2 6= kt,2

e−Gσt(1− e−Gσt)(αt,kt+1,1 + αt,kt+1,2) if It = 1 and kt+1,1 = kt,1 and kt+1,2 = kt,2

(1− e−Gσt)2αt,kt+1,1αt,kt+1,2 if It = 2

0 otherwise

(40)
Denote the probability under the diploid model that the sample is in states

(kt,1, kt,2) at SNP t and states (kt+1,1, kt+1,2) at SNP t+1 and has indicator vari-
able It given observed dataO and parameters λ by ξt((kt,1, kt,2), (kt+1,1, kt+1,2), It).
Then

ξt((kt,1, kt,2), (kt+1,1, kt+1,2), It) =
1

P (O|λ)
αt(kt,1, kt,2)βt+1(kt+1,1, kt+1,2)P (Ot+1|qt = (kt,1, kt,2), λ)×

P (qt+1 = (kt+1,1, kt+1,2), It|qt = (kt,1, kt,2), λ)
(41)

Let mt
switch,k be the number of haplotypes of the sample that switch into state k

between SNPs t and t+1. We can calculate Eλ[ntswitch,k], and from this Eλ[ntstay],

by summing across Eλ[mt
switch,k] for all N samples, and so we can calculate

the required expectations from the main text by performing the calculations
below. Note that we simplify the summation to give a formulation that enables

12



quadratic versus linear computational complexity in K. A similar approach is
done for the haploid model to achieve linear versus quadratic computational
complexity (not shown).

Eλ[mt
switch,k] =

K∑
k1=1

K∑
k2=1

K∑
k3=1

2∑
j=0

j ×
(
ξt

(
(k1, k2), (k, k3), It = j

)
+ ξt

(
(k1, k2), (k3, k), It = j

))

=

K∑
k1=1

K∑
k2=1

1×
(
ξt

(
(k1, k2), (k, k2), It = 1

)
+ ξn,t

(
(k1, k2), (k1, k), It = 1

))

+

K∑
k1=1

K∑
k2=1

K∑
k3=1

2×
(

1

2
ξt

(
(k1, k2), (k, k3), It = 2

)
+

1

2
ξt

(
(k1, k2), (k3, k), It = 2

))
(42)

=

K∑
k1=1

K∑
k3=1

2× ξt
(

(k1, k3), (k, k3), It = 1
)

+

K∑
k1=1

K∑
k2=1

K∑
k3=1

2× ξt
(

(k1, k2), (k, k3), It = 2
)

(43)

=2

K∑
k1=1

K∑
k3=1

αt(k1, k3)βt+1(k, k3)P (Ot+1|qt = (k, k3), λ)αt,k(1− e−Gσt)e−Gσt

P (O|λ)

+2

K∑
k1=1

K∑
k2=1

K∑
k3=1

αt(k1, k2)βt+1(k, k3)P (Ot+1|qt = (k, k3), λ)αt,kαt,k3(1− e−Tσt)2

P (O|λ)

=
2αt,k
P (O|λ)

K∑
k3=1

(
(1− e−Gσt)e−Gσt

[
K∑

k1=1

αt(k1, k3)

]

+αtk3(1− e−Gσt)2

[
K∑

k1=1

K∑
k2=1

αt(k1, k2)

])
βt+1(k, k3)P (Ot+1|qt = (k, k3), λ)

(44)

Emission probabilities
To update the emission parameters for the diploid model, we use an augmented
state space as in for the pseudo-haploid model where we have knowledge of
whether emissions were due to the alternate or reference base, and further have
knowledge of whether the read came from the maternal or paternal haplotype.
Recall that: φir,j is the probability that observed base j in read Rr came from

a read with underlying genotype i; Hj
r is an variable which takes value 1 if the

underlying base is the alternate base and 0 if it is the reference base; and Hr is
a variable that takes value 1 if the read came from the maternal haplotype and
2 if from the paternal haplotype. We will use these to calculate the expectation
of ntk,s, the number of reads that emit the alternate base (s = 1) or reference
base (s = 0) given they are in state k at their central SNP.

13



Recall from the main text that the probability of an observation (set of
reads) at SNP t in the diploid model is

P (Ot|qt = (kt,1, kt,2), λ) =
1

2
P (Rr|qt = kt,1, λ) +

1

2
P (Rr|qt = kt,2, λ) (45)

For notational convenience set

Fr,j,Hr =
1
2P (Rr|qt = kHr , λ)

1
2P (Rr|qt = kt,1, λ) + 1

2P (Rr|qt = kt,2, λ)

(
1

θt,kt,Hr
φ1r,j + (1− θt,kt,Hr

)φ0r,j

)
(46)

We can therefore calculate the probability that SNP j in read Rr with central
SNP cr has indicator variable Hj

r and Hr and observation for SNP t = cr of Ot
given the pair of hidden states (kt,1, kt,2) and parameters λ as

P (Ot, H
j
r , Hr|qt = (kt,1, kt,2), λ) =

{
P (Ot, |qt = (kt,1, kt,2), λ)Fr,j,Hr

θt,kt,Hr
φ1r,j if Hj

r = 1

P (Ot, |qt = (kt,1, kt,2), λ)Fr,j,Hr
(1− θt,kt,Hr

)φ0r,j if Hj
r = 0

Denote the probability for SNP j in read Rr that at the central SNP of the
read t = cr is in the pair of states (kt,1, kt,2) given the observed data O and
parameters λ by γt(kt,1, kt,2, H

j
r , Hr). Then

γt(kt,1, kt,2, H
j
r , Hr) =

{
γt(kt,1, kt,2)Fr,j,Hr

θt,kHr
φ1r,j if Hj

r = 1

γt(kt,1, kt,2)Fr,j,Hr (1− θt,kHr
)φ1r,j if Hj

r = 0

Let γn,t(kt,1, kt,2, H
j
r , Hr) be γt(kt,1, kt,2, H

j
r , Hr) for sample n, and let An be

the complete set of SNPs j and reads Rr for sample n such that ur,j = t. We
can calculate the required expectations from the main text as

Eλ[ntk,s] =

N∑
n=1

∑
(r,j)∈An

K∑
i=1

(
γn,cr (k, i,Hj

r = s,Hr = 1)+

γn,cr (i, k,Hj
r = s,Hr = 2)

)
(47)

1.3 Efficient calculation of forward backward variables

We take the time here to write out the forward backwards calculations that
we used for the diploid case, as symmetries in the transition matrix allow us
to make the calculation in quadratic, rather than quartic time with respect to
K. Similar calculations (not shown) are used for the haploid model to ensure
linear versus quadratic computational complexity in K. We note that these
calculations are not original and are given in very similar form in the original
fastPHASE paper [2], but we reproduce them here as they represent important
simplifications for computational reasons
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αt+1(k3, k4) =

[
K∑

k1=1

K∑
k2=1

αt(k1, k2)P (qt+1 = (k3, k4)|qt = (k1, k2), λ)

]
P (Ot+1|qt+1 = (k3, k4), λ)

=

[
αt(k3, k4)(e−Gσt)2 +

K∑
k=1

e−Gσt(1− e−Gσt)αt,k3αt(k, k4)+

K∑
k=1

e−Gσt(1− e−Gσt)αt,k4αt(k3, k)+

K∑
k1=1

K∑
k2=1

(1− e−Gσt)2αt,k3αt,k4αt(k1, k2)

]
P (Ot+1|qt+1 = (k3, k4))

=

[
αt(k3, k4)(e−Gσt)2 + αt,k3At,1(k4) + αt,k4At,2(k3) + αt,k3αt,k4Bt

]
×

P (Ot+1|qt+1 = (k3, k4), λ)

where

At,1(k4) = e−Gσt(1− e−Gσt)

K∑
k=1

αt(k, k4) (48)

At,2(k3) = e−Gσt(1− e−Gσt)

K∑
k=1

αt(k3, k) (49)

Bt = (1− e−Gσt)2
K∑

k1=1

K∑
k2=1

αt(k1, k2) (50)

As such, the forward calcution can be done in quadratic time with respect to
the number of ancestral haplotypes K.

Similarly, for the backward calculation we get that

βt(k1, k2) =
K∑

k3=1

K∑
k4=1

P (qt+1 = (k3, k4)|qt = (k1, k2), λ)P (Ot+1|qt+1 = (k3, k4), λ)βt+1(k3, k4)

=(e−Gσt)2P (Ot+1|qt+1 = (k1, k2), λ)βt+1(k1, k2)+

(e−Gσt)(1− e−Gσt)

(
K∑
k=1

αt,kP (Ot+1|qt+1 = (k, k2), λ)βt+1(k, k2)+

K∑
k=1

αt,kP (Ot+1|qt+1 = (k1, k), λ)βt+1(k1, k)

)
+

(1− e−Gσt)2
K∑

k3=1

K∑
k4=1

αt,k3αt,k4P (Ot+1|qt+1 = (k3, k4), λ)βt+1(k3, k4)

=(e−Gσt)2P (Ot+1|qt+1 = (k1, k2), λ)βt+1(k1, k2) + Et,1(k2) + Et,2(k1) + Ft
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where

Et,1(k2) = (e−Gσt)(1− e−Gσt)

K∑
k=1

αt,kP (Ot+1|qt+1 = (k, k2), λ)βt+1(k, k2)

(51)

Et,2(k1) = (e−Gσt)(1− e−Gσt)

K∑
k=1

αt,kP (Ot+1|qt+1 = (k1, k), λ)βt+1(k1, k)

(52)

Ft = (1− e−Gσt)2
K∑

k3=1

K∑
k4=1

αt,k3αt,k4P (Ot+1|qt+1 = (k3, k4), λ)βt+1(k3, k4)

(53)

1.4 Initialization

Haploid probabilities πk are initialized with equal weights πk = 1
K , as are diploid

priors πk1,k2 = 1
K×K . The state probabilities αt,k are also initialized with equal

weights αt,k = 1
K . The recombination distance is initialized assuming a constant

recombination rate multiplied by the physical distance between SNPs, for ex-
ample assuming σt = dt × 0.5cM/Mb where dt is the physical distance between
SNPs t and t+ 1. Finally, given a lower bound δ on emission probabilities, for
example δ = 0.0001, θt,k are sampled from a uniform distribution with minimum
value δ and maximum value 1− δ. Note that G is left as a user set parameter,
which can be approximated for outbred populations using external estimates of
Ne with G = 4Ne

K .

1.5 Parameter bounding

After parameter updating, newly calculated parameters are bounded with de-
fault but user tunable parameters. Prior probabilities πk, new state parameters
αt,k, and emission probabilities θt,k (and 1− θt,k) whose values are less than a
threshold are set equal to that threshold, and then probabilities re-normalized
as appropriate to have sum 1. Under default conditions this bound is 1× 10−4.
For the recombination distance, values of σt that exceed implied upper (default
100 cM/Mb) and lower (default 0.1 cM/Mb) bounds are reset to the bound
value.

1.6 Heuristics

Since emission probabilities θ are initialized at random, STITCH can get stuck
in local minima, for which two heuristics are employed at various (default) itera-
tions. First, to help overcome unnecessary switches between ancestral haplotype
backgrounds, at iterations 4, 8, 12 and 16, pairs of haplotype states are calcu-
lated for each sample between pairs of nearby SNPs (starting at SNP 51, then
every further 100th SNP) by multiplying their marginal ancestral haplotype
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probabilities. If, across all samples, for each pair of nearby SNPs, there exists
a re-ordering of ancestral haplotype states that minimizes switching, then that
switch, or switches, is performed, and local SNPs (plus or minus 20 from the
break) are reset with θ from a U(0, 1) distribution. Second, to help fill unused
ancestral haplotypes, and to overcome superimposed ancestral haplotypes, at
iterations 6, 10, 14 and 18, ancestral haplotype usage in the most recent iter-
ation is discretized by averaging over 100 SNP intervals, and every continuous
interval of infrequently used ancestral haplotype (< 0.5%) is identified. Values
of θ over each interval are then refilled for that ancestral haplotype by copy-
ing from another sampled ancestral haplotype chosen with sampling probability
proportional to ancestral haplotype usage over that interval. θ is then reset
using 80% of these filled values and 20% noise from a U(0, 1) distribution.

1.7 Guidance behind parameter options

STITCH contains many parameter options that can be modified by the user,
for example upper and lower bounds on recombination rate. However, most of
these are reasonable for the majority of anticipated applications of STITCH.
For the analyses presented here for the CFW and CONVERGE populations, we
varied: K (option K), the number of ancestral haplotypes; whether the diploid
or pseudo-haploid method was used (option method); the number of pseudo-
haploid iterations (option switchModelIteration): the number of generations
when the population was founded (or can be so approximated) G (option nGen)
(which we set as 100 for the CFW analyses and 4×20000

K for the CONVERGE
studies). We also, for model evaluation purposes only, invoked a flag on whether
reads were split into new reads containing one SNP each (option readAware), the
number of computer cores available to the process (option nCores), and whether
the process is running in a server or cluster environment (option environment).

We anticipate that in using STITCH, the majority of users will achieve de-
sired results, both in terms of accuracy and computational speed, through vary-
ing K, G, the method (diploid or pseudo-haploid), and the number of pseudo-
haploid iterations.

In terms of selecting K, the diploid or pseudo-haploid method, and the num-
ber of pseudo-haploid iterations, we recommend imputing a small region of the
genome, such as a chromosome, using the diploid mode with a range of K,
and then evaluate performance. We recommend that to evaluate imputation
performance, users obtain validation data, using either genotyping microarrays
or higher coverage sequencing (like 10X). In the absence of external validation
data, we recommend the info score distribution or its average. If, for the diploid
method and a choice of K, results start to deteriorate, then choose the diploid
mode and K that gave optimal performance. If results do not deteriorate but be-
come computationally impractical, we recommend applying the pseudo-haploid
method for a range of pseudo-haploid and diploid iterations (as was done here for
CONVERGE), and choosing the combination that gives optimal results under
the given computational constraints.

For G (or nGen), we recommend setting this to a reasonable a priori esti-
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mate, like was available for the CFW mice, or to use 4×Ne

K , when the population
is wild or has not been through a strong bottleneck. We note that STITCH
should be fairly robust to this parameter choice. Users may also increase the
minimum and maximum allowed recombination rates if they are less certain
about this parameter.

Finally, while we do not give specific guidance on study design strategies
and sequencing depths, we note that in designing low coverage sequencing only
studies, users should try to ensure adequate population sequencing coverage
to ensure the ancestral haplotypes are well reconstructed, particularly in the
case when the founding structure is well known. For example, if a population
was founded with K = 8 haplotypes, then to achieve a given level of per-
ancestral haplotype coverage (e.g. 30X), while sequencing each sample at a
given level (e.g. 0.2X), one should consider sequencing in excess of 30×K

0.2 = 1200
samples. Drift in the population (i.e. non-equal ancestral haplotype usage in
the population) would require additional samples or depth for reconstruction of
rare haplotypes in the population.
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Supplementary Table 1A: Genotype concordance for CFW using STITCH (K=4, diploid) at all SNPs Results
give genotype concordance stratified by genotype class and allele frequency. Discrete genotype calls are generated for impu-
tation as the the genotype with the maximum genotype posterior probability. Results are given genome-wide (autosome and
chromosome X). Allele freqs = allele frequencies are the frequency of the minor allele. Type is either High Cov = high coverage
(10X) sequencing (4 samples) or Array = MegaMuga (44 samples). Columns contain either Num = Number of non-missing
genotypes considered (samples times SNPs for sequencing or array), or Per = Percent of imputed best guess genotypes that
match sequencing or array genotypes. Hom major = homozygous for the major allele, Het = heterozygous, Hom Minor =
homozygous for the minor allele. Note that truth (sequencing or array) genotypes contain some missing data

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 1,139,724 99.98 3,958 17.08 14 0
[0.01,0.02) High Cov 1,016,641 99.84 20,516 64.72 124 4.84
[0.02,0.05) High Cov 3,756,581 99.71 213,186 81.62 3,407 52.51
[0.05,0.1) High Cov 4,072,071 99.57 552,747 89.85 22,958 75.8
[0.1,0.2) High Cov 3,781,946 99.23 1,164,122 92.84 117,126 90.83
[0.2,0.3) High Cov 1,973,117 98.69 1,274,072 94.86 204,474 93.69
[0.3,0.4) High Cov 1,201,299 98.08 1,296,792 95.83 328,621 95.31
[0.4,0.5] High Cov 730,043 97.29 1,417,056 96.59 452,854 96.13
[0,0.01) Array 3,101 99.97 106 56.6 3 33.33
[0.01,0.02) Array 19,788 99.93 803 84.43 20 50
[0.02,0.05) Array 135,504 99.9 9,386 93.51 312 73.08
[0.05,0.1) Array 161,620 99.86 24,850 95.99 1,238 81.18
[0.1,0.2) Array 163,416 99.76 55,438 97.59 5,965 94.25
[0.2,0.3) Array 82,595 99.57 54,880 98.27 9,586 97.83
[0.3,0.4) Array 45,709 99.33 49,416 98.36 14,094 98.24
[0.4,0.5] Array 33,823 99.21 53,605 98.79 22,887 98.93
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Supplementary Table 1B: Genotype concordance for CFW using Beagle (default) at all SNPs

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 1,139,728 95 3,958 19.45 10 0
[0.01,0.02) High Cov 1,016,641 91.05 20,516 14.9 124 0
[0.02,0.05) High Cov 3,756,615 90.2 213,186 16.04 3,373 0.18
[0.05,0.1) High Cov 4,072,282 84.46 552,747 23.3 22,747 0.32
[0.1,0.2) High Cov 3,782,741 65.12 1,164,122 45.7 116,331 0.87
[0.2,0.3) High Cov 1,973,436 23.14 1,274,072 84.16 204,155 2.16
[0.3,0.4) High Cov 1,196,914 14.13 1,296,792 90.73 333,006 3.85
[0.4,0.5] High Cov 718,518 13.02 1,417,056 90.02 464,379 6.1
[0,0.01) Array 3,101 91.36 106 17.92 3 0
[0.01,0.02) Array 19,788 93.68 803 15.44 20 0
[0.02,0.05) Array 135,504 90.06 9,386 17.45 312 0
[0.05,0.1) Array 161,581 84.58 24,850 23.57 1,277 0.23
[0.1,0.2) Array 163,393 63.19 55,438 48.4 5,988 0.78
[0.2,0.3) Array 82,553 21.1 54,880 88.32 9,628 1.65
[0.3,0.4) Array 45,562 15.71 49,416 92.11 14,241 1.94
[0.4,0.5] Array 33,002 15.13 53,605 91.53 23,708 3.28
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Supplementary Table 1C: Genotype concordance for CFW using findhap (maxlen=10000, minlen=100,
steps=3, iters=4) at all SNPs

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 1,138,593 96.5 3,958 30.19 1,145 12.4
[0.01,0.02) High Cov 1,012,728 92.28 20,516 52.67 4,037 9.14
[0.02,0.05) High Cov 3,739,212 89.72 213,186 81.45 20,776 13.59
[0.05,0.1) High Cov 4,040,317 89.29 552,747 86.98 54,712 15.61
[0.1,0.2) High Cov 3,730,302 91.25 1,164,122 79.28 168,770 34.79
[0.2,0.3) High Cov 1,966,686 93.17 1,274,072 71.31 210,905 51.8
[0.3,0.4) High Cov 1,198,042 90.45 1,296,792 62.92 331,878 64.81
[0.4,0.5] High Cov 722,465 87.28 1,417,056 57.79 460,432 74.34
[0,0.01) Array 3,101 97.84 106 37.74 3 0
[0.01,0.02) Array 19,745 93.78 803 69.12 63 7.94
[0.02,0.05) Array 135,174 90.06 9,386 86.74 642 19.47
[0.05,0.1) Array 160,288 87.06 24,850 89.34 2,570 18.6
[0.1,0.2) Array 161,093 89.2 55,438 82.78 8,288 33.69
[0.2,0.3) Array 82,595 91.56 54,880 73.4 9,586 52.22
[0.3,0.4) Array 45,673 87.74 49,416 68 14,130 61.78
[0.4,0.5] Array 33,145 83.72 53,605 63.99 23,565 69.89

22



Supplementary Table 1D: Genotype concordance for CFW using STITCH (K=4, diploid) at all SNPs (post
QC)

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 1,139,724 99.98 3,958 17.08 14 0
[0.01,0.02) High Cov 1,016,641 99.84 20,516 64.72 124 4.84
[0.02,0.05) High Cov 3,756,581 99.71 213,186 81.62 3,407 52.51
[0.05,0.1) High Cov 4,072,071 99.57 552,747 89.85 22,958 75.8
[0.1,0.2) High Cov 3,781,946 99.23 1,164,122 92.84 117,126 90.83
[0.2,0.3) High Cov 1,973,117 98.69 1,274,072 94.86 204,474 93.69
[0.3,0.4) High Cov 1,201,299 98.08 1,296,792 95.83 328,621 95.31
[0.4,0.5] High Cov 730,043 97.29 1,417,056 96.59 452,854 96.13
[0,0.01) Array 3,101 99.97 106 56.6 3 33.33
[0.01,0.02) Array 19,788 99.93 803 84.43 20 50
[0.02,0.05) Array 135,504 99.9 9,386 93.51 312 73.08
[0.05,0.1) Array 161,620 99.86 24,850 95.99 1,238 81.18
[0.1,0.2) Array 163,416 99.76 55,438 97.59 5,965 94.25
[0.2,0.3) Array 82,595 99.57 54,880 98.27 9,586 97.83
[0.3,0.4) Array 45,709 99.33 49,416 98.36 14,094 98.24
[0.4,0.5] Array 33,823 99.21 53,605 98.79 22,887 98.93
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Supplementary Table 2: Performance of CFW study under different
programs and options Results are given for chromosomes 18 and 19. All
STITCH results are for the diploid model with 40 iterations. Program options
are as follows. For STITCH, RU refers to read unaware (i.e. split each read
spanning multiple SNPs into sub-reads spanning one read each). For Beagle,
shown are the number of iterations (i.e. burnin-its, phase-its, and impute-its
to this value), window is the window size, and msf is the (singlescale) model
scale factor. For findhap, options correspond directly to parameter options.
Note that times for STITCH do not include the generation of input data from
BAMs, which took about 1-1.5 hours per chromosome for chromosomes 18 and
19, irrespective of other program options. Similarly, times for findhap do not
include conversion time from VCF to the findhap input format. Av r2 is the
average r2 for SNPs on the Illumina MegaMUGA array, with no filtration for
QC for any method. Time is the average time in hours for chromosomes 18 and
19, where all programs were run on 1 core on 2.60 GHz Intel E5-2650 chips

Program Options Time Av r2
STITCH K=2 7.2 0.622
STITCH K=3 11.3 0.957
STITCH K=4 18.6 0.972
STITCH K=5 25.3 0.97
STITCH K=6 37.5 0.966
STITCH K=7 49 0.964
STITCH K=8 59 0.967
STITCH K=4, RU 18.8 0.873
Beagle its=5, window=50000, msf=1 6.1 0.074
Beagle its=5, window=1000000, msf=1 4.7 0.073
Beagle its=10, window=50000, msf=1 17.2 0.085
Beagle its=20, window=50000, msf=1 34.1 0.109
Beagle its=5, window=50000, msf=0.4 72.4 0.088
Beagle its=5, window=50000, msf=0.6 7.7 0.079
Beagle its=5, window=50000, msf=0.8 6.6 0.073
Beagle its=5, window=50000, msf=1.0 5.3 0.072
Beagle its=5, window=50000, msf=1.2 4.9 0.071
Beagle its=5, window=50000, msf=1.4 5.7 0.071
Beagle its=5, window=50000, msf=1.6 5.2 0.071
Beagle its=5, window=50000, msf=1.8 5.2 0.071
Beagle its=5, window=50000, msf=2.0 5.1 0.071
findhap maxlen=100000, minlen=1000, steps=3, iters=4 0.6 0.225
findhap maxlen=100000, minlen=1000, steps=2, iters=6 0.7 0.226
findhap maxlen=100000, minlen=1000, steps=5, iters=10 2.2 0.15
findhap maxlen=10000, minlen=100, steps=3, iters=4 0.5 0.523
findhap maxlen=50000, minlen=500, steps=3, iters=4 0.6 0.281
findhap maxlen=200000, minlen=2000, steps=3, iters=4 0.5 0.169
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Supplementary Table 3: Performance of CONVERGE study under
different programs and options with no reference panel Results are given
for the first 10 Mbp of chromosome 20, run in 0.5 Mbp regions with 0.1 Mbp
buffers. Program options are as follows. For STITCH, all options were run using
40 EM iterations, split into either diploid (D) or pseudo-haploid (PH) iterations,
while RU refers to read unaware (i.e. split each read spanning multiple SNPs
into sub-reads spanning one read each). For Beagle, shown are the number of
iterations (i.e. burnin-its, phase-its, and impute-its to this value). For findhap,
options correspond directly to parameter options. Note that times for STITCH
do not include the generation of input data from BAMs, which took about 30
minutes per region, irrespective of other program options. Similarly, times for
findhap do not include conversion time from VCF to the findhap input format.
Av r2 is the average r2 for SNPs on the Illumina HumanOmniZhongHua-8
array for common (MAF 5% to 95%) variants, with no filtration for QC for
any method. Time is the average in hours for each 0.5Mbp region, where all
programs were run on 4 cores on 2.60 GHz Intel E5-2650 chips.

Program Options Time Av r2
STITCH K=20, its=40D 24.5 0.922
STITCH K=20, its=40PH 8.0 0.875
STITCH K=20, its=34PH;6D 10.6 0.920
STITCH K=20, its=35PH;5D 9.9 0.919
STITCH K=20, its=36PH;4D 9.6 0.918
STITCH K=20, its=37PH;3D 9.3 0.917
STITCH K=20, its=38PH;2D 8.8 0.911
STITCH K=20, its=39PH;1D 8.4 0.898
STITCH K=20, its=38PH;2D, RU 9.4 0.910
STITCH K=30, its=40D 52.2 0.927
STITCH K=30, its=38PH;2D 12.4 0.917
STITCH K=40, its=38PH;2D 16.5 0.920
STITCH K=60, its=38PH;2D 27.7 0.923
STITCH K=80, its=38PH;2D 42.2 0.925
STITCH K=100, its=38PH;2D 61.1 0.927
Beagle its=5 12.5 0.874
findhap maxlen=100000, minlen=1000, steps=3, iters=4 0.4 0.437
findhap maxlen=100000, minlen=1000, steps=2, iters=6 0.4 0.437
findhap maxlen=100000, minlen=1000, steps=5, iters=10 1.4 0.426
findhap maxlen=10000, minlen=100, steps=3, iters=4 0.3 0.434
findhap maxlen=50000, minlen=500, steps=3, iters=4 0.4 0.448
findhap maxlen=200000, minlen=2000, steps=3, iters=4 0.5 0.414
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Supplementary Table 4A: Genotype concordance for CONVERGE using STITCH (K=40, 38 PH iterations, 2
D iterations) (without a reference panel) at all SNPs Results give genotype concordance stratified by genotype class
and allele frequency. Discrete genotype calls are generated for imputation as the the genotype with the maximum genotype
posterior probability. Results are given for the first 10 Mbp region of chromosome 20, run in 20 0.5 Mbp regions with 0.1
Mbp buffers. Allele freqs = allele frequencies are the frequency of the minor allele. Type is either High Cov = high coverage
(10X) sequencing (9 samples) or Array = HumanOmniZhongHua-8 (72 samples). Columns contain either Num = Number
of non-missing genotypes considered (samples times SNPs for sequencing or array), or Per = Percent of imputed best guess
genotypes that match sequencing or array genotypes. Hom major = homozygous for the major allele, Het = heterozygous,
Hom Minor = homozygous for the minor allele. Note that truth (sequencing or array) genotypes contain some missing data

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 16,234 99.98 879 27.19 14 0
[0.01,0.02) High Cov 3,973 99.72 483 62.11 6 16.67
[0.02,0.05) High Cov 11,325 99.59 1,725 83.65 31 19.35
[0.05,0.1) High Cov 14,634 99.33 2,931 91.23 116 65.52
[0.1,0.2) High Cov 28,004 99.13 10,059 96.01 1,183 84.53
[0.2,0.3) High Cov 18,880 98.59 12,285 96.81 2,134 90.63
[0.3,0.4) High Cov 15,750 97.69 15,356 97.49 4,300 94.12
[0.4,0.5] High Cov 10,469 96.89 16,280 97.61 7,445 96.15
[0,0.01) Array 9,691 99.95 100 70 0 NA
[0.01,0.02) Array 4,519 99.91 156 73.08 0 NA
[0.02,0.05) Array 11,883 99.82 834 88.13 12 83.33
[0.05,0.1) Array 18,317 99.42 3,003 91.44 114 73.68
[0.1,0.2) Array 29,193 98.92 10,165 93.38 866 85.68
[0.2,0.3) Array 20,139 97.89 12,835 94.39 2,201 89.41
[0.3,0.4) Array 14,833 97.2 15,879 95.44 4,171 93.02
[0.4,0.5] Array 10,172 96.29 16,290 95.67 6,766 94.8
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Supplementary Table 4B: Genotype concordance for CONVERGE using Beagle (default) (without a reference
panel) at all SNPs

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 16,234 100 879 56.09 14 0
[0.01,0.02) High Cov 3,973 100 483 64.6 6 0
[0.02,0.05) High Cov 11,325 99.97 1,725 73.74 31 6.45
[0.05,0.1) High Cov 14,634 99.64 2,931 84.61 116 50.86
[0.1,0.2) High Cov 28,004 99.49 10,059 90.55 1,183 82.25
[0.2,0.3) High Cov 18,880 98.98 12,285 93.09 2,134 88.71
[0.3,0.4) High Cov 15,750 97.96 15,356 94.27 4,300 93.37
[0.4,0.5] High Cov 10,469 97.05 16,280 95.12 7,445 96.55
[0,0.01) Array 9,691 100 100 54 0 NA
[0.01,0.02) Array 4,519 100 156 57.69 0 NA
[0.02,0.05) Array 11,883 99.91 834 76.5 12 75
[0.05,0.1) Array 18,317 99.77 3,003 81.22 114 69.3
[0.1,0.2) Array 29,193 99.47 10,165 86.54 866 83.03
[0.2,0.3) Array 20,139 98.46 12,835 89.44 2,201 86.37
[0.3,0.4) Array 14,833 97.5 15,879 91.91 4,171 91.63
[0.4,0.5] Array 10,172 96.23 16,290 92.98 6,766 94.66
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Supplementary Table 4C: Genotype concordance for CONVERGE using findhap (maxlen=50000, minlen=500,
steps=3, iters=4) (without a reference panel) at all SNPs

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 13,485 99.69 562 48.22 10 0
[0.01,0.02) High Cov 3,701 99.08 453 60.71 5 20
[0.02,0.05) High Cov 10,771 97.96 1,623 61.06 27 3.7
[0.05,0.1) High Cov 14,328 94.45 2,875 68.49 115 18.26
[0.1,0.2) High Cov 26,632 93.43 9,443 69 1,083 42.84
[0.2,0.3) High Cov 17,884 87.82 11,566 66.72 1,964 50.61
[0.3,0.4) High Cov 15,229 84.5 14,665 67.23 4,212 60.73
[0.4,0.5] High Cov 9,766 77.63 15,546 67.34 7,050 67.48
[0,0.01) Array 8,690 99.57 94 46.81 0 NA
[0.01,0.02) Array 3,894 98.02 133 46.62 0 NA
[0.02,0.05) Array 11,302 97.34 773 56.4 8 37.5
[0.05,0.1) Array 17,884 93.63 2,934 63.53 113 20.35
[0.1,0.2) Array 27,294 91.11 9,529 62.09 813 31.12
[0.2,0.3) Array 18,845 85.16 12,052 63.57 2,046 40.27
[0.3,0.4) Array 14,260 78.72 15,331 65.34 4,068 49.68
[0.4,0.5] Array 9,903 72.2 15,787 66.08 6,603 58.47
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Supplementary Table 4D: Genotype concordance for CONVERGE using STITCH (K=40, 38 PH iterations,
2 D iterations) (without a reference panel) at all SNPs (that pass QC)

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 6,266 99.97 241 83.82 1 0
[0.01,0.02) High Cov 2,725 99.67 323 85.45 2 50
[0.02,0.05) High Cov 10,001 99.59 1,541 90.53 29 17.24
[0.05,0.1) High Cov 13,916 99.35 2,760 94.28 109 68.81
[0.1,0.2) High Cov 27,327 99.19 9,773 97.24 1,155 85.97
[0.2,0.3) High Cov 18,291 98.9 11,938 97.76 2,064 92.34
[0.3,0.4) High Cov 15,294 98.12 14,869 98.14 4,170 95.4
[0.4,0.5] High Cov 10,174 97.67 15,802 98.15 7,260 96.85
[0,0.01) Array 6,763 99.94 76 90.79 0 NA
[0.01,0.02) Array 3,898 99.9 132 84.09 0 NA
[0.02,0.05) Array 11,068 99.83 787 92.12 11 90.91
[0.05,0.1) Array 17,968 99.49 2,925 92.89 110 76.36
[0.1,0.2) Array 27,902 99.06 9,643 95.49 809 90.36
[0.2,0.3) Array 18,709 98.36 11,832 96.49 2,047 92.82
[0.3,0.4) Array 14,263 97.69 15,252 96.48 4,000 95.15
[0.4,0.5] Array 9,573 97.49 15,336 96.77 6,376 96.86
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Supplementary Table 5: Performance of CONVERGE study under
different programs and options with a reference panel Results are given
for the first 10 Mbp of chromosome 20, run in 0.5 Mbp regions with 0.1 Mbp
buffers. Program options are as follows. For STITCH, all options were run
using 40 EM iterations, split into either diploid (D) or pseudo-haploid (PH)
iterations. For Beagle, shown are the number of iterations (i.e. burnin-its,
phase-its, and impute-its to this value). Note that times for STITCH do not
include the generation of input data from BAMs, which took about 30 minutes
per region, irrespective of other program options. Av r2 is the average r2 for
SNPs on the Illumina HumanOmniZhongHua-8 array for common (MAF 5% to
95%) variants, with no filtration for QC for any method. Time is the average in
hours for each 0.5Mbp region, where all programs were run on 4 cores on 2.60
GHz Intel E5-2650 chips.

Program Options Time Av r2
STITCH K=20, its=38PH;2D 5.4 0.911
STITCH K=40, its=38PH;2D 10.2 0.922
STITCH K=60, its=38PH;2D 16.6 0.925
Beagle its=5, no ref panel 7.8 0.886
Beagle its=4 114.4 0.946
Beagle its=3 74.5 0.943
Beagle its=2 39.7 0.939
Beagle its=1 12.0 0.930
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Supplementary Table 6A: Genotype concordance for CONVERGE using STITCH (K=40, 38 PH iterations, 2
D iterations) (without a reference panel) at reference panel SNPs (1000G ASN) Results give genotype concordance
stratified by genotype class and allele frequency. Discrete genotype calls are generated for imputation as the the genotype
with the maximum genotype posterior probability. Results are given for the first 10 Mbp region of chromosome 20, run in 20
0.5 Mbp regions with 0.1 Mbp buffers. Allele freqs = allele frequencies are the frequency of the minor allele. Type is either
High Cov = high coverage (10X) sequencing (9 samples) or Array = HumanOmniZhongHua-8 (72 samples). Columns contain
either Num = Number of non-missing genotypes considered (samples times SNPs for sequencing or array), or Per = Percent
of imputed best guess genotypes that match sequencing or array genotypes. Hom major = homozygous for the major allele,
Het = heterozygous, Hom Minor = homozygous for the minor allele. Note that truth (sequencing or array) genotypes contain
some missing data

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 13,968 99.96 596 35.91 10 0
[0.01,0.02) High Cov 3,798 99.74 460 63.04 6 0
[0.02,0.05) High Cov 11,259 99.72 1,714 85.3 31 16.13
[0.05,0.1) High Cov 14,634 99.33 2,931 91.88 116 63.79
[0.1,0.2) High Cov 27,980 99.1 10,054 95.91 1,183 85.88
[0.2,0.3) High Cov 18,875 98.56 12,282 96.88 2,133 90.53
[0.3,0.4) High Cov 15,737 97.59 15,315 97.43 4,298 94.04
[0.4,0.5] High Cov 10,463 96.82 16,261 97.72 7,434 95.96
[0,0.01) Array 8,975 99.96 97 64.95 0 NA
[0.01,0.02) Array 4,519 99.82 156 80.13 0 NA
[0.02,0.05) Array 11,740 99.74 833 88.36 12 83.33
[0.05,0.1) Array 18,317 99.45 3,003 91.81 114 76.32
[0.1,0.2) Array 29,144 98.93 10,142 93.7 866 86.95
[0.2,0.3) Array 20,139 97.85 12,835 94.66 2,201 90.37
[0.3,0.4) Array 14,833 97.01 15,879 95.54 4,171 92.78
[0.4,0.5] Array 10,172 96.06 16,290 95.75 6,766 94.77
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Supplementary Table 6B: Genotype concordance for CONVERGE using Beagle (default) (without a reference
panel) at reference panel SNPs (1000G ASN)

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 13,968 100 596 55.54 10 0
[0.01,0.02) High Cov 3,798 100 460 66.09 6 0
[0.02,0.05) High Cov 11,259 99.95 1,714 75.61 31 12.9
[0.05,0.1) High Cov 14,634 99.64 2,931 85.77 116 53.45
[0.1,0.2) High Cov 27,980 99.41 10,054 91.87 1,183 83.94
[0.2,0.3) High Cov 18,875 98.95 12,282 93.93 2,133 89.45
[0.3,0.4) High Cov 15,737 97.99 15,315 95.09 4,298 93.9
[0.4,0.5] High Cov 10,463 97.24 16,261 95.79 7,434 96.7
[0,0.01) Array 8,975 100 97 56.7 0 NA
[0.01,0.02) Array 4,519 100 156 58.33 0 NA
[0.02,0.05) Array 11,740 99.88 833 78.63 12 75
[0.05,0.1) Array 18,317 99.72 3,003 83.25 114 71.05
[0.1,0.2) Array 29,144 99.32 10,142 88.55 866 84.06
[0.2,0.3) Array 20,139 98.38 12,835 90.7 2,201 87.6
[0.3,0.4) Array 14,833 97.57 15,879 92.88 4,171 92.14
[0.4,0.5] Array 10,172 96.26 16,290 93.49 6,766 95.26
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Supplementary Table 6C: Genotype concordance for CONVERGE using Beagle (its=3) (with a reference
panel) at reference panel SNPs (1000G ASN)

Allele freqs Type Num Hom Major Per Hom Major Num Het Per Het Num Hom Minor Per Hom Minor
[0,0.01) High Cov 13,968 99.96 596 66.95 10 0
[0.01,0.02) High Cov 3,798 99.63 460 81.09 6 33.33
[0.02,0.05) High Cov 11,259 99.86 1,714 91.54 31 19.35
[0.05,0.1) High Cov 14,634 99.55 2,931 95.19 116 67.24
[0.1,0.2) High Cov 27,980 99.32 10,054 97.13 1,183 88.33
[0.2,0.3) High Cov 18,875 98.95 12,282 97.44 2,133 92.45
[0.3,0.4) High Cov 15,737 98.2 15,315 97.54 4,298 95.23
[0.4,0.5] High Cov 10,463 97.69 16,261 97.82 7,434 97.19
[0,0.01) Array 8,975 99.98 97 81.44 0 NA
[0.01,0.02) Array 4,519 99.96 156 83.33 0 NA
[0.02,0.05) Array 11,740 99.8 833 93.28 12 83.33
[0.05,0.1) Array 18,317 99.6 3,003 94.21 114 84.21
[0.1,0.2) Array 29,144 99.22 10,142 95.5 866 91.11
[0.2,0.3) Array 20,139 98.72 12,835 95.96 2,201 94
[0.3,0.4) Array 14,833 97.9 15,879 96.52 4,171 95.35
[0.4,0.5] Array 10,172 97.53 16,290 96.62 6,766 97.04
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Supplementary Table 7: Performance of STITCH on CONVERGE
study original imputation Results are over the first 10 Mbp of chromosome
20. Beagle methodology was the same as done in the original CONVERGE
paper and as explained in the text. STITCH results are for K = 40, 38 pseudo-
haploid iterations, 2 diploid iterations. All sites with removal of SNPs failing
QC also removed SNPs with Hardy-Weinberg p-value less than 10−6. Av r2
is the average r2 for SNPs on the Illumina HumanOmniZhongHua-8 array for
high frequency (MAF 5% to 95%) variants.

Method SNP set % SNPs Av r2
Beagle All 100 0.933
STITCH All 100 0.92
Beagle info>0.4 90 0.939
STITCH info>0.4 90 0.939
Beagle info>0.9 78 0.968
STITCH info>0.9 75 0.972
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Supplementary Table 8: Effect of filtering on imputation perfor-
mance Results are given for chromosome 19. QC is defined per-run and reflects
info> 0.4 and HWE p-value > 1× 10−6. r2 values are against the 4 10X mice.

Set Description SNPs Number of SNPs Ti/Tv VQSR r2 No VQSR r2
1 VQSR All 152,486 2.07 0.937
2 VQSR Post-QC 122,878 2.21 0.968
3 No VQSR, Round 1 All 355,123 1.48 0.745
4 No VQSR, Round 1 Post-QC 136,164 2.08 0.945
5 No VQSR, Round 2 All 136,164 2.08 0.938
6 No VQSR, Round 2 Post-QC 128,054 2.14 0.952
7 Intersect Set 2 and Set 6 115,567 2.22 0.967 0.969
8 Present Set 2, absent Set 6 7,311 2.13 0.915
9 Present Set 6, absent Set 2 12,487 1.55 0.930
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